Exact Mass: 987.2615266000001
Exact Mass Matches: 987.2615266000001
Found 57 metabolites which its exact mass value is equals to given mass value 987.2615266000001
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
OPC4-CoA
C35H56N7O18P3S (987.2615266000001)
OPC4-CoA participates in alpha-Linolenic acid metabolism. OPC4-CoA is converted from 3-Oxo-OPC6-CoA. However, OPC4-CoA reacts with acyl-CoA oxidase [EC:1.3.3.6] to produce trans-2-Enoyl-OPC4-CoA. [HMDB] OPC4-CoA participates in alpha-Linolenic acid metabolism. OPC4-CoA is converted from 3-Oxo-OPC6-CoA. However, OPC4-CoA reacts with acyl-CoA oxidase [EC:1.3.3.6] to produce trans-2-Enoyl-OPC4-CoA.
3-[(3aS,4S,7aS)-7a-Methyl-1,5-dioxo-octahydro-1H-inden-4-yl]propanoyl-CoA; HIP-CoA
C34H52N7O19P3S (987.2251431999999)
3-Hydroxytetradeca-5,7,9-trienoyl-CoA
C35H56N7O18P3S (987.2615266000001)
3-hydroxytetradeca-5,7,9-trienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 3-hydroxytetradeca-5_7_9-trienoic acid thioester of coenzyme A. 3-hydroxytetradeca-5,7,9-trienoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 3-hydroxytetradeca-5,7,9-trienoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 3-hydroxytetradeca-5,7,9-trienoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 3-Hydroxytetradeca-5,7,9-trienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 3-Hydroxytetradeca-5,7,9-trienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 3-Hydroxytetradeca-5,7,9-trienoyl-CoA into 3-Hydroxytetradeca-5_7_9-trienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 3-Hydroxytetradeca-5_7_9-trienoylcarnitine is converted back to 3-Hydroxytetradeca-5,7,9-trienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 3-Hydroxytetradeca-5,7,9-trienoyl-CoA occurs in four steps. First, since 3-Hydroxytetradeca-5,7,9-trienoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 3-Hydroxytetradeca-5,7,9-trienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hyd...
3-Hydroxytetradeca-6,9,12-trienoyl-CoA
C35H56N7O18P3S (987.2615266000001)
3-hydroxytetradeca-6,9,12-trienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 3-hydroxytetradeca-6_9_12-trienoic acid thioester of coenzyme A. 3-hydroxytetradeca-6,9,12-trienoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 3-hydroxytetradeca-6,9,12-trienoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 3-hydroxytetradeca-6,9,12-trienoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 3-Hydroxytetradeca-6,9,12-trienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 3-Hydroxytetradeca-6,9,12-trienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 3-Hydroxytetradeca-6,9,12-trienoyl-CoA into 3-Hydroxytetradeca-6_9_12-trienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 3-Hydroxytetradeca-6_9_12-trienoylcarnitine is converted back to 3-Hydroxytetradeca-6,9,12-trienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 3-Hydroxytetradeca-6,9,12-trienoyl-CoA occurs in four steps. First, since 3-Hydroxytetradeca-6,9,12-trienoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 3-Hydroxytetradeca-6,9,12-trienoyl-CoA, creating a double bond between the alpha and beta carbons. ...
3-Hydroxytetradeca-7,9,11-trienoyl-CoA
C35H56N7O18P3S (987.2615266000001)
3-hydroxytetradeca-7,9,11-trienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 3-hydroxytetradeca-7_9_11-trienoic acid thioester of coenzyme A. 3-hydroxytetradeca-7,9,11-trienoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 3-hydroxytetradeca-7,9,11-trienoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 3-hydroxytetradeca-7,9,11-trienoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 3-Hydroxytetradeca-7,9,11-trienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 3-Hydroxytetradeca-7,9,11-trienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 3-Hydroxytetradeca-7,9,11-trienoyl-CoA into 3-Hydroxytetradeca-7_9_11-trienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 3-Hydroxytetradeca-7_9_11-trienoylcarnitine is converted back to 3-Hydroxytetradeca-7,9,11-trienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 3-Hydroxytetradeca-7,9,11-trienoyl-CoA occurs in four steps. First, since 3-Hydroxytetradeca-7,9,11-trienoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 3-Hydroxytetradeca-7,9,11-trienoyl-CoA, creating a double bond between the alpha and beta carbons. ...
3-Hydroxytetradeca-8,10,12-trienoyl-CoA
C35H56N7O18P3S (987.2615266000001)
3-hydroxytetradeca-8,10,12-trienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 3-hydroxytetradeca-8_10_12-trienoic acid thioester of coenzyme A. 3-hydroxytetradeca-8,10,12-trienoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 3-hydroxytetradeca-8,10,12-trienoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 3-hydroxytetradeca-8,10,12-trienoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 3-Hydroxytetradeca-8,10,12-trienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 3-Hydroxytetradeca-8,10,12-trienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 3-Hydroxytetradeca-8,10,12-trienoyl-CoA into 3-Hydroxytetradeca-8_10_12-trienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 3-Hydroxytetradeca-8_10_12-trienoylcarnitine is converted back to 3-Hydroxytetradeca-8,10,12-trienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 3-Hydroxytetradeca-8,10,12-trienoyl-CoA occurs in four steps. First, since 3-Hydroxytetradeca-8,10,12-trienoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 3-Hydroxytetradeca-8,10,12-trienoyl-CoA, creating a double bond between the alpha and ...
3-Hydroxytetradeca-6,8,10-trienoyl-CoA
C35H56N7O18P3S (987.2615266000001)
3-hydroxytetradeca-6,8,10-trienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 3-hydroxytetradeca-6_8_10-trienoic acid thioester of coenzyme A. 3-hydroxytetradeca-6,8,10-trienoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 3-hydroxytetradeca-6,8,10-trienoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 3-hydroxytetradeca-6,8,10-trienoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 3-Hydroxytetradeca-6,8,10-trienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 3-Hydroxytetradeca-6,8,10-trienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 3-Hydroxytetradeca-6,8,10-trienoyl-CoA into 3-Hydroxytetradeca-6_8_10-trienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 3-Hydroxytetradeca-6_8_10-trienoylcarnitine is converted back to 3-Hydroxytetradeca-6,8,10-trienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 3-Hydroxytetradeca-6,8,10-trienoyl-CoA occurs in four steps. First, since 3-Hydroxytetradeca-6,8,10-trienoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 3-Hydroxytetradeca-6,8,10-trienoyl-CoA, creating a double bond between the alpha and beta carbons. ...
3-Hydroxytetradeca-5,8,11-trienoyl-CoA
C35H56N7O18P3S (987.2615266000001)
3-hydroxytetradeca-5,8,11-trienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 3-hydroxytetradeca-5_8_11-trienoic acid thioester of coenzyme A. 3-hydroxytetradeca-5,8,11-trienoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 3-hydroxytetradeca-5,8,11-trienoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 3-hydroxytetradeca-5,8,11-trienoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 3-Hydroxytetradeca-5,8,11-trienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 3-Hydroxytetradeca-5,8,11-trienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 3-Hydroxytetradeca-5,8,11-trienoyl-CoA into 3-Hydroxytetradeca-5_8_11-trienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 3-Hydroxytetradeca-5_8_11-trienoylcarnitine is converted back to 3-Hydroxytetradeca-5,8,11-trienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 3-Hydroxytetradeca-5,8,11-trienoyl-CoA occurs in four steps. First, since 3-Hydroxytetradeca-5,8,11-trienoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 3-Hydroxytetradeca-5,8,11-trienoyl-CoA, creating a double bond between the alpha and beta carbons. ...
3-Hydroxytetradeca-4,6,8-trienoyl-CoA
C35H56N7O18P3S (987.2615266000001)
3-hydroxytetradeca-4,6,8-trienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 3-hydroxytetradeca-4_6_8-trienoic acid thioester of coenzyme A. 3-hydroxytetradeca-4,6,8-trienoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 3-hydroxytetradeca-4,6,8-trienoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 3-hydroxytetradeca-4,6,8-trienoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 3-Hydroxytetradeca-4,6,8-trienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 3-Hydroxytetradeca-4,6,8-trienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 3-Hydroxytetradeca-4,6,8-trienoyl-CoA into 3-Hydroxytetradeca-4_6_8-trienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 3-Hydroxytetradeca-4_6_8-trienoylcarnitine is converted back to 3-Hydroxytetradeca-4,6,8-trienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 3-Hydroxytetradeca-4,6,8-trienoyl-CoA occurs in four steps. First, since 3-Hydroxytetradeca-4,6,8-trienoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 3-Hydroxytetradeca-4,6,8-trienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hyd...
(4Z,10Z,12E)-3-Hydroxytetradeca-4,10,12-trienoyl-CoA
C35H56N7O18P3S (987.2615266000001)
(4z,10z,12e)-3-hydroxytetradeca-4,10,12-trienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (4Z_10Z_12E)-3-hydroxytetradeca-4_10_12-trienoic acid thioester of coenzyme A. (4z,10z,12e)-3-hydroxytetradeca-4,10,12-trienoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (4z,10z,12e)-3-hydroxytetradeca-4,10,12-trienoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (4z,10z,12e)-3-hydroxytetradeca-4,10,12-trienoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (4Z,10Z,12E)-3-Hydroxytetradeca-4,10,12-trienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (4Z,10Z,12E)-3-Hydroxytetradeca-4,10,12-trienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (4Z,10Z,12E)-3-Hydroxytetradeca-4,10,12-trienoyl-CoA into (4Z_10Z_12E)-3-Hydroxytetradeca-4_10_12-trienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (4Z_10Z_12E)-3-Hydroxytetradeca-4_10_12-trienoylcarnitine is converted back to (4Z,10Z,12E)-3-Hydroxytetradeca-4,10,12-trienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (4Z,10Z,12E)-3-Hydroxytetradeca-4,10,12-trienoyl-CoA occurs in four steps. First, since (4Z,10Z,12E)-3-Hydroxytetradeca-4,10,12-trienoyl-CoA is a long chain acyl-CoA it is the sub...
3-Hydroxytetradeca-4,7,10-trienoyl-CoA
C35H56N7O18P3S (987.2615266000001)
3-hydroxytetradeca-4,7,10-trienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 3-hydroxytetradeca-4_7_10-trienoic acid thioester of coenzyme A. 3-hydroxytetradeca-4,7,10-trienoyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 3-hydroxytetradeca-4,7,10-trienoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 3-hydroxytetradeca-4,7,10-trienoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 3-Hydroxytetradeca-4,7,10-trienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 3-Hydroxytetradeca-4,7,10-trienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 3-Hydroxytetradeca-4,7,10-trienoyl-CoA into 3-Hydroxytetradeca-4_7_10-trienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 3-Hydroxytetradeca-4_7_10-trienoylcarnitine is converted back to 3-Hydroxytetradeca-4,7,10-trienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 3-Hydroxytetradeca-4,7,10-trienoyl-CoA occurs in four steps. First, since 3-Hydroxytetradeca-4,7,10-trienoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 3-Hydroxytetradeca-4,7,10-trienoyl-CoA, creating a double bond between the alpha and beta carbons. ...
(5Z,8Z)-Pentadeca-5,8-dienoyl-CoA
C36H60N7O17P3S (987.2979100000001)
(5z,8z)-pentadeca-5,8-dienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (5Z_8Z)-pentadeca-5_8-dienoic acid thioester of coenzyme A. (5z,8z)-pentadeca-5,8-dienoyl-coa is an acyl-CoA with 1 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (5z,8z)-pentadeca-5,8-dienoyl-coa is therefore classified as a short chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (5z,8z)-pentadeca-5,8-dienoyl-coa, being a short chain acyl-CoA is a substrate for short chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (5Z,8Z)-Pentadeca-5,8-dienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (5Z,8Z)-Pentadeca-5,8-dienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (5Z,8Z)-Pentadeca-5,8-dienoyl-CoA into (5Z_8Z)-Pentadeca-5_8-dienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (5Z_8Z)-Pentadeca-5_8-dienoylcarnitine is converted back to (5Z,8Z)-Pentadeca-5,8-dienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (5Z,8Z)-Pentadeca-5,8-dienoyl-CoA occurs in four steps. First, since (5Z,8Z)-Pentadeca-5,8-dienoyl-CoA is a short chain acyl-CoA it is the substrate for a short chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (5Z,8Z)-Pentadeca-5,8-dienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hy...
Pentadeca-5,12-dienoyl-CoA
C36H60N7O17P3S (987.2979100000001)
Pentadeca-5,12-dienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a pentadeca-5_12-dienoic acid thioester of coenzyme A. Pentadeca-5,12-dienoyl-coa is an acyl-CoA with 15 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Pentadeca-5,12-dienoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Pentadeca-5,12-dienoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Pentadeca-5,12-dienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Pentadeca-5,12-dienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Pentadeca-5,12-dienoyl-CoA into Pentadeca-5_12-dienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Pentadeca-5_12-dienoylcarnitine is converted back to Pentadeca-5,12-dienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Pentadeca-5,12-dienoyl-CoA occurs in four steps. First, since Pentadeca-5,12-dienoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Pentadeca-5,12-dienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3...
(10Z,12E)-Pentadeca-10,12-dienoyl-CoA
C36H60N7O17P3S (987.2979100000001)
(10z,12e)-pentadeca-10,12-dienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (10Z_12E)-pentadeca-10_12-dienoic acid thioester of coenzyme A. (10z,12e)-pentadeca-10,12-dienoyl-coa is an acyl-CoA with 1 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (10z,12e)-pentadeca-10,12-dienoyl-coa is therefore classified as a short chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (10z,12e)-pentadeca-10,12-dienoyl-coa, being a short chain acyl-CoA is a substrate for short chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (10Z,12E)-Pentadeca-10,12-dienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (10Z,12E)-Pentadeca-10,12-dienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (10Z,12E)-Pentadeca-10,12-dienoyl-CoA into (10Z_12E)-Pentadeca-10_12-dienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (10Z_12E)-Pentadeca-10_12-dienoylcarnitine is converted back to (10Z,12E)-Pentadeca-10,12-dienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (10Z,12E)-Pentadeca-10,12-dienoyl-CoA occurs in four steps. First, since (10Z,12E)-Pentadeca-10,12-dienoyl-CoA is a short chain acyl-CoA it is the substrate for a short chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (10Z,12E)-Pentadeca-10,12-dienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the...
(3Z,5Z)-Pentadeca-3,5-dienoyl-CoA
C36H60N7O17P3S (987.2979100000001)
(3z,5z)-pentadeca-3,5-dienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (3Z_5Z)-pentadeca-3_5-dienoic acid thioester of coenzyme A. (3z,5z)-pentadeca-3,5-dienoyl-coa is an acyl-CoA with 1 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (3z,5z)-pentadeca-3,5-dienoyl-coa is therefore classified as a short chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (3z,5z)-pentadeca-3,5-dienoyl-coa, being a short chain acyl-CoA is a substrate for short chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (3Z,5Z)-Pentadeca-3,5-dienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (3Z,5Z)-Pentadeca-3,5-dienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (3Z,5Z)-Pentadeca-3,5-dienoyl-CoA into (3Z_5Z)-Pentadeca-3_5-dienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (3Z_5Z)-Pentadeca-3_5-dienoylcarnitine is converted back to (3Z,5Z)-Pentadeca-3,5-dienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (3Z,5Z)-Pentadeca-3,5-dienoyl-CoA occurs in four steps. First, since (3Z,5Z)-Pentadeca-3,5-dienoyl-CoA is a short chain acyl-CoA it is the substrate for a short chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (3Z,5Z)-Pentadeca-3,5-dienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hy...
(6Z,9Z)-Pentadeca-6,9-dienoyl-CoA
C36H60N7O17P3S (987.2979100000001)
(6z,9z)-pentadeca-6,9-dienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (6Z_9Z)-pentadeca-6_9-dienoic acid thioester of coenzyme A. (6z,9z)-pentadeca-6,9-dienoyl-coa is an acyl-CoA with 1 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (6z,9z)-pentadeca-6,9-dienoyl-coa is therefore classified as a short chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (6z,9z)-pentadeca-6,9-dienoyl-coa, being a short chain acyl-CoA is a substrate for short chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (6Z,9Z)-Pentadeca-6,9-dienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (6Z,9Z)-Pentadeca-6,9-dienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (6Z,9Z)-Pentadeca-6,9-dienoyl-CoA into (6Z_9Z)-Pentadeca-6_9-dienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (6Z_9Z)-Pentadeca-6_9-dienoylcarnitine is converted back to (6Z,9Z)-Pentadeca-6,9-dienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (6Z,9Z)-Pentadeca-6,9-dienoyl-CoA occurs in four steps. First, since (6Z,9Z)-Pentadeca-6,9-dienoyl-CoA is a short chain acyl-CoA it is the substrate for a short chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (6Z,9Z)-Pentadeca-6,9-dienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hy...
(2E,4E)-Pentadeca-2,4-dienoyl-CoA
C36H60N7O17P3S (987.2979100000001)
(2e,4e)-pentadeca-2,4-dienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (2E_4E)-pentadeca-2_4-dienoic acid thioester of coenzyme A. (2e,4e)-pentadeca-2,4-dienoyl-coa is an acyl-CoA with 1 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (2e,4e)-pentadeca-2,4-dienoyl-coa is therefore classified as a short chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (2e,4e)-pentadeca-2,4-dienoyl-coa, being a short chain acyl-CoA is a substrate for short chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (2E,4E)-Pentadeca-2,4-dienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (2E,4E)-Pentadeca-2,4-dienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (2E,4E)-Pentadeca-2,4-dienoyl-CoA into (2E_4E)-Pentadeca-2_4-dienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (2E_4E)-Pentadeca-2_4-dienoylcarnitine is converted back to (2E,4E)-Pentadeca-2,4-dienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (2E,4E)-Pentadeca-2,4-dienoyl-CoA occurs in four steps. First, since (2E,4E)-Pentadeca-2,4-dienoyl-CoA is a short chain acyl-CoA it is the substrate for a short chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (2E,4E)-Pentadeca-2,4-dienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hy...
PtdIns-(4,5)-P2-biotin (sodium salt)
3-oxotetradecanoyl-CoA(4-)
C35H56N7O18P3S-4 (987.2615266000001)
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
(2R)-2-methyltetradecanoyl-CoA(4-)
C36H60N7O17P3S-4 (987.2979100000001)
(3S,5Z)-3-hydroxytetradec-5-enoyl-CoA(4-)
C35H56N7O18P3S-4 (987.2615266000001)
S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 4-[(1S,2S)-3-oxo-2-[(Z)-pent-2-enyl]cyclopentyl]butanethioate
C35H56N7O18P3S (987.2615266000001)
(S)-3-hydroxy-(7Z)-tetradecenoyl-CoA
C35H56N7O18P3S-4 (987.2615266000001)
S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (5Z,7E)-3-oxotetradeca-5,7-dienethioate
C35H56N7O18P3S (987.2615266000001)
S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (E)-3-[(3aS,4S,5R,7aS)-5-hydroxy-7a-methyl-1-oxo-3,3a,4,5,6,7-hexahydro-2H-inden-4-yl]prop-2-enethioate
C34H52N7O19P3S (987.2251431999999)
(5Z,8Z)-Pentadeca-5,8-dienoyl-CoA
C36H60N7O17P3S (987.2979100000001)
(3Z,5Z)-Pentadeca-3,5-dienoyl-CoA
C36H60N7O17P3S (987.2979100000001)
(6Z,9Z)-Pentadeca-6,9-dienoyl-CoA
C36H60N7O17P3S (987.2979100000001)
(2E,4E)-Pentadeca-2,4-dienoyl-CoA
C36H60N7O17P3S (987.2979100000001)
3-Hydroxytetradeca-5,7,9-trienoyl-CoA
C35H56N7O18P3S (987.2615266000001)
3-Hydroxytetradeca-4,6,8-trienoyl-CoA
C35H56N7O18P3S (987.2615266000001)
3-Hydroxytetradeca-6,9,12-trienoyl-CoA
C35H56N7O18P3S (987.2615266000001)
3-Hydroxytetradeca-7,9,11-trienoyl-CoA
C35H56N7O18P3S (987.2615266000001)
3-Hydroxytetradeca-6,8,10-trienoyl-CoA
C35H56N7O18P3S (987.2615266000001)
3-Hydroxytetradeca-5,8,11-trienoyl-CoA
C35H56N7O18P3S (987.2615266000001)
3-Hydroxytetradeca-4,7,10-trienoyl-CoA
C35H56N7O18P3S (987.2615266000001)
3-Hydroxytetradeca-8,10,12-trienoyl-CoA
C35H56N7O18P3S (987.2615266000001)
(10Z,12E)-Pentadeca-10,12-dienoyl-CoA
C36H60N7O17P3S (987.2979100000001)
(4Z,10Z,12E)-3-Hydroxytetradeca-4,10,12-trienoyl-CoA
C35H56N7O18P3S (987.2615266000001)
(9Z,12Z)-pentadecadienoyl-CoA
C36H60N7O17P3S (987.2979100000001)
An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (9Z,12Z)-pentadecadienoic acid.
PubChem CID: 44237212; (Acyl-CoA); [M+H]+
C35H56N7O18P3S (987.2615266000001)
S-[2-[3-[[(2r)-4-[[[(2r,3s,4r,5r)-5-(6-Aminopurin-9-Yl)-4-Oxidanyl-3-Phosphonooxy-Oxolan-2-Yl]methoxy-Oxidanyl-Phosphoryl]oxy-Oxidanyl-Phosphoryl]oxy-3,3-Dimethyl-2-Oxidanyl-Butanoyl]amino]propanoylamino]ethyl] 3-[(3as,4s,7as)-7a-Methyl-1,5-Bis(Oxidanylidene)-2,3,3a,4,6,7-Hexahydroinden-4-Yl]propanethioate
C34H52N7O19P3S (987.2251431999999)
isopentadecanoyl-CoA(4-)
C36H60N7O17P3S (987.2979100000001)
An acyl-CoA(4-) arising from deprotonation of the phosphate and diphosphate functions of isopentadecanoyl-CoA.
(2S)-2-methyltetradecanoyl-CoA(4-)
C36H60N7O17P3S (987.2979100000001)
A (2S)-2-methylacyl-CoA(4-) oxanion arising from deprotonation of the phosphate and diphosphate OH groups of (2S)-2-methyltetradecanoyl-CoA; major species at pH 7.3.
pentadecanoyl-CoA(4-)
C36H60N7O17P3S (987.2979100000001)
An acyl-CoA(4-) arising from deprotonation of the phosphate and diphosphate functions of pentadecanoyl-CoA.
3-oxotetradecanoyl-CoA(4-)
C35H56N7O18P3S (987.2615266000001)
Tetraanion of 3-oxotetradecanoyl-CoA arising from deprotonation of the phosphate and diphosphate functions; principal microspecies at pH 7.3.
(2R)-2-methyltetradecanoyl-CoA(4-)
C36H60N7O17P3S (987.2979100000001)
A (2R)-2-methylacyl-CoA(4-) oxanion arising from deprotonation of the phosphate and diphosphate OH groups of (2R)-2-methyltetradecanoyl-CoA; major species at pH 7.3
9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oyl-CoA
C34H52N7O19P3S (987.2251431999999)
An acyl-CoA resulting from the formal condensation of the thiol group of coenzyme A with the 1-carboxy group of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid.
(3S,5Z)-3-hydroxytetradec-5-enoyl-CoA(4-)
C35H56N7O18P3S (987.2615266000001)
A 3-hydroxy fatty acyl CoA(4-) obtained by deprotonation of phosphate and diphosphate OH groups of (3S,5Z)-3-hydroxytetradec-5-enoyl-CoA; major species at pH 7.3.