Exact Mass: 986.5731431999999

Exact Mass Matches: 986.5731431999999

Found 151 metabolites which its exact mass value is equals to given mass value 986.5731431999999, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Condurango glycoside A

Condurango glycoside A

C53H78O17 (986.5238738)


   

PGP(a-21:0/6 keto-PGF1alpha)

[(2S)-3-({[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-[(18-methylicosanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C47H88O17P2 (986.5496458000001)


PGP(a-21:0/6 keto-PGF1alpha) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(a-21:0/6 keto-PGF1alpha), in particular, consists of one chain of one 18-methyleicosanoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(6 keto-PGF1alpha/a-21:0)

[(2S)-3-({[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-[(18-methylicosanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C47H88O17P2 (986.5496458000001)


PGP(6 keto-PGF1alpha/a-21:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(6 keto-PGF1alpha/a-21:0), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 18-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(a-21:0/TXB2)

[(2S)-3-({[(2R)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-[(18-methylicosanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C47H88O17P2 (986.5496458000001)


PGP(a-21:0/TXB2) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(a-21:0/TXB2), in particular, consists of one chain of one 18-methyleicosanoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(TXB2/a-21:0)

[(2S)-3-({[(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-[(18-methylicosanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C47H88O17P2 (986.5496458000001)


PGP(TXB2/a-21:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(TXB2/a-21:0), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 18-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(a-25:0/18:1(12Z)-2OH(9,10))

[(2S)-3-({[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(22-methyltetracosanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C49H96O15P2 (986.6224126)


PGP(a-25:0/18:1(12Z)-2OH(9,10)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(a-25:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 22-methyltetracosanoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:1(12Z)-2OH(9,10)/a-25:0)

[(2S)-3-({[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(22-methyltetracosanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C49H96O15P2 (986.6224126)


PGP(18:1(12Z)-2OH(9,10)/a-25:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(12Z)-2OH(9,10)/a-25:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 22-methyltetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-21:0/6 keto-PGF1alpha)

PGP(i-21:0/6 keto-PGF1alpha)

C47H88O17P2 (986.5496458000001)


PGP(i-21:0/6 keto-PGF1alpha) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-21:0/6 keto-PGF1alpha), in particular, consists of one chain of one 19-methyleicosanoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(6 keto-PGF1alpha/i-21:0)

[(2S)-3-({[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-[(19-methylicosanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C47H88O17P2 (986.5496458000001)


PGP(6 keto-PGF1alpha/i-21:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(6 keto-PGF1alpha/i-21:0), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 19-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-21:0/TXB2)

[(2S)-3-({[(2R)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-[(19-methylicosanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C47H88O17P2 (986.5496458000001)


PGP(i-21:0/TXB2) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-21:0/TXB2), in particular, consists of one chain of one 19-methyleicosanoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(TXB2/i-21:0)

[(2S)-3-({[(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-[(19-methylicosanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C47H88O17P2 (986.5496458000001)


PGP(TXB2/i-21:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(TXB2/i-21:0), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 19-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-22:0/PGF1alpha)

[(2S)-3-({[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-[(20-methylhenicosanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C48H92O16P2 (986.5860292)


PGP(i-22:0/PGF1alpha) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-22:0/PGF1alpha), in particular, consists of one chain of one 20-methylheneicosanoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(PGF1alpha/i-22:0)

[(2S)-3-({[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-2-[(20-methylhenicosanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C48H92O16P2 (986.5860292)


PGP(PGF1alpha/i-22:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGF1alpha/i-22:0), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of 20-methylheneicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PI(22:2(13Z,16Z)/PGE2)

[(1R,6R,12Z,15R,18R,19S,20R,21R,22R,23S,24R)-3,18,20,21,22,23,24-heptahydroxy-19-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,8,16-trioxo-2,4,7-trioxa-3lambda5-phosphabicyclo[13.6.3]tetracos-12-en-6-yl]methyl (13Z,16Z)-docosa-13,16-dienoate

C51H87O16P (986.5731431999999)


PI(22:2(13Z,16Z)/PGE2) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:2(13Z,16Z)/PGE2), in particular, consists of one chain of 13Z,16Z-docosadienoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(PGE2/22:2(13Z,16Z))

(1R,6R,13Z,16R,19R,20S,21R,22R,23R,24S,25R)-3,19,21,22,23,24,25-heptahydroxy-20-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,9,17-trioxo-2,4,8-trioxa-3lambda5-phosphabicyclo[14.6.3]pentacos-13-en-6-yl (13Z,16Z)-docosa-13,16-dienoate

C51H87O16P (986.5731431999999)


PI(PGE2/22:2(13Z,16Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(PGE2/22:2(13Z,16Z)), in particular, consists of one chain of Prostaglandin E2 at the C-1 position and one chain of 13Z,16Z-docosadienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(22:2(13Z,16Z)/PGD2)

[(1R,6R,12Z,15S,16S,19R,20R,21R,22R,23S,24R)-3,16,20,21,22,23,24-heptahydroxy-19-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,8,18-trioxo-2,4,7-trioxa-3lambda5-phosphabicyclo[13.6.3]tetracos-12-en-6-yl]methyl (13Z,16Z)-docosa-13,16-dienoate

C51H87O16P (986.5731431999999)


PI(22:2(13Z,16Z)/PGD2) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:2(13Z,16Z)/PGD2), in particular, consists of one chain of 13Z,16Z-docosadienoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(PGD2/22:2(13Z,16Z))

(1R,6R,13Z,16S,17S,20R,21R,22R,23R,24S,25R)-3,17,21,22,23,24,25-heptahydroxy-20-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,9,19-trioxo-2,4,8-trioxa-3lambda5-phosphabicyclo[14.6.3]pentacos-13-en-6-yl (13Z,16Z)-docosa-13,16-dienoate

C51H87O16P (986.5731431999999)


PI(PGD2/22:2(13Z,16Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(PGD2/22:2(13Z,16Z)), in particular, consists of one chain of Prostaglandin D2 at the C-1 position and one chain of 13Z,16Z-docosadienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(22:2(13Z,16Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

[(2R)-3-[(13Z,16Z)-docosa-13,16-dienoyloxy]-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C51H87O16P (986.5731431999999)


PI(22:2(13Z,16Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:2(13Z,16Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of 13Z,16Z-docosadienoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/22:2(13Z,16Z))

[(2R)-2-[(13Z,16Z)-docosa-13,16-dienoyloxy]-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C51H87O16P (986.5731431999999)


PI(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/22:2(13Z,16Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/22:2(13Z,16Z)), in particular, consists of one chain of Lipoxin A4 at the C-1 position and one chain of 13Z,16Z-docosadienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(22:4(10Z,13Z,16Z,19Z)/PGF1alpha)

[(1R,6R,15S,16S,18R,19S,20R,21R,22R,23S,24R)-3,16,18,20,21,22,23,24-octahydroxy-19-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,8-dioxo-2,4,7-trioxa-3lambda5-phosphabicyclo[13.6.3]tetracosan-6-yl]methyl (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C51H87O16P (986.5731431999999)


PI(22:4(10Z,13Z,16Z,19Z)/PGF1alpha) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:4(10Z,13Z,16Z,19Z)/PGF1alpha), in particular, consists of one chain of 10Z,13Z,16Z,19Z-docosatetraenoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(PGF1alpha/22:4(10Z,13Z,16Z,19Z))

(1R,6R,16S,17S,19R,20S,21R,22R,23R,24S,25R)-3,17,19,21,22,23,24,25-octahydroxy-20-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,9-dioxo-2,4,8-trioxa-3lambda5-phosphabicyclo[14.6.3]pentacosan-6-yl (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C51H87O16P (986.5731431999999)


PI(PGF1alpha/22:4(10Z,13Z,16Z,19Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(PGF1alpha/22:4(10Z,13Z,16Z,19Z)), in particular, consists of one chain of Prostaglandin F1alpha at the C-1 position and one chain of 10Z,13Z,16Z,19Z-docosatetraenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(22:4(7Z,10Z,13Z,16Z)/PGF1alpha)

[(1R,6R,15S,16S,18R,19S,20R,21R,22R,23S,24R)-3,16,18,20,21,22,23,24-octahydroxy-19-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,8-dioxo-2,4,7-trioxa-3lambda5-phosphabicyclo[13.6.3]tetracosan-6-yl]methyl (7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoate

C51H87O16P (986.5731431999999)


PI(22:4(7Z,10Z,13Z,16Z)/PGF1alpha) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:4(7Z,10Z,13Z,16Z)/PGF1alpha), in particular, consists of one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(PGF1alpha/22:4(7Z,10Z,13Z,16Z))

(1R,6R,16S,17S,19R,20S,21R,22R,23R,24S,25R)-3,17,19,21,22,23,24,25-octahydroxy-20-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,9-dioxo-2,4,8-trioxa-3lambda5-phosphabicyclo[14.6.3]pentacosan-6-yl (7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoate

C51H87O16P (986.5731431999999)


PI(PGF1alpha/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(PGF1alpha/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of Prostaglandin F1alpha at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PIP(20:0/18:1(12Z)-O(9S,10R))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-(icosanoyloxy)-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C47H88O17P2 (986.5496458000001)


PIP(20:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of eicosanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:1(12Z)-O(9S,10R)/20:0)

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-(icosanoyloxy)-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C47H88O17P2 (986.5496458000001)


PIP(18:1(12Z)-O(9S,10R)/20:0) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:1(12Z)-O(9S,10R)/20:0), in particular, consists of one chain of 9,10-epoxy-octadecenoyl at the C-1 position and one chain of eicosanoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:0/18:1(9Z)-O(12,13))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-(icosanoyloxy)-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C47H88O17P2 (986.5496458000001)


PIP(20:0/18:1(9Z)-O(12,13)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of eicosanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:1(9Z)-O(12,13)/20:0)

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-(icosanoyloxy)-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C47H88O17P2 (986.5496458000001)


PIP(18:1(9Z)-O(12,13)/20:0) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:1(9Z)-O(12,13)/20:0), in particular, consists of one chain of 12,13-epoxy-octadecenoyl at the C-1 position and one chain of eicosanoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   
   
   
   
   
   
   
   
   
   

As-PL(18:0/16:0)

1-octadecanoyl-2-hexadecanoyl-sn-glycero-3-phospho-(1-glycerol-3-)5-deoxy-5-(dimethylarsinyl)-beta-D-ribofuranoside

C47H92O14PAs (986.5440322)


   

PIM1 33:0

2-O-(alpha-D-Manp)-(1-nonadecanoyl-2-tetradecanoyl-sn-glycero-3-phospho-1-myo-inositol)

C48H91O18P (986.5942716)


   

calcium,bis[4-(2,4,4-trimethylpentan-2-yl)phenyl] phosphate

calcium,bis[4-(2,4,4-trimethylpentan-2-yl)phenyl] phosphate

C56H84CaO8P2 (986.5267034000001)


   

LYS-LYS-ARG-ALA-ALA-ARG-ALA-THR-SER-NH2

LYS-LYS-ARG-ALA-ALA-ARG-ALA-THR-SER-NH2

C40H78N18O11 (986.6097158)


   
   
   
   
   
   
   
   
   
   
   

PGP(a-25:0/18:1(12Z)-2OH(9,10))

PGP(a-25:0/18:1(12Z)-2OH(9,10))

C49H96O15P2 (986.6224126)


   

PGP(18:1(12Z)-2OH(9,10)/a-25:0)

PGP(18:1(12Z)-2OH(9,10)/a-25:0)

C49H96O15P2 (986.6224126)


   
   
   
   
   

PI(22:4(7Z,10Z,13Z,16Z)/PGF1alpha)

PI(22:4(7Z,10Z,13Z,16Z)/PGF1alpha)

C51H87O16P (986.5731431999999)


   

PI(PGF1alpha/22:4(7Z,10Z,13Z,16Z))

PI(PGF1alpha/22:4(7Z,10Z,13Z,16Z))

C51H87O16P (986.5731431999999)


   

PI(22:4(10Z,13Z,16Z,19Z)/PGF1alpha)

PI(22:4(10Z,13Z,16Z,19Z)/PGF1alpha)

C51H87O16P (986.5731431999999)


   

PI(PGF1alpha/22:4(10Z,13Z,16Z,19Z))

PI(PGF1alpha/22:4(10Z,13Z,16Z,19Z))

C51H87O16P (986.5731431999999)


   
   
   
   
   

PI(22:2(13Z,16Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

PI(22:2(13Z,16Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C51H87O16P (986.5731431999999)


   

PI(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/22:2(13Z,16Z))

PI(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/22:2(13Z,16Z))

C51H87O16P (986.5731431999999)


   

[(3S,10S,11S,12S,13S,14S,17S)-17-acetyl-11-acetyloxy-3-[(2R,4S,5R,6R)-5-[(2S,4S,5R,6R)-5-[(2S,3R,4R,5R,6R)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy-4-methoxy-6-methyloxan-2-yl]oxy-4-methoxy-6-methyloxan-2-yl]oxy-14-hydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-12-yl] (E)-3-phenylprop-2-enoate

[(3S,10S,11S,12S,13S,14S,17S)-17-acetyl-11-acetyloxy-3-[(2R,4S,5R,6R)-5-[(2S,4S,5R,6R)-5-[(2S,3R,4R,5R,6R)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy-4-methoxy-6-methyloxan-2-yl]oxy-4-methoxy-6-methyloxan-2-yl]oxy-14-hydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-12-yl] (E)-3-phenylprop-2-enoate

C53H78O17 (986.5238738)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(E)-icos-11-enoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] icosanoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(E)-icos-11-enoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] icosanoate

C49H96O15P2 (986.6224126)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(Z)-octadec-11-enoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] docosanoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(Z)-octadec-11-enoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] docosanoate

C49H96O15P2 (986.6224126)


   

[3-[[3-[[3-[(Z)-hexadec-7-enoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] tetracosanoate

[3-[[3-[[3-[(Z)-hexadec-7-enoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] tetracosanoate

C49H96O15P2 (986.6224126)


   

[3-[[3-[(3-hexadecanoyloxy-2-hydroxypropoxy)-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (E)-tetracos-15-enoate

[3-[[3-[(3-hexadecanoyloxy-2-hydroxypropoxy)-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (E)-tetracos-15-enoate

C49H96O15P2 (986.6224126)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-(2-hydroxy-3-octadecanoyloxypropoxy)phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (E)-docos-13-enoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-(2-hydroxy-3-octadecanoyloxypropoxy)phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (E)-docos-13-enoate

C49H96O15P2 (986.6224126)


   

[1-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C55H86O15 (986.5966406)


   

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C55H86O15 (986.5966406)


   

[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C55H86O15 (986.5966406)


   

[1-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C55H86O15 (986.5966406)


   
   
   
   
   
   

Ac2PIM1 14:0(methyl)_18:0(methyl)

Ac2PIM1 14:0(methyl)_18:0(methyl)

C48H91O18P (986.5942716)


   

Adgga 16:4_16:3_18:5

Adgga 16:4_16:3_18:5

C59H86O12 (986.6118956)


   

Adgga 18:4_16:4_16:4

Adgga 18:4_16:4_16:4

C59H86O12 (986.6118956)


   

Adgga 16:4_16:4_18:4

Adgga 16:4_16:4_18:4

C59H86O12 (986.6118956)


   

Adgga 16:3_16:4_18:5

Adgga 16:3_16:4_18:5

C59H86O12 (986.6118956)


   

Adgga 18:5_16:3_16:4

Adgga 18:5_16:3_16:4

C59H86O12 (986.6118956)


   

[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C55H87O13P (986.5883981999999)


   

[1-[Hydroxy-[2,3,4,5-tetrahydroxy-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycyclohexyl]oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] 10-methyloctadecanoate

[1-[Hydroxy-[2,3,4,5-tetrahydroxy-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycyclohexyl]oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] 10-methyloctadecanoate

C48H91O18P (986.5942716)


   

[1-[Hydroxy-[2,3,4,5-tetrahydroxy-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycyclohexyl]oxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] octadecanoate

[1-[Hydroxy-[2,3,4,5-tetrahydroxy-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycyclohexyl]oxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] octadecanoate

C48H91O18P (986.5942716)


   

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C55H86O15 (986.5966406)


   

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C55H86O15 (986.5966406)


   

[(2S)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2S)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C55H86O15 (986.5966406)


   

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C55H86O15 (986.5966406)


   

[(2S)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2S)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C55H86O15 (986.5966406)


   

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C55H86O15 (986.5966406)


   

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C55H86O15 (986.5966406)


   

[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C55H87O13P (986.5883981999999)


   

[(2R)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C55H86O15 (986.5966406)


   

[(2R)-1-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-1-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C55H87O13P (986.5883981999999)


   

[(2S)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2S)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C55H86O15 (986.5966406)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoate

C55H86O15 (986.5966406)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoate

C55H86O15 (986.5966406)


   

[(2S)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2S)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C55H86O15 (986.5966406)


   

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C55H86O15 (986.5966406)


   

[(2R)-1-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-1-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C55H86O15 (986.5966406)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoate

C55H86O15 (986.5966406)


   

[(2R)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C55H86O15 (986.5966406)


   

[(2S)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2S)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C55H86O15 (986.5966406)


   

[(2S)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2S)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C55H86O15 (986.5966406)


   

[(2R)-1-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-1-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C55H86O15 (986.5966406)


   

SQDG(47:9)

SQDG(22:5_25:4)

C56H90O12S (986.615266)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

DGDG(40:9)

DGDG(18:0_22:9)

C55H86O15 (986.5966406)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

9,15,27,29-tetrahydroxy-11,18-dimethoxy-6'-{1-methoxy-1-[3-(pentan-2-yl)oxiran-2-yl]propan-2-yl}-8,14,26,30,34-pentamethyl-4,31,36-trioxaspiro[bicyclo[15.13.6]hexatriacontane-3,2'-oxane]-6,12,20,22,24,33-hexaene-5,32,35-trione

9,15,27,29-tetrahydroxy-11,18-dimethoxy-6'-{1-methoxy-1-[3-(pentan-2-yl)oxiran-2-yl]propan-2-yl}-8,14,26,30,34-pentamethyl-4,31,36-trioxaspiro[bicyclo[15.13.6]hexatriacontane-3,2'-oxane]-6,12,20,22,24,33-hexaene-5,32,35-trione

C55H86O15 (986.5966406)


   

n-[(3s,9s,12s,15s,18s,19s,22s,25s,28s)-15-benzyl-11,14,17,27-tetrahydroxy-22-[(4-hydroxyphenyl)methyl]-9-isopropyl-19,23-dimethyl-12,25-bis(2-methylpropyl)-2,8,21,24-tetraoxo-20-oxa-1,7,10,13,16,23,26-heptaazatricyclo[26.3.0.0³,⁷]hentriaconta-10,13,16,26-tetraen-18-yl]ethanimidic acid

n-[(3s,9s,12s,15s,18s,19s,22s,25s,28s)-15-benzyl-11,14,17,27-tetrahydroxy-22-[(4-hydroxyphenyl)methyl]-9-isopropyl-19,23-dimethyl-12,25-bis(2-methylpropyl)-2,8,21,24-tetraoxo-20-oxa-1,7,10,13,16,23,26-heptaazatricyclo[26.3.0.0³,⁷]hentriaconta-10,13,16,26-tetraen-18-yl]ethanimidic acid

C52H74N8O11 (986.5476774)


   

(2s)-2-[(2s)-2-{[(2r,3s)-1,2-dihydroxy-3-methylpentylidene]amino}-n,4-dimethylpentanamido]-n-[(2s,3s)-2-hydroxy-1-{[(1s,2s)-1-[({[(2r)-1-[(2s)-2-(methoxycarbonyl)pyrrolidin-1-yl]-1-oxo-3-phenylpropan-2-yl](methyl)carbamoyl}methyl)-c-hydroxycarbonimidoyl]-2-methylbutyl]-c-hydroxycarbonimidoyl}-5-methylhexan-3-yl]pentanediimidic acid

(2s)-2-[(2s)-2-{[(2r,3s)-1,2-dihydroxy-3-methylpentylidene]amino}-n,4-dimethylpentanamido]-n-[(2s,3s)-2-hydroxy-1-{[(1s,2s)-1-[({[(2r)-1-[(2s)-2-(methoxycarbonyl)pyrrolidin-1-yl]-1-oxo-3-phenylpropan-2-yl](methyl)carbamoyl}methyl)-c-hydroxycarbonimidoyl]-2-methylbutyl]-c-hydroxycarbonimidoyl}-5-methylhexan-3-yl]pentanediimidic acid

C50H82N8O12 (986.6051892)


   

(1r,3s,6e,6'r,8s,9s,12e,14s,15s,17s,18s,20e,22e,24e,26r,27s,29s,30s)-9,15,27,29-tetrahydroxy-11,18-dimethoxy-6'-{1-methoxy-1-[(2r,3s)-3-(pentan-2-yl)oxiran-2-yl]propan-2-yl}-8,14,26,30,34-pentamethyl-4,31,36-trioxaspiro[bicyclo[15.13.6]hexatriacontane-3,2'-oxane]-6,12,20,22,24,33-hexaene-5,32,35-trione

(1r,3s,6e,6'r,8s,9s,12e,14s,15s,17s,18s,20e,22e,24e,26r,27s,29s,30s)-9,15,27,29-tetrahydroxy-11,18-dimethoxy-6'-{1-methoxy-1-[(2r,3s)-3-(pentan-2-yl)oxiran-2-yl]propan-2-yl}-8,14,26,30,34-pentamethyl-4,31,36-trioxaspiro[bicyclo[15.13.6]hexatriacontane-3,2'-oxane]-6,12,20,22,24,33-hexaene-5,32,35-trione

C55H86O15 (986.5966406)


   

3-{[15-(3-carbamimidamidopropyl)-6,13,16,21-tetrahydroxy-5-[(4-hydroxyphenyl)methyl]-4,11-dimethyl-3,9,22-trioxo-2,8-bis(sec-butyl)-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl]-c-hydroxycarbonimidoyl}-3-[(1-hydroxyhexylidene)amino]propanoic acid

3-{[15-(3-carbamimidamidopropyl)-6,13,16,21-tetrahydroxy-5-[(4-hydroxyphenyl)methyl]-4,11-dimethyl-3,9,22-trioxo-2,8-bis(sec-butyl)-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl]-c-hydroxycarbonimidoyl}-3-[(1-hydroxyhexylidene)amino]propanoic acid

C47H74N10O13 (986.5436554)


   

(2s,3r,4r,6s)-6-{[(2r,3s,4r,5r,6r)-6-{[(1r,3as,3br,5ar,7s,9as,9bs,11as)-1-hydroxy-1-[(1r)-1-{[(2s,4r,5s,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}ethyl]-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-5-hydroxy-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl acetate

(2s,3r,4r,6s)-6-{[(2r,3s,4r,5r,6r)-6-{[(1r,3as,3br,5ar,7s,9as,9bs,11as)-1-hydroxy-1-[(1r)-1-{[(2s,4r,5s,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}ethyl]-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-5-hydroxy-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl acetate

C50H82O19 (986.5450022)


   

[(2s,3s,4r,5s,6s)-2-hydroxy-6-[(1r)-1-[(2s,5r,7s,8r,9s)-9-hydroxy-2-[(2r,2'r,3'r,5s,5'r)-5'-[(2s,3s,5r,6s)-6-hydroxy-3,5,6-trimethyloxan-2-yl]-3'-{[(2s,5r,6r)-5-methoxy-6-methyloxan-2-yl]oxy}-2-methyl-[2,2'-bioxolan]-5-yl]-2,8-dimethyl-1,6-dioxaspiro[4.5]decan-7-yl]ethyl]-4-{[(2s,5s,6r)-5-hydroxy-6-methyloxan-2-yl]oxy}-5-methoxy-3-methyloxan-2-yl]acetic acid

[(2s,3s,4r,5s,6s)-2-hydroxy-6-[(1r)-1-[(2s,5r,7s,8r,9s)-9-hydroxy-2-[(2r,2'r,3'r,5s,5'r)-5'-[(2s,3s,5r,6s)-6-hydroxy-3,5,6-trimethyloxan-2-yl]-3'-{[(2s,5r,6r)-5-methoxy-6-methyloxan-2-yl]oxy}-2-methyl-[2,2'-bioxolan]-5-yl]-2,8-dimethyl-1,6-dioxaspiro[4.5]decan-7-yl]ethyl]-4-{[(2s,5s,6r)-5-hydroxy-6-methyloxan-2-yl]oxy}-5-methoxy-3-methyloxan-2-yl]acetic acid

C51H86O18 (986.5813856)


   

n-[(3s,6s,9s,12s,15r,16s,19s,22s,26r,27as)-6-benzyl-4-hydroxy-9,12-diisopropyl-2,3,8,11,15,18,21,22,26-nonamethyl-19-(2-methylpropyl)-1,7,10,13,17,20,23-heptaoxo-3h,6h,9h,12h,15h,16h,19h,22h,25h,26h,27h,27ah-pyrrolo[2,1-o]1-oxa-4,7,10,13,16,19,22-heptaazacyclopentacosan-16-yl]benzenecarboximidic acid

n-[(3s,6s,9s,12s,15r,16s,19s,22s,26r,27as)-6-benzyl-4-hydroxy-9,12-diisopropyl-2,3,8,11,15,18,21,22,26-nonamethyl-19-(2-methylpropyl)-1,7,10,13,17,20,23-heptaoxo-3h,6h,9h,12h,15h,16h,19h,22h,25h,26h,27h,27ah-pyrrolo[2,1-o]1-oxa-4,7,10,13,16,19,22-heptaazacyclopentacosan-16-yl]benzenecarboximidic acid

C53H78N8O10 (986.5840608)


   

(2s,3r,4r,6s)-6-{[(2r,3s,4r,5r,6r)-6-{[(1r,3as,3br,5ar,7s,9as,9bs,11as)-1-hydroxy-1-[(1r)-1-{[(2s,4r,5r,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}ethyl]-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-5-hydroxy-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl acetate

(2s,3r,4r,6s)-6-{[(2r,3s,4r,5r,6r)-6-{[(1r,3as,3br,5ar,7s,9as,9bs,11as)-1-hydroxy-1-[(1r)-1-{[(2s,4r,5r,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}ethyl]-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-5-hydroxy-4-methoxy-2-methyloxan-3-yl]oxy}-4-methoxy-2-methyloxan-3-yl acetate

C50H82O19 (986.5450022)


   

(4s)-4-{[(2s,5s,8s,11r,12s,15s,18s,21r)-15-(4-aminobutyl)-6,13,16,21-tetrahydroxy-5-[(4-hydroxyphenyl)methyl]-8-isopropyl-4,11-dimethyl-2-(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl]-c-hydroxycarbonimidoyl}-4-[(1-hydroxyoctylidene)amino]butanoic acid

(4s)-4-{[(2s,5s,8s,11r,12s,15s,18s,21r)-15-(4-aminobutyl)-6,13,16,21-tetrahydroxy-5-[(4-hydroxyphenyl)methyl]-8-isopropyl-4,11-dimethyl-2-(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl]-c-hydroxycarbonimidoyl}-4-[(1-hydroxyoctylidene)amino]butanoic acid

C49H78N8O13 (986.5688058)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5-ethoxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5-ethoxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C50H82O19 (986.5450022)


   

2-[(2r,3s,4s,5r)-6-[(1r)-1-[(2s,8r,9s)-9-hydroxy-2-[(2s,3's,5'r)-5'-[(3s,5r,6s)-6-hydroxy-3,5,6-trimethyloxan-2-yl]-3'-{[(2s,5s,6r)-5-methoxy-6-methyloxan-2-yl]oxy}-2-methyl-[2,2'-bioxolan]-5-yl]-2,8-dimethyl-1,6-dioxaspiro[4.5]decan-7-yl]ethyl]-4-{[(2s,5s,6r)-5-hydroxy-6-methyloxan-2-yl]oxy}-5-methoxy-3-methyloxan-2-yl]ethaneperoxoic acid

2-[(2r,3s,4s,5r)-6-[(1r)-1-[(2s,8r,9s)-9-hydroxy-2-[(2s,3's,5'r)-5'-[(3s,5r,6s)-6-hydroxy-3,5,6-trimethyloxan-2-yl]-3'-{[(2s,5s,6r)-5-methoxy-6-methyloxan-2-yl]oxy}-2-methyl-[2,2'-bioxolan]-5-yl]-2,8-dimethyl-1,6-dioxaspiro[4.5]decan-7-yl]ethyl]-4-{[(2s,5s,6r)-5-hydroxy-6-methyloxan-2-yl]oxy}-5-methoxy-3-methyloxan-2-yl]ethaneperoxoic acid

C51H86O18 (986.5813856)


   

4-{[15-(4-aminobutyl)-6,13,16,21-tetrahydroxy-5-[(4-hydroxyphenyl)methyl]-8-isopropyl-4,11-dimethyl-2-(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl]-c-hydroxycarbonimidoyl}-4-[(1-hydroxyoctylidene)amino]butanoic acid

4-{[15-(4-aminobutyl)-6,13,16,21-tetrahydroxy-5-[(4-hydroxyphenyl)methyl]-8-isopropyl-4,11-dimethyl-2-(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl]-c-hydroxycarbonimidoyl}-4-[(1-hydroxyoctylidene)amino]butanoic acid

C49H78N8O13 (986.5688058)


   

4-{[15-(3-carbamimidamidopropyl)-6,13,16,21-tetrahydroxy-5-[(4-hydroxyphenyl)methyl]-8-isopropyl-4,11-dimethyl-2-(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl]-c-hydroxycarbonimidoyl}-4-[(1-hydroxyhexylidene)amino]butanoic acid

4-{[15-(3-carbamimidamidopropyl)-6,13,16,21-tetrahydroxy-5-[(4-hydroxyphenyl)methyl]-8-isopropyl-4,11-dimethyl-2-(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl]-c-hydroxycarbonimidoyl}-4-[(1-hydroxyhexylidene)amino]butanoic acid

C47H74N10O13 (986.5436554)


   

n-{15-benzyl-11,14,17,27-tetrahydroxy-22-[(4-hydroxyphenyl)methyl]-9-isopropyl-19,23-dimethyl-12,25-bis(2-methylpropyl)-2,8,21,24-tetraoxo-20-oxa-1,7,10,13,16,23,26-heptaazatricyclo[26.3.0.0³,⁷]hentriaconta-10,13,16,26-tetraen-18-yl}ethanimidic acid

n-{15-benzyl-11,14,17,27-tetrahydroxy-22-[(4-hydroxyphenyl)methyl]-9-isopropyl-19,23-dimethyl-12,25-bis(2-methylpropyl)-2,8,21,24-tetraoxo-20-oxa-1,7,10,13,16,23,26-heptaazatricyclo[26.3.0.0³,⁷]hentriaconta-10,13,16,26-tetraen-18-yl}ethanimidic acid

C52H74N8O11 (986.5476774)


   

(4s)-4-{[(2s,8s,11r,12s,15s)-15-(4-aminobutyl)-6,13,16,21-tetrahydroxy-5-[(4-hydroxyphenyl)methyl]-8-isopropyl-4,11-dimethyl-2-(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl]-c-hydroxycarbonimidoyl}-4-[(1-hydroxyoctylidene)amino]butanoic acid

(4s)-4-{[(2s,8s,11r,12s,15s)-15-(4-aminobutyl)-6,13,16,21-tetrahydroxy-5-[(4-hydroxyphenyl)methyl]-8-isopropyl-4,11-dimethyl-2-(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl]-c-hydroxycarbonimidoyl}-4-[(1-hydroxyoctylidene)amino]butanoic acid

C49H78N8O13 (986.5688058)


   

n-[6-benzyl-4-hydroxy-9,12-diisopropyl-2,3,8,11,15,18,21,22,26-nonamethyl-19-(2-methylpropyl)-1,7,10,13,17,20,23-heptaoxo-3h,6h,9h,12h,15h,16h,19h,22h,25h,26h,27h,27ah-pyrrolo[2,1-o]1-oxa-4,7,10,13,16,19,22-heptaazacyclopentacosan-16-yl]benzenecarboximidic acid

n-[6-benzyl-4-hydroxy-9,12-diisopropyl-2,3,8,11,15,18,21,22,26-nonamethyl-19-(2-methylpropyl)-1,7,10,13,17,20,23-heptaoxo-3h,6h,9h,12h,15h,16h,19h,22h,25h,26h,27h,27ah-pyrrolo[2,1-o]1-oxa-4,7,10,13,16,19,22-heptaazacyclopentacosan-16-yl]benzenecarboximidic acid

C53H78N8O10 (986.5840608)


   

n-[(3s,6s,9s,15s,18r,21s,24s,25r,28s)-21-benzyl-8,17,20,23-tetrahydroxy-3-[(4-hydroxyphenyl)methyl]-15-isopropyl-4,25-dimethyl-6,18-bis(2-methylpropyl)-2,5,14,27-tetraoxo-26-oxa-1,4,7,13,16,19,22-heptaazatricyclo[26.3.0.0⁹,¹³]hentriaconta-7,16,19,22-tetraen-24-yl]ethanimidic acid

n-[(3s,6s,9s,15s,18r,21s,24s,25r,28s)-21-benzyl-8,17,20,23-tetrahydroxy-3-[(4-hydroxyphenyl)methyl]-15-isopropyl-4,25-dimethyl-6,18-bis(2-methylpropyl)-2,5,14,27-tetraoxo-26-oxa-1,4,7,13,16,19,22-heptaazatricyclo[26.3.0.0⁹,¹³]hentriaconta-7,16,19,22-tetraen-24-yl]ethanimidic acid

C52H74N8O11 (986.5476774)


   

2-{2-[(1,2-dihydroxy-3-methylpentylidene)amino]-n,4-dimethylpentanamido}-n-{2-hydroxy-1-[(1-{[({1-[2-(methoxycarbonyl)pyrrolidin-1-yl]-1-oxo-3-phenylpropan-2-yl}(methyl)carbamoyl)methyl]-c-hydroxycarbonimidoyl}-2-methylbutyl)-c-hydroxycarbonimidoyl]-5-methylhexan-3-yl}pentanediimidic acid

2-{2-[(1,2-dihydroxy-3-methylpentylidene)amino]-n,4-dimethylpentanamido}-n-{2-hydroxy-1-[(1-{[({1-[2-(methoxycarbonyl)pyrrolidin-1-yl]-1-oxo-3-phenylpropan-2-yl}(methyl)carbamoyl)methyl]-c-hydroxycarbonimidoyl}-2-methylbutyl)-c-hydroxycarbonimidoyl]-5-methylhexan-3-yl}pentanediimidic acid

C50H82N8O12 (986.6051892)


   

6-({5-hydroxy-6-[(1-hydroxy-1-{1-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]ethyl}-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl)oxy]-4-methoxy-2-methyloxan-3-yl}oxy)-4-methoxy-2-methyloxan-3-yl acetate

6-({5-hydroxy-6-[(1-hydroxy-1-{1-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]ethyl}-9a,11a-dimethyl-2h,3h,3ah,3bh,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl)oxy]-4-methoxy-2-methyloxan-3-yl}oxy)-4-methoxy-2-methyloxan-3-yl acetate

C50H82O19 (986.5450022)


   

(3s)-3-{[(2s,5s,8s,11r,12r,15s)-2-[(2r)-butan-2-yl]-8-[(2s)-butan-2-yl]-15-(3-carbamimidamidopropyl)-6,13,16,21-tetrahydroxy-5-[(4-hydroxyphenyl)methyl]-4,11-dimethyl-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl]-c-hydroxycarbonimidoyl}-3-[(1-hydroxyhexylidene)amino]propanoic acid

(3s)-3-{[(2s,5s,8s,11r,12r,15s)-2-[(2r)-butan-2-yl]-8-[(2s)-butan-2-yl]-15-(3-carbamimidamidopropyl)-6,13,16,21-tetrahydroxy-5-[(4-hydroxyphenyl)methyl]-4,11-dimethyl-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl]-c-hydroxycarbonimidoyl}-3-[(1-hydroxyhexylidene)amino]propanoic acid

C47H74N10O13 (986.5436554)


   

(4s)-4-{[(2s,5s,8s,11r,12s,15s,18s,21r)-15-(3-carbamimidamidopropyl)-6,13,16,21-tetrahydroxy-5-[(4-hydroxyphenyl)methyl]-8-isopropyl-4,11-dimethyl-2-(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl]-c-hydroxycarbonimidoyl}-4-[(1-hydroxyhexylidene)amino]butanoic acid

(4s)-4-{[(2s,5s,8s,11r,12s,15s,18s,21r)-15-(3-carbamimidamidopropyl)-6,13,16,21-tetrahydroxy-5-[(4-hydroxyphenyl)methyl]-8-isopropyl-4,11-dimethyl-2-(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl]-c-hydroxycarbonimidoyl}-4-[(1-hydroxyhexylidene)amino]butanoic acid

C47H74N10O13 (986.5436554)