Exact Mass: 966.5471

Exact Mass Matches: 966.5471

Found 258 metabolites which its exact mass value is equals to given mass value 966.5471, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PIP(16:0/22:4(10Z,13Z,16Z,19Z))

{[(1R,3S)-3-({[(2R)-2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyloxy]-3-(hexadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(16:0/22:4(10Z,13Z,16Z,19Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(16:0/22:4(10Z,13Z,16Z,19Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of (10Z,13Z,16Z,19Z-docosatetraenoyl) at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the (10Z,13Z,16Z,19Z-docosatetraenoyl) moiety is derived from fish oils. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP(16:0/22:4(10Z,13Z,16Z,19Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(16:0/22:4(10Z,13Z,16Z,19Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of (10Z,13Z,16Z,19Z-docosatetraenoyl) at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the (10Z,13Z,16Z,19Z-docosatetraenoyl) moiety is derived from fish oils. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(16:0/22:4(7Z,10Z,13Z,16Z))

{[(1R,3S)-3-({[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-(hexadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(16:0/22:4(7Z,10Z,13Z,16Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(16:0/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of adrenic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the adrenic acid moiety is derived from animal fats. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:0/20:4(5Z,8Z,11Z,14Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-3-(octadecanoyloxy)propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(18:0/20:4(5Z,8Z,11Z,14Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(18:0/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the arachidonic acid moiety is derived from animal fats and eggs. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:0/20:4(8Z,11Z,14Z,17Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]-3-(octadecanoyloxy)propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(18:0/20:4(8Z,11Z,14Z,17Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(18:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the eicsoatetraenoic acid moiety is derived from fish oils. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP(18:0/20:4(8Z,11Z,14Z,17Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(18:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the eicsoatetraenoic acid moiety is derived from fish oils. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:1(11Z)/20:3(5Z,8Z,11Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-3-[(11Z)-octadec-11-enoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(18:1(11Z)/20:3(5Z,8Z,11Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(18:1(11Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of mead acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the mead acid moiety is derived from fish oils, liver and kidney. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP(18:1(11Z)/20:3(5Z,8Z,11Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(18:1(11Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of mead acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the mead acid moiety is derived from fish oils, liver and kidney. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:1(11Z)/20:3(8Z,11Z,14Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-3-[(11Z)-octadec-11-enoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(18:1(11Z)/20:3(8Z,11Z,14Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(18:1(11Z)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of homo-g-linolenic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the homo-g-linolenic acid moiety is derived from fish oils, liver and kidney. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP(18:1(11Z)/20:3(8Z,11Z,14Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(18:1(11Z)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of homo-g-linolenic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the homo-g-linolenic acid moiety is derived from fish oils, liver and kidney. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:1(9Z)/20:3(5Z,8Z,11Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-3-[(9Z)-octadec-9-enoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(18:1(9Z)/20:3(5Z,8Z,11Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(18:1(9Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of mead acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the mead acid moiety is derived from fish oils, liver and kidney. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:1(9Z)/20:3(8Z,11Z,14Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-3-[(9Z)-octadec-9-enoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(18:1(9Z)/20:3(8Z,11Z,14Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(18:1(9Z)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of homo-g-linolenic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the homo-g-linolenic acid moiety is derived from fish oils, liver and kidney. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:2(9Z,12Z)/20:2(11Z,14Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(18:2(9Z,12Z)/20:2(11Z,14Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(18:2(9Z,12Z)/20:2(11Z,14Z)), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The linoleic acid moiety is derived from seed oils, while the eicosadienoic acid moiety is derived from fish oils and liver. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP(18:2(9Z,12Z)/20:2(11Z,14Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(18:2(9Z,12Z)/20:2(11Z,14Z)), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The linoleic acid moiety is derived from seed oils, while the eicosadienoic acid moiety is derived from fish oils and liver. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:2(11Z,14Z)/18:2(9Z,12Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(20:2(11Z,14Z)/18:2(9Z,12Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(20:2(11Z,14Z)/18:2(9Z,12Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of linoleic acid at the C-2 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the linoleic acid moiety is derived from seed oils. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP(20:2(11Z,14Z)/18:2(9Z,12Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(20:2(11Z,14Z)/18:2(9Z,12Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of linoleic acid at the C-2 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the linoleic acid moiety is derived from seed oils. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:3(5Z,8Z,11Z)/18:1(11Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-2-[(11Z)-octadec-11-enoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(20:3(5Z,8Z,11Z)/18:1(11Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(20:3(5Z,8Z,11Z)/18:1(11Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the vaccenic acid moiety is derived from butter fat and animal fat. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP(20:3(5Z,8Z,11Z)/18:1(11Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(20:3(5Z,8Z,11Z)/18:1(11Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the vaccenic acid moiety is derived from butter fat and animal fat. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:3(5Z,8Z,11Z)/18:1(9Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(20:3(5Z,8Z,11Z)/18:1(9Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(20:3(5Z,8Z,11Z)/18:1(9Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of oleic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP(20:3(5Z,8Z,11Z)/18:1(9Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(20:3(5Z,8Z,11Z)/18:1(9Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of oleic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:3(8Z,11Z,14Z)/18:1(11Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-2-[(11Z)-octadec-11-enoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(20:3(8Z,11Z,14Z)/18:1(11Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(20:3(8Z,11Z,14Z)/18:1(11Z)), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the vaccenic acid moiety is derived from butter fat and animal fat. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP(20:3(8Z,11Z,14Z)/18:1(11Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(20:3(8Z,11Z,14Z)/18:1(11Z)), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the vaccenic acid moiety is derived from butter fat and animal fat. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:3(8Z,11Z,14Z)/18:1(9Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(20:3(8Z,11Z,14Z)/18:1(9Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(20:3(8Z,11Z,14Z)/18:1(9Z)), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of oleic acid at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP(20:3(8Z,11Z,14Z)/18:1(9Z)) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(20:3(8Z,11Z,14Z)/18:1(9Z)), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of oleic acid at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:4(5Z,8Z,11Z,14Z)/18:0)

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-2-(octadecanoyloxy)propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(20:4(5Z,8Z,11Z,14Z)/18:0) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(20:4(5Z,8Z,11Z,14Z)/18:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of stearic acid at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP(20:4(5Z,8Z,11Z,14Z)/18:0) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(20:4(5Z,8Z,11Z,14Z)/18:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of stearic acid at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:4(8Z,11Z,14Z,17Z)/18:0)

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]-2-(octadecanoyloxy)propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(20:4(8Z,11Z,14Z,17Z)/18:0) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(20:4(8Z,11Z,14Z,17Z)/18:0), in particular, consists of one chain of eicsoatetraenoic acid at the C-1 position and one chain of stearic acid at the C-2 position. The eicsoatetraenoic acid moiety is derived from fish oils, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP(20:4(8Z,11Z,14Z,17Z)/18:0) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(20:4(8Z,11Z,14Z,17Z)/18:0), in particular, consists of one chain of eicsoatetraenoic acid at the C-1 position and one chain of stearic acid at the C-2 position. The eicsoatetraenoic acid moiety is derived from fish oils, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(22:4(10Z,13Z,16Z,19Z)/16:0)

{[(1R,3S)-3-({[(2R)-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyloxy]-2-(hexadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(22:4(10Z,13Z,16Z,19Z)/16:0) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(22:4(10Z,13Z,16Z,19Z)/16:0), in particular, consists of one chain of (10Z,13Z,16Z,19Z-docosatetraenoyl) at the C-1 position and one chain of palmitic acid at the C-2 position. The (10Z,13Z,16Z,19Z-docosatetraenoyl) moiety is derived from fish oils, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(22:4(7Z,10Z,13Z,16Z)/16:0)

{[(1R,3S)-3-({[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-(hexadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C47H84O16P2 (966.5234)


PIP(22:4(7Z,10Z,13Z,16Z)/16:0) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(22:4(7Z,10Z,13Z,16Z)/16:0), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The adrenic acid moiety is derived from animal fats, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP(22:4(7Z,10Z,13Z,16Z)/16:0) is a phosphatidylinositol phosphate. Phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP(22:4(7Z,10Z,13Z,16Z)/16:0), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The adrenic acid moiety is derived from animal fats, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PGP(22:4(7Z,10Z,13Z,16Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

[(2S)-3-({[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C50H80O14P2 (966.5023)


PGP(22:4(7Z,10Z,13Z,16Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:4(7Z,10Z,13Z,16Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:4(7Z,10Z,13Z,16Z))

[(2S)-3-({[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C50H80O14P2 (966.5023)


PGP(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

[(2S)-3-({[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C50H80O14P2 (966.5023)


PGP(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:4(7Z,10Z,13Z,16Z))

[(2S)-3-({[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C50H80O14P2 (966.5023)


PGP(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

[(2S)-3-({[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C50H80O14P2 (966.5023)


PGP(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:4(7Z,10Z,13Z,16Z))

[(2S)-3-({[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C50H80O14P2 (966.5023)


PGP(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

[(2S)-3-({[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C50H80O14P2 (966.5023)


PGP(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:4(7Z,10Z,13Z,16Z))

[(2S)-3-({[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C50H80O14P2 (966.5023)


PGP(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:4(7Z,10Z,13Z,16Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

[(2S)-3-({[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C50H80O14P2 (966.5023)


PGP(22:4(7Z,10Z,13Z,16Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:4(7Z,10Z,13Z,16Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:4(7Z,10Z,13Z,16Z))

[(2S)-3-({[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C50H80O14P2 (966.5023)


PGP(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(a-21:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(18-methylicosanoyl)oxy]-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C47H84O16P2 (966.5234)


PGP(a-21:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(a-21:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 18-methyleicosanoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-21:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(18-methylicosanoyl)oxy]-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C47H84O16P2 (966.5234)


PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-21:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-21:0), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 18-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(a-25:0/18:2(10E,12Z)+=O(9))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(22-methyltetracosanoyl)oxy]-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C49H92O14P2 (966.5962)


PGP(a-25:0/18:2(10E,12Z)+=O(9)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(a-25:0/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one 22-methyltetracosanoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(10E,12Z)+=O(9)/a-25:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(22-methyltetracosanoyl)oxy]-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C49H92O14P2 (966.5962)


PGP(18:2(10E,12Z)+=O(9)/a-25:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(10E,12Z)+=O(9)/a-25:0), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of 22-methyltetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(a-25:0/18:2(9Z,11E)+=O(13))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(22-methyltetracosanoyl)oxy]-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C49H92O14P2 (966.5962)


PGP(a-25:0/18:2(9Z,11E)+=O(13)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(a-25:0/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one 22-methyltetracosanoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,11E)+=O(13)/a-25:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(22-methyltetracosanoyl)oxy]-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C49H92O14P2 (966.5962)


PGP(18:2(9Z,11E)+=O(13)/a-25:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,11E)+=O(13)/a-25:0), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of 22-methyltetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(a-25:0/18:3(10,12,15)-OH(9))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-3-[(22-methyltetracosanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C49H92O14P2 (966.5962)


PGP(a-25:0/18:3(10,12,15)-OH(9)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(a-25:0/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one 22-methyltetracosanoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:3(10,12,15)-OH(9)/a-25:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-2-[(22-methyltetracosanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C49H92O14P2 (966.5962)


PGP(18:3(10,12,15)-OH(9)/a-25:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:3(10,12,15)-OH(9)/a-25:0), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of 22-methyltetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(a-25:0/18:3(9,11,15)-OH(13))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-3-[(22-methyltetracosanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C49H92O14P2 (966.5962)


PGP(a-25:0/18:3(9,11,15)-OH(13)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(a-25:0/18:3(9,11,15)-OH(13)), in particular, consists of one chain of one 22-methyltetracosanoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:3(9,11,15)-OH(13)/a-25:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-2-[(22-methyltetracosanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C49H92O14P2 (966.5962)


PGP(18:3(9,11,15)-OH(13)/a-25:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:3(9,11,15)-OH(13)/a-25:0), in particular, consists of one chain of one 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of 22-methyltetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-21:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(19-methylicosanoyl)oxy]-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C47H84O16P2 (966.5234)


PGP(i-21:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-21:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 19-methyleicosanoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-21:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(19-methylicosanoyl)oxy]-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C47H84O16P2 (966.5234)


PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-21:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-21:0), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 19-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-22:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

[(2S)-3-({[(2R)-2-{[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-3-[(20-methylhenicosanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C48H88O15P2 (966.5598)


PGP(i-22:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-22:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of one 20-methylheneicosanoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-22:0)

[(2S)-3-({[(2R)-3-{[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-2-[(20-methylhenicosanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C48H88O15P2 (966.5598)


PGP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-22:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-22:0), in particular, consists of one chain of one Leukotriene B4 at the C-1 position and one chain of 20-methylheneicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-22:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

[(2S)-3-({[(2R)-2-{[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-3-[(20-methylhenicosanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C48H88O15P2 (966.5598)


PGP(i-22:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-22:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of one 20-methylheneicosanoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-22:0)

[(2S)-3-({[(2R)-3-{[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-2-[(20-methylhenicosanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C48H88O15P2 (966.5598)


PGP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-22:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-22:0), in particular, consists of one chain of one 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 20-methylheneicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-22:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

[(2S)-3-({[(2R)-2-{[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-3-[(20-methylhenicosanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C48H88O15P2 (966.5598)


PGP(i-22:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-22:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of one 20-methylheneicosanoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-22:0)

[(2S)-3-({[(2R)-3-{[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-2-[(20-methylhenicosanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C48H88O15P2 (966.5598)


PGP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-22:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-22:0), in particular, consists of one chain of one 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 20-methylheneicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PI(20:2(11Z,14Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C51H83O15P (966.5469)


PI(20:2(11Z,14Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:2(11Z,14Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of 11Z,14Z-eicosadienoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/20:2(11Z,14Z))

[(2R)-3-{[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C51H83O15P (966.5469)


PI(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/20:2(11Z,14Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/20:2(11Z,14Z)), in particular, consists of one chain of Resolvin D5 at the C-1 position and one chain of 11Z,14Z-eicosadienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:2(11Z,14Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C51H83O15P (966.5469)


PI(20:2(11Z,14Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:2(11Z,14Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of 11Z,14Z-eicosadienoyl at the C-1 position and one chain of Protectin DX at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/20:2(11Z,14Z))

[(2R)-3-{[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C51H83O15P (966.5469)


PI(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/20:2(11Z,14Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/20:2(11Z,14Z)), in particular, consists of one chain of Protectin DX at the C-1 position and one chain of 11Z,14Z-eicosadienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(22:3(10Z,13Z,16Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

{[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy}[(2R)-2-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}-3-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]phosphinic acid

C52H87O14P (966.5833)


PI(22:3(10Z,13Z,16Z)/20:3(5Z,8Z,11Z)-O(14R,15S)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:3(10Z,13Z,16Z)/20:3(5Z,8Z,11Z)-O(14R,15S)), in particular, consists of one chain of 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of 14,15-epoxyeicosatrienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:3(5Z,8Z,11Z)-O(14R,15S)/22:3(10Z,13Z,16Z))

{[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy}[(2R)-3-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}-2-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]phosphinic acid

C52H87O14P (966.5833)


PI(20:3(5Z,8Z,11Z)-O(14R,15S)/22:3(10Z,13Z,16Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:3(5Z,8Z,11Z)-O(14R,15S)/22:3(10Z,13Z,16Z)), in particular, consists of one chain of 14,15-epoxyeicosatrienoyl at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(22:3(10Z,13Z,16Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

[(2R)-2-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}-3-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C52H87O14P (966.5833)


PI(22:3(10Z,13Z,16Z)/20:3(5Z,8Z,14Z)-O(11S,12R)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:3(10Z,13Z,16Z)/20:3(5Z,8Z,14Z)-O(11S,12R)), in particular, consists of one chain of 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of 11,12-epoxyeicosatrienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:3(5Z,8Z,14Z)-O(11S,12R)/22:3(10Z,13Z,16Z))

[(2R)-3-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}-2-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C52H87O14P (966.5833)


PI(20:3(5Z,8Z,14Z)-O(11S,12R)/22:3(10Z,13Z,16Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:3(5Z,8Z,14Z)-O(11S,12R)/22:3(10Z,13Z,16Z)), in particular, consists of one chain of 11,12-epoxyeicosatrienoyl at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(22:3(10Z,13Z,16Z)/20:3(5Z,11Z,14Z)-O(8,9))

{[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy}[(2R)-3-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]-2-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphinic acid

C52H87O14P (966.5833)


PI(22:3(10Z,13Z,16Z)/20:3(5Z,11Z,14Z)-O(8,9)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:3(10Z,13Z,16Z)/20:3(5Z,11Z,14Z)-O(8,9)), in particular, consists of one chain of 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of 8,9--epoxyeicosatrienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:3(5Z,11Z,14Z)-O(8,9)/22:3(10Z,13Z,16Z))

{[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy}[(2R)-2-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]-3-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphinic acid

C52H87O14P (966.5833)


PI(20:3(5Z,11Z,14Z)-O(8,9)/22:3(10Z,13Z,16Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:3(5Z,11Z,14Z)-O(8,9)/22:3(10Z,13Z,16Z)), in particular, consists of one chain of 8,9--epoxyeicosatrienoyl at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(22:3(10Z,13Z,16Z)/20:3(8Z,11Z,14Z)-O(5,6))

{[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy}[(2R)-2-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]-3-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]phosphinic acid

C52H87O14P (966.5833)


PI(22:3(10Z,13Z,16Z)/20:3(8Z,11Z,14Z)-O(5,6)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:3(10Z,13Z,16Z)/20:3(8Z,11Z,14Z)-O(5,6)), in particular, consists of one chain of 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of 5,6-epoxyeicosatrienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:3(8Z,11Z,14Z)-O(5,6)/22:3(10Z,13Z,16Z))

{[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy}[(2R)-3-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]-2-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]phosphinic acid

C52H87O14P (966.5833)


PI(20:3(8Z,11Z,14Z)-O(5,6)/22:3(10Z,13Z,16Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:3(8Z,11Z,14Z)-O(5,6)/22:3(10Z,13Z,16Z)), in particular, consists of one chain of 5,6-epoxyeicosatrienoyl at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

[(2R)-2-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C52H87O14P (966.5833)


PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(20)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(20)), in particular, consists of one chain of 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of 20-Hydroxyeicosatetraenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:4(5Z,8Z,11Z,14Z)-OH(20)/22:3(10Z,13Z,16Z))

[(2R)-3-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C52H87O14P (966.5833)


PI(20:4(5Z,8Z,11Z,14Z)-OH(20)/22:3(10Z,13Z,16Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:4(5Z,8Z,11Z,14Z)-OH(20)/22:3(10Z,13Z,16Z)), in particular, consists of one chain of 20-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(22:3(10Z,13Z,16Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

[(2R)-2-{[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-3-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C52H87O14P (966.5833)


PI(22:3(10Z,13Z,16Z)/20:4(6E,8Z,11Z,14Z)-OH(5S)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:3(10Z,13Z,16Z)/20:4(6E,8Z,11Z,14Z)-OH(5S)), in particular, consists of one chain of 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of 5-Hydroxyeicosatetraenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:4(6E,8Z,11Z,14Z)-OH(5S)/22:3(10Z,13Z,16Z))

[(2R)-3-{[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-2-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C52H87O14P (966.5833)


PI(20:4(6E,8Z,11Z,14Z)-OH(5S)/22:3(10Z,13Z,16Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:4(6E,8Z,11Z,14Z)-OH(5S)/22:3(10Z,13Z,16Z)), in particular, consists of one chain of 5-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

[(2R)-2-{[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C52H87O14P (966.5833)


PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S)), in particular, consists of one chain of 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of 19-Hydroxyeicosatetraenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:4(5Z,8Z,11Z,14Z)-OH(19S)/22:3(10Z,13Z,16Z))

[(2R)-3-{[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C52H87O14P (966.5833)


PI(20:4(5Z,8Z,11Z,14Z)-OH(19S)/22:3(10Z,13Z,16Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:4(5Z,8Z,11Z,14Z)-OH(19S)/22:3(10Z,13Z,16Z)), in particular, consists of one chain of 19-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

[(2R)-2-{[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C52H87O14P (966.5833)


PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R)), in particular, consists of one chain of 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of 18-Hydroxyeicosatetraenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:4(5Z,8Z,11Z,14Z)-OH(18R)/22:3(10Z,13Z,16Z))

[(2R)-3-{[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C52H87O14P (966.5833)


PI(20:4(5Z,8Z,11Z,14Z)-OH(18R)/22:3(10Z,13Z,16Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:4(5Z,8Z,11Z,14Z)-OH(18R)/22:3(10Z,13Z,16Z)), in particular, consists of one chain of 18-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

[(2R)-2-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C52H87O14P (966.5833)


PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(17)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(17)), in particular, consists of one chain of 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of 17-Hydroxyeicosatetraenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:4(5Z,8Z,11Z,14Z)-OH(17)/22:3(10Z,13Z,16Z))

[(2R)-3-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C52H87O14P (966.5833)


PI(20:4(5Z,8Z,11Z,14Z)-OH(17)/22:3(10Z,13Z,16Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:4(5Z,8Z,11Z,14Z)-OH(17)/22:3(10Z,13Z,16Z)), in particular, consists of one chain of 17-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

[(2R)-2-{[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C52H87O14P (966.5833)


PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R)), in particular, consists of one chain of 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of 16-Hydroxyeicosatetraenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:4(5Z,8Z,11Z,14Z)-OH(16R)/22:3(10Z,13Z,16Z))

[(2R)-3-{[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C52H87O14P (966.5833)


PI(20:4(5Z,8Z,11Z,14Z)-OH(16R)/22:3(10Z,13Z,16Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:4(5Z,8Z,11Z,14Z)-OH(16R)/22:3(10Z,13Z,16Z)), in particular, consists of one chain of 16-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

[(2R)-2-{[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-3-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C52H87O14P (966.5833)


PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,13E)-OH(15S)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,13E)-OH(15S)), in particular, consists of one chain of 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of 15-Hydroxyeicosatetraenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:4(5Z,8Z,11Z,13E)-OH(15S)/22:3(10Z,13Z,16Z))

[(2R)-3-{[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-2-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C52H87O14P (966.5833)


PI(20:4(5Z,8Z,11Z,13E)-OH(15S)/22:3(10Z,13Z,16Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:4(5Z,8Z,11Z,13E)-OH(15S)/22:3(10Z,13Z,16Z)), in particular, consists of one chain of 15-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

[(2R)-2-{[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-3-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C52H87O14P (966.5833)


PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,10E,14Z)-OH(12S)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,10E,14Z)-OH(12S)), in particular, consists of one chain of 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of 12-Hydroxyeicosatetraenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:4(5Z,8Z,10E,14Z)-OH(12S)/22:3(10Z,13Z,16Z))

[(2R)-3-{[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-2-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C52H87O14P (966.5833)


PI(20:4(5Z,8Z,10E,14Z)-OH(12S)/22:3(10Z,13Z,16Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:4(5Z,8Z,10E,14Z)-OH(12S)/22:3(10Z,13Z,16Z)), in particular, consists of one chain of 12-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(22:3(10Z,13Z,16Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

[(2R)-2-{[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-3-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C52H87O14P (966.5833)


PI(22:3(10Z,13Z,16Z)/20:4(5E,8Z,12Z,14Z)-OH(11R)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:3(10Z,13Z,16Z)/20:4(5E,8Z,12Z,14Z)-OH(11R)), in particular, consists of one chain of 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of 11-Hydroxyeicosatetraenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:4(5E,8Z,12Z,14Z)-OH(11R)/22:3(10Z,13Z,16Z))

[(2R)-3-{[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-2-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C52H87O14P (966.5833)


PI(20:4(5E,8Z,12Z,14Z)-OH(11R)/22:3(10Z,13Z,16Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:4(5E,8Z,12Z,14Z)-OH(11R)/22:3(10Z,13Z,16Z)), in particular, consists of one chain of 11-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(22:3(10Z,13Z,16Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

[(2R)-2-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-3-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C52H87O14P (966.5833)


PI(22:3(10Z,13Z,16Z)/20:4(5Z,7E,11Z,14Z)-OH(9)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:3(10Z,13Z,16Z)/20:4(5Z,7E,11Z,14Z)-OH(9)), in particular, consists of one chain of 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of 9-Hydroxyeicosatetraenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:4(5Z,7E,11Z,14Z)-OH(9)/22:3(10Z,13Z,16Z))

[(2R)-3-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-2-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C52H87O14P (966.5833)


PI(20:4(5Z,7E,11Z,14Z)-OH(9)/22:3(10Z,13Z,16Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:4(5Z,7E,11Z,14Z)-OH(9)/22:3(10Z,13Z,16Z)), in particular, consists of one chain of 9-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(22:4(10Z,13Z,16Z,19Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

[(2R)-2-{[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C51H83O15P (966.5469)


PI(22:4(10Z,13Z,16Z,19Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:4(10Z,13Z,16Z,19Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of 10Z,13Z,16Z,19Z-docosatetraenoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/22:4(10Z,13Z,16Z,19Z))

[(2R)-3-{[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C51H83O15P (966.5469)


PI(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/22:4(10Z,13Z,16Z,19Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/22:4(10Z,13Z,16Z,19Z)), in particular, consists of one chain of Leukotriene B4 at the C-1 position and one chain of 10Z,13Z,16Z,19Z-docosatetraenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(22:4(10Z,13Z,16Z,19Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

[(2R)-2-{[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C51H83O15P (966.5469)


PI(22:4(10Z,13Z,16Z,19Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:4(10Z,13Z,16Z,19Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of 10Z,13Z,16Z,19Z-docosatetraenoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/22:4(10Z,13Z,16Z,19Z))

[(2R)-3-{[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C51H83O15P (966.5469)


PI(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/22:4(10Z,13Z,16Z,19Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/22:4(10Z,13Z,16Z,19Z)), in particular, consists of one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 10Z,13Z,16Z,19Z-docosatetraenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(22:4(10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

[(2R)-2-{[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C51H83O15P (966.5469)


PI(22:4(10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:4(10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of 10Z,13Z,16Z,19Z-docosatetraenoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/22:4(10Z,13Z,16Z,19Z))

[(2R)-3-{[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C51H83O15P (966.5469)


PI(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/22:4(10Z,13Z,16Z,19Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/22:4(10Z,13Z,16Z,19Z)), in particular, consists of one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 10Z,13Z,16Z,19Z-docosatetraenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(22:4(7Z,10Z,13Z,16Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

[(2R)-2-{[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C51H83O15P (966.5469)


PI(22:4(7Z,10Z,13Z,16Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:4(7Z,10Z,13Z,16Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/22:4(7Z,10Z,13Z,16Z))

[(2R)-3-{[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C51H83O15P (966.5469)


PI(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of Leukotriene B4 at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(22:4(7Z,10Z,13Z,16Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

[(2R)-2-{[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C51H83O15P (966.5469)


PI(22:4(7Z,10Z,13Z,16Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:4(7Z,10Z,13Z,16Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/22:4(7Z,10Z,13Z,16Z))

[(2R)-3-{[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C51H83O15P (966.5469)


PI(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(22:4(7Z,10Z,13Z,16Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

[(2R)-2-{[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C51H83O15P (966.5469)


PI(22:4(7Z,10Z,13Z,16Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:4(7Z,10Z,13Z,16Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/22:4(7Z,10Z,13Z,16Z))

[(2R)-3-{[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C51H83O15P (966.5469)


PI(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(22:5(4Z,7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C51H83O15P (966.5469)


PI(22:5(4Z,7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:5(4Z,7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:3(8Z,11Z,14Z)-2OH(5,6)/22:5(4Z,7Z,10Z,13Z,16Z))

[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C51H83O15P (966.5469)


PI(20:3(8Z,11Z,14Z)-2OH(5,6)/22:5(4Z,7Z,10Z,13Z,16Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:3(8Z,11Z,14Z)-2OH(5,6)/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of one chain of 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(22:5(7Z,10Z,13Z,16Z,19Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C51H83O15P (966.5469)


PI(22:5(7Z,10Z,13Z,16Z,19Z)/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(22:5(7Z,10Z,13Z,16Z,19Z)/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:3(8Z,11Z,14Z)-2OH(5,6)/22:5(7Z,10Z,13Z,16Z,19Z))

[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C51H83O15P (966.5469)


PI(20:3(8Z,11Z,14Z)-2OH(5,6)/22:5(7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:3(8Z,11Z,14Z)-2OH(5,6)/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PS(20:4(5Z,8Z,11Z,14Z)/LTE4)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-{[(2R)-1-({[(2S)-2-amino-2-carboxyethoxy](hydroxy)phosphoryl}oxy)-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propan-2-yl]oxy}-3-oxopropyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C49H79N2O13PS (966.504)


PS(20:4(5Z,8Z,11Z,14Z)/LTE4) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:4(5Z,8Z,11Z,14Z)/LTE4), in particular, consists of one chain of one 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-1 position and one chain of Leukotriene E4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(LTE4/20:4(5Z,8Z,11Z,14Z))

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-[(2R)-3-({[(2S)-2-amino-2-carboxyethoxy](hydroxy)phosphoryl}oxy)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]-3-oxopropyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C49H79N2O13PS (966.504)


PS(LTE4/20:4(5Z,8Z,11Z,14Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(LTE4/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of one Leukotriene E4 at the C-1 position and one chain of 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:4(8Z,11Z,14Z,17Z)/LTE4)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-{[(2R)-1-({[(2S)-2-amino-2-carboxyethoxy](hydroxy)phosphoryl}oxy)-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propan-2-yl]oxy}-3-oxopropyl]sulfanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C49H79N2O13PS (966.504)


PS(20:4(8Z,11Z,14Z,17Z)/LTE4) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:4(8Z,11Z,14Z,17Z)/LTE4), in particular, consists of one chain of one 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of Leukotriene E4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(LTE4/20:4(8Z,11Z,14Z,17Z))

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-[(2R)-3-({[(2S)-2-amino-2-carboxyethoxy](hydroxy)phosphoryl}oxy)-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy]-3-oxopropyl]sulfanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C49H79N2O13PS (966.504)


PS(LTE4/20:4(8Z,11Z,14Z,17Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(LTE4/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of one Leukotriene E4 at the C-1 position and one chain of 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PC(20:3(5Z,8Z,11Z)/LTE4)

(2-{[(2R)-2-{[(2R)-2-amino-3-{[(4S,5R,6E,8E,10Z,13Z)-1-carboxy-4-hydroxynonadeca-6,8,10,13-tetraen-5-yl]sulphanyl}propanoyl]oxy}-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C51H87N2O11PS (966.5768)


PC(20:3(5Z,8Z,11Z)/LTE4) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(5Z,8Z,11Z)/LTE4), in particular, consists of one chain of one 5Z,8Z,11Z-eicosatrienoyl at the C-1 position and one chain of Leukotriene E4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(LTE4/20:3(5Z,8Z,11Z))

(2-{[(2R)-3-{[(2R)-2-amino-3-{[(4S,5R,6E,8E,10Z,13Z)-1-carboxy-4-hydroxynonadeca-6,8,10,13-tetraen-5-yl]sulphanyl}propanoyl]oxy}-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C51H87N2O11PS (966.5768)


PC(LTE4/20:3(5Z,8Z,11Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(LTE4/20:3(5Z,8Z,11Z)), in particular, consists of one chain of one Leukotriene E4 at the C-1 position and one chain of 5Z,8Z,11Z-eicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(8Z,11Z,14Z)/LTE4)

(2-{[(2R)-2-{[(2R)-2-amino-3-{[(4S,5R,6E,8E,10Z,13Z)-1-carboxy-4-hydroxynonadeca-6,8,10,13-tetraen-5-yl]sulfanyl}propanoyl]oxy}-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C51H87N2O11PS (966.5768)


PC(20:3(8Z,11Z,14Z)/LTE4) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(8Z,11Z,14Z)/LTE4), in particular, consists of one chain of one 8Z,11Z,14Z-eicosatrienoyl at the C-1 position and one chain of Leukotriene E4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(LTE4/20:3(8Z,11Z,14Z))

(2-{[(2R)-3-{[(2R)-2-amino-3-{[(4S,5R,6E,8E,10Z,13Z)-1-carboxy-4-hydroxynonadeca-6,8,10,13-tetraen-5-yl]sulphanyl}propanoyl]oxy}-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C51H87N2O11PS (966.5768)


PC(LTE4/20:3(8Z,11Z,14Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(LTE4/20:3(8Z,11Z,14Z)), in particular, consists of one chain of one Leukotriene E4 at the C-1 position and one chain of 8Z,11Z,14Z-eicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   
   
   

Sapinmusaponin N

Sapinmusaponin N

C50H78O18 (966.5188)


   

Sapinmusaponin M

Sapinmusaponin M

C50H78O18 (966.5188)


   

23-O-acetyl-hederagenin 3-O-(4-O-acetyl-beta-D-xylopyranosyl)-(1->3)-alpha-L-rhamnopyranosyl-(1->2)-alpha-L-arabinopyranoside

23-O-acetyl-hederagenin 3-O-(4-O-acetyl-beta-D-xylopyranosyl)-(1->3)-alpha-L-rhamnopyranosyl-(1->2)-alpha-L-arabinopyranoside

C50H78O18 (966.5188)


   

dumortierigenin 3-O-alpha-rhamnopyranosyl-(1->2)-beta-glucopyranosyl-(1->2)-6-O-methyl-beta-glucuronopyranoside|dumortierinoside A methyl ester

dumortierigenin 3-O-alpha-rhamnopyranosyl-(1->2)-beta-glucopyranosyl-(1->2)-6-O-methyl-beta-glucuronopyranoside|dumortierinoside A methyl ester

C50H78O18 (966.5188)


   
   

PIP(38:4)

1-(11Z,14Z-Eicosadienoyl)-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phospho-(1-myo-inositol-3-phosphate)

C47H84O16P2 (966.5234)


   

1-Eicsoate

1-(8Z,11Z,14Z,17Z-Eicosapentaenoyl)-2-octadecanoyl-sn-glycero-3-phospho-(1-myo-inositol-3-phosphate)

C47H84O16P2 (966.5234)


   

Tilmicosin Phosphate

Tilmicosin (phosphate)

C46H83N2O17P (966.5429)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic

   

PC(20:3(5Z,8Z,11Z)/LTE4)

PC(20:3(5Z,8Z,11Z)/LTE4)

C51H87N2O11PS (966.5768)


   

PC(LTE4/20:3(5Z,8Z,11Z))

PC(LTE4/20:3(5Z,8Z,11Z))

C51H87N2O11PS (966.5768)


   

PC(20:3(8Z,11Z,14Z)/LTE4)

PC(20:3(8Z,11Z,14Z)/LTE4)

C51H87N2O11PS (966.5768)


   

PC(LTE4/20:3(8Z,11Z,14Z))

PC(LTE4/20:3(8Z,11Z,14Z))

C51H87N2O11PS (966.5768)


   

PS(20:4(5Z,8Z,11Z,14Z)/LTE4)

PS(20:4(5Z,8Z,11Z,14Z)/LTE4)

C49H79N2O13PS (966.504)


   

PS(LTE4/20:4(5Z,8Z,11Z,14Z))

PS(LTE4/20:4(5Z,8Z,11Z,14Z))

C49H79N2O13PS (966.504)


   

PS(20:4(8Z,11Z,14Z,17Z)/LTE4)

PS(20:4(8Z,11Z,14Z,17Z)/LTE4)

C49H79N2O13PS (966.504)


   

PS(LTE4/20:4(8Z,11Z,14Z,17Z))

PS(LTE4/20:4(8Z,11Z,14Z,17Z))

C49H79N2O13PS (966.504)


   

PGP(a-25:0/18:2(10E,12Z)+=O(9))

PGP(a-25:0/18:2(10E,12Z)+=O(9))

C49H92O14P2 (966.5962)


   

PGP(18:2(10E,12Z)+=O(9)/a-25:0)

PGP(18:2(10E,12Z)+=O(9)/a-25:0)

C49H92O14P2 (966.5962)


   

PGP(a-25:0/18:2(9Z,11E)+=O(13))

PGP(a-25:0/18:2(9Z,11E)+=O(13))

C49H92O14P2 (966.5962)


   

PGP(18:2(9Z,11E)+=O(13)/a-25:0)

PGP(18:2(9Z,11E)+=O(13)/a-25:0)

C49H92O14P2 (966.5962)


   

PGP(a-25:0/18:3(10,12,15)-OH(9))

PGP(a-25:0/18:3(10,12,15)-OH(9))

C49H92O14P2 (966.5962)


   

PGP(18:3(10,12,15)-OH(9)/a-25:0)

PGP(18:3(10,12,15)-OH(9)/a-25:0)

C49H92O14P2 (966.5962)


   

PGP(a-25:0/18:3(9,11,15)-OH(13))

PGP(a-25:0/18:3(9,11,15)-OH(13))

C49H92O14P2 (966.5962)


   

PGP(18:3(9,11,15)-OH(13)/a-25:0)

PGP(18:3(9,11,15)-OH(13)/a-25:0)

C49H92O14P2 (966.5962)


   

PGP(i-22:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

PGP(i-22:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

C48H88O15P2 (966.5598)


   

PGP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-22:0)

PGP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-22:0)

C48H88O15P2 (966.5598)


   

PGP(i-22:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

PGP(i-22:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

C48H88O15P2 (966.5598)


   

PGP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-22:0)

PGP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-22:0)

C48H88O15P2 (966.5598)


   

PGP(i-22:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

PGP(i-22:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

C48H88O15P2 (966.5598)


   

PGP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-22:0)

PGP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-22:0)

C48H88O15P2 (966.5598)


   

PGP(a-21:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PGP(a-21:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C47H84O16P2 (966.5234)


   

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-21:0)

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-21:0)

C47H84O16P2 (966.5234)


   

PGP(i-21:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PGP(i-21:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C47H84O16P2 (966.5234)


   

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-21:0)

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-21:0)

C47H84O16P2 (966.5234)


   

PGP(22:4(7Z,10Z,13Z,16Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

PGP(22:4(7Z,10Z,13Z,16Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

C50H80O14P2 (966.5023)


   

PGP(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:4(7Z,10Z,13Z,16Z))

PGP(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:4(7Z,10Z,13Z,16Z))

C50H80O14P2 (966.5023)


   

PGP(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

PGP(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

C50H80O14P2 (966.5023)


   

PGP(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:4(7Z,10Z,13Z,16Z))

PGP(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:4(7Z,10Z,13Z,16Z))

C50H80O14P2 (966.5023)


   

PGP(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

PGP(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

C50H80O14P2 (966.5023)


   

PGP(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:4(7Z,10Z,13Z,16Z))

PGP(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:4(7Z,10Z,13Z,16Z))

C50H80O14P2 (966.5023)


   

PGP(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

PGP(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

C50H80O14P2 (966.5023)


   

PGP(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:4(7Z,10Z,13Z,16Z))

PGP(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:4(7Z,10Z,13Z,16Z))

C50H80O14P2 (966.5023)


   

PGP(22:4(7Z,10Z,13Z,16Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

PGP(22:4(7Z,10Z,13Z,16Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

C50H80O14P2 (966.5023)


   

PGP(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:4(7Z,10Z,13Z,16Z))

PGP(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:4(7Z,10Z,13Z,16Z))

C50H80O14P2 (966.5023)


   

PI(22:3(10Z,13Z,16Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

PI(22:3(10Z,13Z,16Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

C52H87O14P (966.5833)


   

PI(20:3(5Z,8Z,11Z)-O(14R,15S)/22:3(10Z,13Z,16Z))

PI(20:3(5Z,8Z,11Z)-O(14R,15S)/22:3(10Z,13Z,16Z))

C52H87O14P (966.5833)


   

PI(22:3(10Z,13Z,16Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

PI(22:3(10Z,13Z,16Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

C52H87O14P (966.5833)


   

PI(20:3(5Z,8Z,14Z)-O(11S,12R)/22:3(10Z,13Z,16Z))

PI(20:3(5Z,8Z,14Z)-O(11S,12R)/22:3(10Z,13Z,16Z))

C52H87O14P (966.5833)


   

PI(22:3(10Z,13Z,16Z)/20:3(5Z,11Z,14Z)-O(8,9))

PI(22:3(10Z,13Z,16Z)/20:3(5Z,11Z,14Z)-O(8,9))

C52H87O14P (966.5833)


   

PI(20:3(5Z,11Z,14Z)-O(8,9)/22:3(10Z,13Z,16Z))

PI(20:3(5Z,11Z,14Z)-O(8,9)/22:3(10Z,13Z,16Z))

C52H87O14P (966.5833)


   

PI(22:3(10Z,13Z,16Z)/20:3(8Z,11Z,14Z)-O(5,6))

PI(22:3(10Z,13Z,16Z)/20:3(8Z,11Z,14Z)-O(5,6))

C52H87O14P (966.5833)


   

PI(20:3(8Z,11Z,14Z)-O(5,6)/22:3(10Z,13Z,16Z))

PI(20:3(8Z,11Z,14Z)-O(5,6)/22:3(10Z,13Z,16Z))

C52H87O14P (966.5833)


   

PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

C52H87O14P (966.5833)


   

PI(20:4(5Z,8Z,11Z,14Z)-OH(20)/22:3(10Z,13Z,16Z))

PI(20:4(5Z,8Z,11Z,14Z)-OH(20)/22:3(10Z,13Z,16Z))

C52H87O14P (966.5833)


   

PI(22:3(10Z,13Z,16Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

PI(22:3(10Z,13Z,16Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

C52H87O14P (966.5833)


   

PI(20:4(6E,8Z,11Z,14Z)-OH(5S)/22:3(10Z,13Z,16Z))

PI(20:4(6E,8Z,11Z,14Z)-OH(5S)/22:3(10Z,13Z,16Z))

C52H87O14P (966.5833)


   

PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C52H87O14P (966.5833)


   

PI(20:4(5Z,8Z,11Z,14Z)-OH(19S)/22:3(10Z,13Z,16Z))

PI(20:4(5Z,8Z,11Z,14Z)-OH(19S)/22:3(10Z,13Z,16Z))

C52H87O14P (966.5833)


   

PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C52H87O14P (966.5833)


   

PI(20:4(5Z,8Z,11Z,14Z)-OH(18R)/22:3(10Z,13Z,16Z))

PI(20:4(5Z,8Z,11Z,14Z)-OH(18R)/22:3(10Z,13Z,16Z))

C52H87O14P (966.5833)


   

PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

C52H87O14P (966.5833)


   

PI(20:4(5Z,8Z,11Z,14Z)-OH(17)/22:3(10Z,13Z,16Z))

PI(20:4(5Z,8Z,11Z,14Z)-OH(17)/22:3(10Z,13Z,16Z))

C52H87O14P (966.5833)


   

PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C52H87O14P (966.5833)


   

PI(20:4(5Z,8Z,11Z,14Z)-OH(16R)/22:3(10Z,13Z,16Z))

PI(20:4(5Z,8Z,11Z,14Z)-OH(16R)/22:3(10Z,13Z,16Z))

C52H87O14P (966.5833)


   

PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

C52H87O14P (966.5833)


   

PI(20:4(5Z,8Z,11Z,13E)-OH(15S)/22:3(10Z,13Z,16Z))

PI(20:4(5Z,8Z,11Z,13E)-OH(15S)/22:3(10Z,13Z,16Z))

C52H87O14P (966.5833)


   

PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

PI(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

C52H87O14P (966.5833)


   

PI(20:4(5Z,8Z,10E,14Z)-OH(12S)/22:3(10Z,13Z,16Z))

PI(20:4(5Z,8Z,10E,14Z)-OH(12S)/22:3(10Z,13Z,16Z))

C52H87O14P (966.5833)


   

PI(22:3(10Z,13Z,16Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

PI(22:3(10Z,13Z,16Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

C52H87O14P (966.5833)


   

PI(20:4(5E,8Z,12Z,14Z)-OH(11R)/22:3(10Z,13Z,16Z))

PI(20:4(5E,8Z,12Z,14Z)-OH(11R)/22:3(10Z,13Z,16Z))

C52H87O14P (966.5833)


   

PI(22:3(10Z,13Z,16Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

PI(22:3(10Z,13Z,16Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

C52H87O14P (966.5833)


   

PI(20:4(5Z,7E,11Z,14Z)-OH(9)/22:3(10Z,13Z,16Z))

PI(20:4(5Z,7E,11Z,14Z)-OH(9)/22:3(10Z,13Z,16Z))

C52H87O14P (966.5833)


   

PI(20:2(11Z,14Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

PI(20:2(11Z,14Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C51H83O15P (966.5469)


   

PI(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/20:2(11Z,14Z))

PI(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/20:2(11Z,14Z))

C51H83O15P (966.5469)


   

PI(20:2(11Z,14Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

PI(20:2(11Z,14Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C51H83O15P (966.5469)


   

PI(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/20:2(11Z,14Z))

PI(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/20:2(11Z,14Z))

C51H83O15P (966.5469)


   

PI(22:4(10Z,13Z,16Z,19Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

PI(22:4(10Z,13Z,16Z,19Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

C51H83O15P (966.5469)


   

PI(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/22:4(10Z,13Z,16Z,19Z))

PI(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/22:4(10Z,13Z,16Z,19Z))

C51H83O15P (966.5469)


   

PI(22:4(10Z,13Z,16Z,19Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

PI(22:4(10Z,13Z,16Z,19Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

C51H83O15P (966.5469)


   

PI(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/22:4(10Z,13Z,16Z,19Z))

PI(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/22:4(10Z,13Z,16Z,19Z))

C51H83O15P (966.5469)


   

PI(22:4(10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

PI(22:4(10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

C51H83O15P (966.5469)


   

PI(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/22:4(10Z,13Z,16Z,19Z))

PI(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/22:4(10Z,13Z,16Z,19Z))

C51H83O15P (966.5469)


   

PI(22:4(7Z,10Z,13Z,16Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

PI(22:4(7Z,10Z,13Z,16Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

C51H83O15P (966.5469)


   

PI(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/22:4(7Z,10Z,13Z,16Z))

PI(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/22:4(7Z,10Z,13Z,16Z))

C51H83O15P (966.5469)


   

PI(22:4(7Z,10Z,13Z,16Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

PI(22:4(7Z,10Z,13Z,16Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

C51H83O15P (966.5469)


   

PI(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/22:4(7Z,10Z,13Z,16Z))

PI(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/22:4(7Z,10Z,13Z,16Z))

C51H83O15P (966.5469)


   

PI(22:4(7Z,10Z,13Z,16Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

PI(22:4(7Z,10Z,13Z,16Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

C51H83O15P (966.5469)


   

PI(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/22:4(7Z,10Z,13Z,16Z))

PI(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/22:4(7Z,10Z,13Z,16Z))

C51H83O15P (966.5469)


   

PI(22:5(4Z,7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

PI(22:5(4Z,7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

C51H83O15P (966.5469)


   

PI(20:3(8Z,11Z,14Z)-2OH(5,6)/22:5(4Z,7Z,10Z,13Z,16Z))

PI(20:3(8Z,11Z,14Z)-2OH(5,6)/22:5(4Z,7Z,10Z,13Z,16Z))

C51H83O15P (966.5469)


   

PI(22:5(7Z,10Z,13Z,16Z,19Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

PI(22:5(7Z,10Z,13Z,16Z,19Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

C51H83O15P (966.5469)


   

PI(20:3(8Z,11Z,14Z)-2OH(5,6)/22:5(7Z,10Z,13Z,16Z,19Z))

PI(20:3(8Z,11Z,14Z)-2OH(5,6)/22:5(7Z,10Z,13Z,16Z,19Z))

C51H83O15P (966.5469)


   

3-O-[(2E)-2-methylicos-2-enoyl]-2-O-palmitoyl-2-O-sulfo-alpha,alpha-trehalose

3-O-[(2E)-2-methylicos-2-enoyl]-2-O-palmitoyl-2-O-sulfo-alpha,alpha-trehalose

C49H90O16S (966.5949)


   

N(6)-[N(6)-(N(6)-{6-[(5-nitro-2-furoyl)amino]hexanoyl}lysyl)lysyl]lysyl-N(6)-[4-(indol-3-yl)butanoyl]lysinamide

N(6)-[N(6)-(N(6)-{6-[(5-nitro-2-furoyl)amino]hexanoyl}lysyl)lysyl]lysyl-N(6)-[4-(indol-3-yl)butanoyl]lysinamide

C47H74N12O10 (966.5651)


   

1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-1D-myo-inositol 4-phosphate

1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-1D-myo-inositol 4-phosphate

C47H84O16P2 (966.5234)


A 1-phosphatidyl-1D-myo-inositol 4-phosphate in which the phosphatidyl acyl groups at positions 1 and 2 are specified as stearoyl and arachidonoyl respectively.

   

1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-1D-myo-inositol 5-phosphate

1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-1D-myo-inositol 5-phosphate

C47H84O16P2 (966.5234)


A 1-phosphatidyl-1D-myo-inositol 5-phosphate in which the phosphatidyl acyl groups at positions 1 and 2 are specified as stearoyl and arachidonoyl respectively.

   
   
   
   
   

PI 20:2/22:6;O2

PI 20:2/22:6;O2

C51H83O15P (966.5469)


   

PI 20:3/22:5;O2

PI 20:3/22:5;O2

C51H83O15P (966.5469)


   

PI 22:2/20:6;O2

PI 22:2/20:6;O2

C51H83O15P (966.5469)


   

PI 22:4/20:4;O2

PI 22:4/20:4;O2

C51H83O15P (966.5469)


   

PI 22:5/20:3;O2

PI 22:5/20:3;O2

C51H83O15P (966.5469)


   
   
   
   
   
   

MBP MAPK Substrate

MBP MAPK Substrate

C39H70N18O11 (966.5471)


MBP MAPK Substrate is used as an exogenous substrate for MAPK[1].

   

3,5-dihydroxy-6-methyl-4-[(3-methylbutanoyl)oxy]oxan-2-yl 10-({4,5-dihydroxy-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-11-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

3,5-dihydroxy-6-methyl-4-[(3-methylbutanoyl)oxy]oxan-2-yl 10-({4,5-dihydroxy-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-11-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C51H82O17 (966.5552)


   

10-({3-[(4-{[4,5-bis(acetyloxy)-3-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl}oxy)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-({3-[(4-{[4,5-bis(acetyloxy)-3-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl}oxy)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C50H78O18 (966.5188)


   

(5r,8s,11r,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-hydroxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,19-trimethyl-2-methylidene-8-(2-methylpropyl)-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid

(5r,8s,11r,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-hydroxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,19-trimethyl-2-methylidene-8-(2-methylpropyl)-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid

C47H70N10O12 (966.5174)


   

(1r,3ar,3bs,7s,9ar,10s,11s,11as)-1-acetyl-10-(acetyloxy)-7-{[5-({5-[(3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-4-methoxy-6-methyloxan-2-yl}oxy)-4-methoxy-2,6-dimethyloxan-2-yl]oxy}-3a,3b-dihydroxy-9a,11a-dimethyl-1h,2h,3h,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-11-yl (2e)-2-methylbut-2-enoate

(1r,3ar,3bs,7s,9ar,10s,11s,11as)-1-acetyl-10-(acetyloxy)-7-{[5-({5-[(3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-4-methoxy-6-methyloxan-2-yl}oxy)-4-methoxy-2,6-dimethyloxan-2-yl]oxy}-3a,3b-dihydroxy-9a,11a-dimethyl-1h,2h,3h,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-11-yl (2e)-2-methylbut-2-enoate

C50H78O18 (966.5188)


   

10-({3-[(4-{[3,4-bis(acetyloxy)-5-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl}oxy)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-({3-[(4-{[3,4-bis(acetyloxy)-5-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl}oxy)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C50H78O18 (966.5188)


   

2,6-bis[(1s,13r,14s,17s,19s)-19-(acetyloxy)-10-hydroxy-13,14,18,18-tetramethyl-7-oxo-2-oxa-6-azapentacyclo[11.8.0.0¹,¹⁷.0³,¹¹.0⁴,⁸]henicosa-3(11),4(8),9-trien-6-yl]hexanoic acid

2,6-bis[(1s,13r,14s,17s,19s)-19-(acetyloxy)-10-hydroxy-13,14,18,18-tetramethyl-7-oxo-2-oxa-6-azapentacyclo[11.8.0.0¹,¹⁷.0³,¹¹.0⁴,⁸]henicosa-3(11),4(8),9-trien-6-yl]hexanoic acid

C56H74N2O12 (966.5241)


   

23-o-acetylhederagenin 3-o-(4-o-acetyl-β-d-xylopyranosyl)-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside

NA

C50H78O18 (966.5188)


{"Ingredient_id": "HBIN004140","Ingredient_name": "23-o-acetylhederagenin 3-o-(4-o-acetyl-\u03b2-d-xylopyranosyl)-(1\u21923)-\u03b1-l-rhamnopyranosyl-(1\u21922)-\u03b1-l-arabinopyranoside","Alias": "NA","Ingredient_formula": "C50H78O18","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "411","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

Akebiasaponin D_qt

Mukurozisaponin E_qt; Akebia saponin D_qt; Mukurozi-saponin G_qt; Mukurozisaponin Y_qt; mukurozisaponin G_qt

C50H78O18 (966.5188)


{"Ingredient_id": "HBIN015001","Ingredient_name": "Akebiasaponin D_qt","Alias": "Mukurozisaponin E_qt; Akebia saponin D_qt; Mukurozi-saponin G_qt; Mukurozisaponin Y_qt; mukurozisaponin G_qt","Ingredient_formula": "C50H78O18","Ingredient_Smile": "NA","Ingredient_weight": "967.14","OB_score": "16.44068847","CAS_id": "87733-79-7","SymMap_id": "SMIT05241","TCMID_id": "NA","TCMSP_id": "MOL003107","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-[(3-methylbutanoyl)oxy]oxan-2-yl (1r,3as,5ar,5br,7ar,9r,10r,11ar,11br,13ar,13br)-9-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-10-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylate

(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-[(3-methylbutanoyl)oxy]oxan-2-yl (1r,3as,5ar,5br,7ar,9r,10r,11ar,11br,13ar,13br)-9-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-10-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylate

C51H82O17 (966.5552)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5s)-4,5-bis(acetyloxy)-3-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5s)-4,5-bis(acetyloxy)-3-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C50H78O18 (966.5188)


   

(5r,8s,11r,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-2-ethylidene-3,6,9,13,16,20,25-heptahydroxy-18-[(1e,3e,5s,6s)-6-hydroxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-5,19-dimethyl-8-(2-methylpropyl)-1,4,7,10,14,17,21-heptaazacyclopentacosa-1(25),3,6,9,13,16,20-heptaene-11,22-dicarboxylic acid

(5r,8s,11r,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-2-ethylidene-3,6,9,13,16,20,25-heptahydroxy-18-[(1e,3e,5s,6s)-6-hydroxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-5,19-dimethyl-8-(2-methylpropyl)-1,4,7,10,14,17,21-heptaazacyclopentacosa-1(25),3,6,9,13,16,20-heptaene-11,22-dicarboxylic acid

C47H70N10O12 (966.5174)


   

(2z,8s,11r,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-2-ethylidene-3,6,9,13,16,20,25-heptahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-19-methyl-8-(2-methylpropyl)-1,4,7,10,14,17,21-heptaazacyclopentacosa-1(25),3,6,9,13,16,20-heptaene-11,22-dicarboxylic acid

(2z,8s,11r,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-2-ethylidene-3,6,9,13,16,20,25-heptahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-19-methyl-8-(2-methylpropyl)-1,4,7,10,14,17,21-heptaazacyclopentacosa-1(25),3,6,9,13,16,20-heptaene-11,22-dicarboxylic acid

C47H70N10O12 (966.5174)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4s,5r)-3,4-bis(acetyloxy)-5-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4s,5r)-3,4-bis(acetyloxy)-5-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C50H78O18 (966.5188)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14br)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5r)-4,5-bis(acetyloxy)-3-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14br)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5r)-4,5-bis(acetyloxy)-3-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C50H78O18 (966.5188)


   

2,6-bis[19-(acetyloxy)-10-hydroxy-13,14,18,18-tetramethyl-7-oxo-2-oxa-6-azapentacyclo[11.8.0.0¹,¹⁷.0³,¹¹.0⁴,⁸]henicosa-3(11),4(8),9-trien-6-yl]hexanoic acid

2,6-bis[19-(acetyloxy)-10-hydroxy-13,14,18,18-tetramethyl-7-oxo-2-oxa-6-azapentacyclo[11.8.0.0¹,¹⁷.0³,¹¹.0⁴,⁸]henicosa-3(11),4(8),9-trien-6-yl]hexanoic acid

C56H74N2O12 (966.5241)


   

(2z,5r,8s,11r,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-2-ethylidene-3,6,9,13,16,20,25-heptahydroxy-18-[(1e,3e,5s,6s)-6-hydroxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-5,19-dimethyl-8-(2-methylpropyl)-1,4,7,10,14,17,21-heptaazacyclopentacosa-1(25),3,6,9,13,16,20-heptaene-11,22-dicarboxylic acid

(2z,5r,8s,11r,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-2-ethylidene-3,6,9,13,16,20,25-heptahydroxy-18-[(1e,3e,5s,6s)-6-hydroxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-5,19-dimethyl-8-(2-methylpropyl)-1,4,7,10,14,17,21-heptaazacyclopentacosa-1(25),3,6,9,13,16,20-heptaene-11,22-dicarboxylic acid

C47H70N10O12 (966.5174)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14br)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5s)-4,5-bis(acetyloxy)-3-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14br)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5s)-4,5-bis(acetyloxy)-3-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C50H78O18 (966.5188)


   

3,5-dihydroxy-6-methyl-4-[(3-methylbutanoyl)oxy]oxan-2-yl 9-({4,5-dihydroxy-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-10-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylate

3,5-dihydroxy-6-methyl-4-[(3-methylbutanoyl)oxy]oxan-2-yl 9-({4,5-dihydroxy-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-10-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylate

C51H82O17 (966.5552)


   

10-({3-[(4-{[4-(acetyloxy)-5-[(acetyloxy)methyl]-3-hydroxyoxolan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl}oxy)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-({3-[(4-{[4-(acetyloxy)-5-[(acetyloxy)methyl]-3-hydroxyoxolan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl}oxy)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C50H78O18 (966.5188)


   

(3r,5r)-5-{[(3r,5r)-3-(acetyloxy)-5-{[(3r,5r)-3-hydroxy-5-{[(3r,5r)-5-hydroxy-3-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}decanoyl]oxy}decanoyl]oxy}decanoyl]oxy}-3-hydroxydecanoic acid

(3r,5r)-5-{[(3r,5r)-3-(acetyloxy)-5-{[(3r,5r)-3-hydroxy-5-{[(3r,5r)-5-hydroxy-3-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}decanoyl]oxy}decanoyl]oxy}decanoyl]oxy}-3-hydroxydecanoic acid

C48H86O19 (966.5763)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5r)-4,5-bis(acetyloxy)-3-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5r)-4,5-bis(acetyloxy)-3-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C50H78O18 (966.5188)


   

(4as,6as,6br,8ar,9r,10s,12ar,12bs,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5r)-4-(acetyloxy)-5-[(acetyloxy)methyl]-3-hydroxyoxolan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12bs,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5r)-4-(acetyloxy)-5-[(acetyloxy)methyl]-3-hydroxyoxolan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C50H78O18 (966.5188)


   

(5r,8s,11r,12s,15s,18s,19s,22r)-15-(4-carbamimidamidobutyl)-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,8,12,19-pentamethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid

(5r,8s,11r,12s,15s,18s,19s,22r)-15-(4-carbamimidamidobutyl)-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,8,12,19-pentamethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid

C47H70N10O12 (966.5174)


   

10-({3-[(4-{[5-(acetyloxy)-3,4-dihydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl}oxy)-9-[(acetyloxy)methyl]-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-({3-[(4-{[5-(acetyloxy)-3,4-dihydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl}oxy)-9-[(acetyloxy)methyl]-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C50H78O18 (966.5188)


   

(4as,6as,6br,8ar,9r,10s,12ar,12bs,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5s)-4,5-bis(acetyloxy)-3-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12bs,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5s)-4,5-bis(acetyloxy)-3-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C50H78O18 (966.5188)


   

(5r,8s,11r,15s,18s,19s,22r)-8-(4-carbamimidamidobutyl)-15-ethyl-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,19-trimethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid

(5r,8s,11r,15s,18s,19s,22r)-8-(4-carbamimidamidobutyl)-15-ethyl-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,19-trimethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid

C47H70N10O12 (966.5174)


   

10-({3-[(4-{[3,5-bis(acetyloxy)-4-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl}oxy)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-({3-[(4-{[3,5-bis(acetyloxy)-4-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl}oxy)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C50H78O18 (966.5188)


   

(8s,11r,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,19-dimethyl-2-methylidene-8-(2-methylpropyl)-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid

(8s,11r,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,19-dimethyl-2-methylidene-8-(2-methylpropyl)-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid

C47H70N10O12 (966.5174)


   

(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-[(3-methylbutanoyl)oxy]oxan-2-yl (4as,6as,6br,8ar,10r,11r,12ar,12br,14bs)-10-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-11-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-[(3-methylbutanoyl)oxy]oxan-2-yl (4as,6as,6br,8ar,10r,11r,12ar,12br,14bs)-10-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-11-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C51H82O17 (966.5552)


   

16'-[(5-{[3,4-dimethoxy-5-(methoxymethyl)oxolan-2-yl]oxy}-4-methoxy-6-(methoxymethyl)-3-[(3,4,5-trimethoxy-6-methyloxan-2-yl)oxy]oxan-2-yl)oxy]-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene

16'-[(5-{[3,4-dimethoxy-5-(methoxymethyl)oxolan-2-yl]oxy}-4-methoxy-6-(methoxymethyl)-3-[(3,4,5-trimethoxy-6-methyloxan-2-yl)oxy]oxan-2-yl)oxy]-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene

C52H86O16 (966.5916)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5r)-5-(acetyloxy)-3,4-dihydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-[(acetyloxy)methyl]-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5r)-5-(acetyloxy)-3,4-dihydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-[(acetyloxy)methyl]-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C50H78O18 (966.5188)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4s,5s)-3,5-bis(acetyloxy)-4-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4s,5s)-3,5-bis(acetyloxy)-4-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C50H78O18 (966.5188)


   

(5r,8s,11r,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-3,6,9,13,16,20,25-heptahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-5,19-dimethyl-2-methylidene-8-(2-methylpropyl)-1,4,7,10,14,17,21-heptaazacyclopentacosa-1(25),3,6,9,13,16,20-heptaene-11,22-dicarboxylic acid

(5r,8s,11r,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-3,6,9,13,16,20,25-heptahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-5,19-dimethyl-2-methylidene-8-(2-methylpropyl)-1,4,7,10,14,17,21-heptaazacyclopentacosa-1(25),3,6,9,13,16,20-heptaene-11,22-dicarboxylic acid

C47H70N10O12 (966.5174)


   

(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-16'-{[(2r,3r,4s,5r,6r)-5-{[(2s,3r,4r,5s)-3,4-dimethoxy-5-(methoxymethyl)oxolan-2-yl]oxy}-4-methoxy-6-(methoxymethyl)-3-{[(2s,3r,4r,5s,6s)-3,4,5-trimethoxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene

(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-16'-{[(2r,3r,4s,5r,6r)-5-{[(2s,3r,4r,5s)-3,4-dimethoxy-5-(methoxymethyl)oxolan-2-yl]oxy}-4-methoxy-6-(methoxymethyl)-3-{[(2s,3r,4r,5s,6s)-3,4,5-trimethoxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene

C52H86O16 (966.5916)


   

(4as,6as,6br,8ar,9r,10s,12ar,12bs,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5r)-4,5-bis(acetyloxy)-3-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12bs,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5r)-4,5-bis(acetyloxy)-3-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C50H78O18 (966.5188)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4s,5r)-3,5-bis(acetyloxy)-4-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4s,5r)-3,5-bis(acetyloxy)-4-hydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C50H78O18 (966.5188)


   

butyl (2s,3s,4s,5r,6r)-6-{[(1r,2s,4s,5s,8r,10s,14r,15r,18s,20r)-1,2,8,15,19,19-hexamethyl-5-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)hexacyclo[12.8.0.0²,¹¹.0⁴,⁸.0⁵,¹⁰.0¹⁵,²⁰]docos-11-en-18-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylate

butyl (2s,3s,4s,5r,6r)-6-{[(1r,2s,4s,5s,8r,10s,14r,15r,18s,20r)-1,2,8,15,19,19-hexamethyl-5-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)hexacyclo[12.8.0.0²,¹¹.0⁴,⁸.0⁵,¹⁰.0¹⁵,²⁰]docos-11-en-18-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylate

C50H78O18 (966.5188)


   

(5r,8s,11r,12s,15s,18s,19s,22r)-8-(3-carbamimidamidopropyl)-15-ethyl-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,12,19-tetramethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid

(5r,8s,11r,12s,15s,18s,19s,22r)-8-(3-carbamimidamidopropyl)-15-ethyl-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,12,19-tetramethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid

C47H70N10O12 (966.5174)


   

butyl 6-{[1,2,8,15,19,19-hexamethyl-5-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)hexacyclo[12.8.0.0²,¹¹.0⁴,⁸.0⁵,¹⁰.0¹⁵,²⁰]docos-11-en-18-yl]oxy}-3,4-dihydroxy-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxane-2-carboxylate

butyl 6-{[1,2,8,15,19,19-hexamethyl-5-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)hexacyclo[12.8.0.0²,¹¹.0⁴,⁸.0⁵,¹⁰.0¹⁵,²⁰]docos-11-en-18-yl]oxy}-3,4-dihydroxy-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxane-2-carboxylate

C50H78O18 (966.5188)