Exact Mass: 991.3292084000001
Exact Mass Matches: 991.3292084000001
Found 60 metabolites which its exact mass value is equals to given mass value 991.3292084000001
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
3-Oxotetradecanoyl-CoA
C35H60N7O18P3S (991.2928250000001)
3-Oxotetradecanoyl-CoA is a product of the peroxisomal beta oxidation of hexadenoic acid by the enzyme acyl-CoA oxidase which results in long-chain 3-oxoacyl-CoA-esters. (PMID: 7548202). Myristoyl-CoA:protein N-myristoyltransferase (E.C. 2.3.1.97) is a eukaryotic enzyme that catalyzes the transfer of myristate (C14:O) from myristoyl-CoA to the amino nitrogen of glycine. This covalent protein modification occurs cotranslationally, is apparently irreversible, and affects proteins with diverse functions. (PMID: 2818568). 3-Oxotetradecanoyl-CoA is a product of the peroxisomal beta oxidation of hexadenoic acid by the enzyme acyl-CoA oxidase which results in long-chain 3-oxoacyl-CoA-esters. (PMID: 7548202)
(3S)-3-Hydroxy-cis-8-tetradecenoyl-CoA
C35H60N7O18P3S (991.2928250000001)
(3S)-3-hydroxy-cis-8-tetradecenoyl-CoA is an intermediate in producing (3S)-3-oxo-cis-8-tetradecenoyl-CoA. In the reaction, react with NAD,(3S)-3-hydroxy-cis-8-tetradecenoyl-CoA is the reduction precursor. [HMDB] (3S)-3-hydroxy-cis-8-tetradecenoyl-CoA is an intermediate in producing (3S)-3-oxo-cis-8-tetradecenoyl-CoA. In the reaction, react with NAD,(3S)-3-hydroxy-cis-8-tetradecenoyl-CoA is the reduction precursor.
Pentadecanoyl Coenzyme A
C36H64N7O17P3S (991.3292084000001)
This compound belongs to the family of Acyl CoAs. These are organic compounds contaning a coenzyme A substructure linked to another moeity through an ester bond.
Pentadecanoyl-CoA
C36H64N7O17P3S (991.3292084000001)
Pentadecanoyl-CoA is also known as Pentadecanoyl-coenzyme A(4-). Pentadecanoyl-CoA is considered to be slightly soluble (in water) and acidic
Anteisopentadecanoyl-CoA
C36H64N7O17P3S (991.3292084000001)
A methyl-branched fatty acyl-CoA obtained from the formal condensation of the thiol group of coenzyme A with the carboxy group of anteisopentadecanoic acid.
Isopentadecanoyl-CoA
C36H64N7O17P3S (991.3292084000001)
A methyl-branched fatty acyl-CoA obtained from the formal condensation of the thiol group of coenzyme A with the carboxy group of isopentadecanoic acid.
13-Methyltetradecanoyl-CoA
C36H64N7O17P3S (991.3292084000001)
13-methyltetradecanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 13-methyltetradecanoic acid thioester of coenzyme A. 13-methyltetradecanoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 13-methyltetradecanoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 13-methyltetradecanoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 13-Methyltetradecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 13-Methyltetradecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 13-Methyltetradecanoyl-CoA into 13-Methyltetradecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 13-Methyltetradecanoylcarnitine is converted back to 13-Methyltetradecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 13-Methyltetradecanoyl-CoA occurs in four steps. First, since 13-Methyltetradecanoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 13-Methyltetradecanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3...
11-Methyltetradecanoyl-CoA
C36H64N7O17P3S (991.3292084000001)
11-methyltetradecanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is an 11-methyltetradecanoic acid thioester of coenzyme A. 11-methyltetradecanoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 11-methyltetradecanoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 11-methyltetradecanoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 11-Methyltetradecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 11-Methyltetradecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 11-Methyltetradecanoyl-CoA into 11-Methyltetradecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 11-Methyltetradecanoylcarnitine is converted back to 11-Methyltetradecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 11-Methyltetradecanoyl-CoA occurs in four steps. First, since 11-Methyltetradecanoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 11-Methyltetradecanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, ...
10-Methyltetradecanoyl-CoA
C36H64N7O17P3S (991.3292084000001)
10-methyltetradecanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 10-methyltetradecanoic acid thioester of coenzyme A. 10-methyltetradecanoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 10-methyltetradecanoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 10-methyltetradecanoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 10-Methyltetradecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 10-Methyltetradecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 10-Methyltetradecanoyl-CoA into 10-Methyltetradecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 10-Methyltetradecanoylcarnitine is converted back to 10-Methyltetradecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 10-Methyltetradecanoyl-CoA occurs in four steps. First, since 10-Methyltetradecanoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 10-Methyltetradecanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3...
8-Methyltetradecanoyl-CoA
C36H64N7O17P3S (991.3292084000001)
8-methyltetradecanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is an 8-methyltetradecanoic acid thioester of coenzyme A. 8-methyltetradecanoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 8-methyltetradecanoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 8-methyltetradecanoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 8-Methyltetradecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 8-Methyltetradecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 8-Methyltetradecanoyl-CoA into 8-Methyltetradecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 8-Methyltetradecanoylcarnitine is converted back to 8-Methyltetradecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 8-Methyltetradecanoyl-CoA occurs in four steps. First, since 8-Methyltetradecanoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 8-Methyltetradecanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-...
9-Methyltetradecanoyl-CoA
C36H64N7O17P3S (991.3292084000001)
9-methyltetradecanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 9-methyltetradecanoic acid thioester of coenzyme A. 9-methyltetradecanoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 9-methyltetradecanoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 9-methyltetradecanoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 9-Methyltetradecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 9-Methyltetradecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 9-Methyltetradecanoyl-CoA into 9-Methyltetradecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 9-Methyltetradecanoylcarnitine is converted back to 9-Methyltetradecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 9-Methyltetradecanoyl-CoA occurs in four steps. First, since 9-Methyltetradecanoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 9-Methyltetradecanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-C...
7-Methyltetradecanoyl-CoA
C36H64N7O17P3S (991.3292084000001)
7-methyltetradecanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 7-methyltetradecanoic acid thioester of coenzyme A. 7-methyltetradecanoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 7-methyltetradecanoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 7-methyltetradecanoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 7-Methyltetradecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 7-Methyltetradecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 7-Methyltetradecanoyl-CoA into 7-Methyltetradecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 7-Methyltetradecanoylcarnitine is converted back to 7-Methyltetradecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 7-Methyltetradecanoyl-CoA occurs in four steps. First, since 7-Methyltetradecanoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 7-Methyltetradecanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-C...
3-Methyltetradecanoyl-CoA
C36H64N7O17P3S (991.3292084000001)
3-methyltetradecanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 3-methyltetradecanoic acid thioester of coenzyme A. 3-methyltetradecanoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 3-methyltetradecanoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 3-methyltetradecanoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 3-Methyltetradecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 3-Methyltetradecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 3-Methyltetradecanoyl-CoA into 3-Methyltetradecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 3-Methyltetradecanoylcarnitine is converted back to 3-Methyltetradecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 3-Methyltetradecanoyl-CoA occurs in four steps. First, since 3-Methyltetradecanoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 3-Methyltetradecanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-C...
4-Methyltetradecanoyl-CoA
C36H64N7O17P3S (991.3292084000001)
4-methyltetradecanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 4-methyltetradecanoic acid thioester of coenzyme A. 4-methyltetradecanoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 4-methyltetradecanoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 4-methyltetradecanoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 4-Methyltetradecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 4-Methyltetradecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 4-Methyltetradecanoyl-CoA into 4-Methyltetradecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 4-Methyltetradecanoylcarnitine is converted back to 4-Methyltetradecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 4-Methyltetradecanoyl-CoA occurs in four steps. First, since 4-Methyltetradecanoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 4-Methyltetradecanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-C...
5-Methyltetradecanoyl-CoA
C36H64N7O17P3S (991.3292084000001)
5-methyltetradecanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 5-methyltetradecanoic acid thioester of coenzyme A. 5-methyltetradecanoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 5-methyltetradecanoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 5-methyltetradecanoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 5-Methyltetradecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 5-Methyltetradecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 5-Methyltetradecanoyl-CoA into 5-Methyltetradecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 5-Methyltetradecanoylcarnitine is converted back to 5-Methyltetradecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 5-Methyltetradecanoyl-CoA occurs in four steps. First, since 5-Methyltetradecanoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 5-Methyltetradecanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-C...
6-Methyltetradecanoyl-CoA
C36H64N7O17P3S (991.3292084000001)
6-methyltetradecanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 6-methyltetradecanoic acid thioester of coenzyme A. 6-methyltetradecanoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 6-methyltetradecanoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 6-methyltetradecanoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 6-Methyltetradecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 6-Methyltetradecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 6-Methyltetradecanoyl-CoA into 6-Methyltetradecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 6-Methyltetradecanoylcarnitine is converted back to 6-Methyltetradecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 6-Methyltetradecanoyl-CoA occurs in four steps. First, since 6-Methyltetradecanoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 6-Methyltetradecanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-C...
12-Methyltetradecanoyl-CoA
C36H64N7O17P3S (991.3292084000001)
12-methyltetradecanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 12-methyltetradecanoic acid thioester of coenzyme A. 12-methyltetradecanoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 12-methyltetradecanoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 12-methyltetradecanoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 12-Methyltetradecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 12-Methyltetradecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 12-Methyltetradecanoyl-CoA into 12-Methyltetradecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 12-Methyltetradecanoylcarnitine is converted back to 12-Methyltetradecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 12-Methyltetradecanoyl-CoA occurs in four steps. First, since 12-Methyltetradecanoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 12-Methyltetradecanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3...
(6Z)-9-Hydroxytetradec-6-enoyl-CoA
C35H60N7O18P3S (991.2928250000001)
(6z)-9-hydroxytetradec-6-enoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (6Z)-9-hydroxytetradec-6-enoic acid thioester of coenzyme A. (6z)-9-hydroxytetradec-6-enoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (6z)-9-hydroxytetradec-6-enoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (6z)-9-hydroxytetradec-6-enoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (6Z)-9-Hydroxytetradec-6-enoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (6Z)-9-Hydroxytetradec-6-enoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (6Z)-9-Hydroxytetradec-6-enoyl-CoA into (6Z)-9-Hydroxytetradec-6-enoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (6Z)-9-Hydroxytetradec-6-enoylcarnitine is converted back to (6Z)-9-Hydroxytetradec-6-enoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (6Z)-9-Hydroxytetradec-6-enoyl-CoA occurs in four steps. First, since (6Z)-9-Hydroxytetradec-6-enoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (6Z)-9-Hydroxytetradec-6-enoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, En...
(12E)-10-Hydroxytetradec-12-enoyl-CoA
C35H60N7O18P3S (991.2928250000001)
(12e)-10-hydroxytetradec-12-enoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (12E)-10-hydroxytetradec-12-enoic acid thioester of coenzyme A. (12e)-10-hydroxytetradec-12-enoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (12e)-10-hydroxytetradec-12-enoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (12e)-10-hydroxytetradec-12-enoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (12E)-10-Hydroxytetradec-12-enoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (12E)-10-Hydroxytetradec-12-enoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (12E)-10-Hydroxytetradec-12-enoyl-CoA into (12E)-10-Hydroxytetradec-12-enoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (12E)-10-Hydroxytetradec-12-enoylcarnitine is converted back to (12E)-10-Hydroxytetradec-12-enoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (12E)-10-Hydroxytetradec-12-enoyl-CoA occurs in four steps. First, since (12E)-10-Hydroxytetradec-12-enoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (12E)-10-Hydroxytetradec-12-enoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hyd...
(3Z)-5-Hydroxytetradec-3-enoyl-CoA
C35H60N7O18P3S (991.2928250000001)
(3z)-5-hydroxytetradec-3-enoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (3Z)-5-hydroxytetradec-3-enoic acid thioester of coenzyme A. (3z)-5-hydroxytetradec-3-enoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (3z)-5-hydroxytetradec-3-enoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (3z)-5-hydroxytetradec-3-enoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (3Z)-5-Hydroxytetradec-3-enoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (3Z)-5-Hydroxytetradec-3-enoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (3Z)-5-Hydroxytetradec-3-enoyl-CoA into (3Z)-5-Hydroxytetradec-3-enoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (3Z)-5-Hydroxytetradec-3-enoylcarnitine is converted back to (3Z)-5-Hydroxytetradec-3-enoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (3Z)-5-Hydroxytetradec-3-enoyl-CoA occurs in four steps. First, since (3Z)-5-Hydroxytetradec-3-enoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (3Z)-5-Hydroxytetradec-3-enoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, En...
(5E)-8-Hydroxytetradec-5-enoyl-CoA
C35H60N7O18P3S (991.2928250000001)
(5e)-8-hydroxytetradec-5-enoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (5E)-8-hydroxytetradec-5-enoic acid thioester of coenzyme A. (5e)-8-hydroxytetradec-5-enoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (5e)-8-hydroxytetradec-5-enoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (5e)-8-hydroxytetradec-5-enoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (5E)-8-Hydroxytetradec-5-enoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (5E)-8-Hydroxytetradec-5-enoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (5E)-8-Hydroxytetradec-5-enoyl-CoA into (5E)-8-Hydroxytetradec-5-enoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (5E)-8-Hydroxytetradec-5-enoylcarnitine is converted back to (5E)-8-Hydroxytetradec-5-enoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (5E)-8-Hydroxytetradec-5-enoyl-CoA occurs in four steps. First, since (5E)-8-Hydroxytetradec-5-enoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (5E)-8-Hydroxytetradec-5-enoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, En...
(2E)-4-Hydroxytetradec-2-enoyl-CoA
C35H60N7O18P3S (991.2928250000001)
(2e)-4-hydroxytetradec-2-enoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (2E)-4-hydroxytetradec-2-enoic acid thioester of coenzyme A. (2e)-4-hydroxytetradec-2-enoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (2e)-4-hydroxytetradec-2-enoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (2e)-4-hydroxytetradec-2-enoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (2E)-4-Hydroxytetradec-2-enoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (2E)-4-Hydroxytetradec-2-enoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (2E)-4-Hydroxytetradec-2-enoyl-CoA into (2E)-4-Hydroxytetradec-2-enoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (2E)-4-Hydroxytetradec-2-enoylcarnitine is converted back to (2E)-4-Hydroxytetradec-2-enoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (2E)-4-Hydroxytetradec-2-enoyl-CoA occurs in four steps. First, since (2E)-4-Hydroxytetradec-2-enoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (2E)-4-Hydroxytetradec-2-enoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, En...
CoA 15:0
C36H64N7O17P3S (991.3292084000001)
(3S,5Z)-3-hydroxytetradec-5-enoyl-CoA
C35H60N7O18P3S (991.2928250000001)
An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (3S,5Z)-3-hydroxytetradec-5-enoic acid.
(S)-3-Hydroxy-7Z-Tetradecenoyl-CoA
C35H60N7O18P3S (991.2928250000001)
(2S)-2-methyltetradecanoyl-CoA
C36H64N7O17P3S (991.3292084000001)
A (2S)-2-methylacyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (2S)-2-methyltetradecanoic acid.
(2R)-2-methyltetradecanoyl-CoA
C36H64N7O17P3S (991.3292084000001)
A (2R)-2-methylacyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (2R)-2-methyltetradecanoic acid.
S-[2-[3-[[4-[[[5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 12-methyltetradecanethioate
C36H64N7O17P3S (991.3292084000001)
(3S)-3-Hydroxy-cis-8-tetradecenoyl-CoA
C35H60N7O18P3S (991.2928250000001)
(6Z)-9-Hydroxytetradec-6-enoyl-CoA
C35H60N7O18P3S (991.2928250000001)
(3Z)-5-Hydroxytetradec-3-enoyl-CoA
C35H60N7O18P3S (991.2928250000001)
(5E)-8-Hydroxytetradec-5-enoyl-CoA
C35H60N7O18P3S (991.2928250000001)
(2E)-4-Hydroxytetradec-2-enoyl-CoA
C35H60N7O18P3S (991.2928250000001)
(12E)-10-Hydroxytetradec-12-enoyl-CoA
C35H60N7O18P3S (991.2928250000001)
Unk-N(For)4Abz-D-gGlu-D-Glu-Glu-D-Glu-Glu-OH
C40H53N11O19 (991.3519028000001)
S-(2-Oxopentadecyl) CoA; (Acyl-CoA); [M+H]+
C36H64N7O17P3S (991.3292084000001)
3-Oxotetradecanoyl-CoA; (Acyl-CoA); [M+H]+
C35H60N7O18P3S (991.2928250000001)
PubChem CID: 25244730; (Acyl-CoA); [M+H]+
C35H60N7O18P3S (991.2928250000001)
isopentadecanoyl-CoA
C36H64N7O17P3S (991.3292084000001)
A methyl-branched fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of isopentadecanoic acid.
Pentadecanoyl-CoA
C36H64N7O17P3S (991.3292084000001)
A long-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of pentadecanoic acid.
4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-[2-({2-[(3-hydroxytetradec-8-enoyl)sulfanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]-3,3-dimethylbutanimidic acid
C35H60N7O18P3S (991.2928250000001)
Pentadecanoyl-CoA/Hydroxytetradecenoyl-CoA
C35H60N7O18P3S (991.2928250000001)
(1s,3r,13s,14s,17s,18r,19r,20r,21s,22r,23r,24r,25s)-18,22-bis(acetyloxy)-20-[(acetyloxy)methyl]-19,24-bis(benzoyloxy)-25-hydroxy-3,13,14,25-tetramethyl-6,15-dioxo-2,5,16-trioxa-11-azapentacyclo[15.7.1.0¹,²⁰.0³,²³.0⁷,¹²]pentacosa-7,9,11-trien-21-yl benzoate
C53H53NO18 (991.3262477999999)
(1s,3r,13s,14s,17s,18s,19r,20r,21r,22r,23r,24r,25s)-18,22-bis(acetyloxy)-20-[(acetyloxy)methyl]-21,24-bis(benzoyloxy)-25-hydroxy-3,13,14,25-tetramethyl-6,15-dioxo-2,5,16-trioxa-11-azapentacyclo[15.7.1.0¹,²⁰.0³,²³.0⁷,¹²]pentacosa-7,9,11-trien-19-yl benzoate
C53H53NO18 (991.3262477999999)