Exact Mass: 963.4986164000001

Exact Mass Matches: 963.4986164000001

Found 35 metabolites which its exact mass value is equals to given mass value 963.4986164000001, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

CDP-DG(18:2(9Z,11Z)/a-15:0)

{[(2R,3R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-2-[(12-methyltetradecanoyl)oxy]-3-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphoryl}oxy)phosphinic acid

C45H79N3O15P2 (963.4986164000001)


CDP-DG(18:2(9Z,11Z)/a-15:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(18:2(9Z,11Z)/a-15:0), in particular, consists of one chain of (9Z,11Z)-octadecadienoic acid at the C-1 position and one chain of anteisopentadecanoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).

   

CDP-DG(18:2(9Z,11Z)/i-15:0)

{[(2R,3R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({hydroxy[(2R)-2-[(13-methyltetradecanoyl)oxy]-3-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphoryl}oxy)phosphinate

C45H79N3O15P2 (963.4986164000001)


CDP-DG(18:2(9Z,11Z)/i-15:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(18:2(9Z,11Z)/i-15:0), in particular, consists of one chain of (9Z,11Z)-octadecadienoic acid at the C-1 position and one chain of isopentadecanoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).

   

CDP-DG(a-15:0/18:2(9Z,11Z))

{[(2R,3R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({hydroxy[(2R)-3-[(12-methyltetradecanoyl)oxy]-2-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphoryl}oxy)phosphinate

C45H79N3O15P2 (963.4986164000001)


CDP-DG(a-15:0/18:2(9Z,11Z)) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(a-15:0/18:2(9Z,11Z)), in particular, consists of one chain of anteisopentadecanoic acid at the C-1 position and one chain of (9Z,11Z)-octadecadienoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).

   

CDP-DG(i-15:0/18:2(9Z,11Z))

{[(2R,3R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-3-[(13-methyltetradecanoyl)oxy]-2-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphoryl}oxy)phosphinic acid

C45H79N3O15P2 (963.4986164000001)


CDP-DG(i-15:0/18:2(9Z,11Z)) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(i-15:0/18:2(9Z,11Z)), in particular, consists of one chain of isopentadecanoic acid at the C-1 position and one chain of (9Z,11Z)-octadecadienoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).

   

CDP-DG(i-12:0/20:3(6,8,11)-OH(5))

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-2-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)phosphinic acid

C44H75N3O16P2 (963.4622330000001)


CDP-DG(i-12:0/20:3(6,8,11)-OH(5)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(i-12:0/20:3(6,8,11)-OH(5)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(20:3(6,8,11)-OH(5)/i-12:0)

{[(2R,3S,4R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({hydroxy[(2R)-3-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)phosphinate

C44H75N3O16P2 (963.4622330000001)


CDP-DG(20:3(6,8,11)-OH(5)/i-12:0) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(20:3(6,8,11)-OH(5)/i-12:0), in particular, consists of one chain of one 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(i-14:0/18:2(10E,12Z)+=O(9))

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-3-[(12-methyltridecanoyl)oxy]-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphoryl}oxy)phosphinic acid

C44H75N3O16P2 (963.4622330000001)


CDP-DG(i-14:0/18:2(10E,12Z)+=O(9)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(i-14:0/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(18:2(10E,12Z)+=O(9)/i-14:0)

{[(2R,3S,4R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({hydroxy[(2R)-2-[(12-methyltridecanoyl)oxy]-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphoryl}oxy)phosphinate

C44H75N3O16P2 (963.4622330000001)


CDP-DG(18:2(10E,12Z)+=O(9)/i-14:0) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(18:2(10E,12Z)+=O(9)/i-14:0), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(i-14:0/18:2(9Z,11E)+=O(13))

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-3-[(12-methyltridecanoyl)oxy]-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphoryl}oxy)phosphinic acid

C44H75N3O16P2 (963.4622330000001)


CDP-DG(i-14:0/18:2(9Z,11E)+=O(13)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(i-14:0/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(18:2(9Z,11E)+=O(13)/i-14:0)

{[(2R,3S,4R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({hydroxy[(2R)-2-[(12-methyltridecanoyl)oxy]-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphoryl}oxy)phosphinate

C44H75N3O16P2 (963.4622330000001)


CDP-DG(18:2(9Z,11E)+=O(13)/i-14:0) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(18:2(9Z,11E)+=O(13)/i-14:0), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(i-14:0/18:3(10,12,15)-OH(9))

{[(2R,3S,4R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({hydroxy[(2R)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-3-[(12-methyltridecanoyl)oxy]propoxy]phosphoryl}oxy)phosphinate

C44H75N3O16P2 (963.4622330000001)


CDP-DG(i-14:0/18:3(10,12,15)-OH(9)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(i-14:0/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(18:3(10,12,15)-OH(9)/i-14:0)

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-2-[(12-methyltridecanoyl)oxy]propoxy]phosphoryl}oxy)phosphinic acid

C44H75N3O16P2 (963.4622330000001)


CDP-DG(18:3(10,12,15)-OH(9)/i-14:0) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(18:3(10,12,15)-OH(9)/i-14:0), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(i-14:0/18:3(9,11,15)-OH(13))

{[(2R,3S,4R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({hydroxy[(2R)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-3-[(12-methyltridecanoyl)oxy]propoxy]phosphoryl}oxy)phosphinate

C44H75N3O16P2 (963.4622330000001)


CDP-DG(i-14:0/18:3(9,11,15)-OH(13)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(i-14:0/18:3(9,11,15)-OH(13)), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(18:3(9,11,15)-OH(13)/i-14:0)

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-2-[(12-methyltridecanoyl)oxy]propoxy]phosphoryl}oxy)phosphinic acid

C44H75N3O16P2 (963.4622330000001)


CDP-DG(18:3(9,11,15)-OH(13)/i-14:0) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(18:3(9,11,15)-OH(13)/i-14:0), in particular, consists of one chain of one 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   
   

12beta-O-acetyl-20-O-nicotinoyltomentogenin 3-O-6-deoxy-3-O-methyl-beta-D-allopyranosyl-(1->4)-beta-D-oleandropyranosyl-(1->4)-beta-D-cymaropyranoside

12beta-O-acetyl-20-O-nicotinoyltomentogenin 3-O-6-deoxy-3-O-methyl-beta-D-allopyranosyl-(1->4)-beta-D-oleandropyranosyl-(1->4)-beta-D-cymaropyranoside

C50H77NO17 (963.5191232)


   

2,2-Bis[3,5-dibromo-4-(2,3-dibromo-2-methylpropoxy)phenyl]propane

2,2-Bis[3,5-dibromo-4-(2,3-dibromo-2-methylpropoxy)phenyl]propane

C23H24Br8O2 (963.5243083999999)


   

(19E,21E,23E,25E,27E,29E,31E)-17-[7-(4-aminophenyl)-5-hydroxy-4-methyl-7-oxoheptan-2-yl]-1,3,5,7,33,37-hexahydroxy-18-methyl-9,13,15-trioxo-16,39-dioxabicyclo[33.3.1]nonatriaconta-19,21,23,25,27,29,31-heptaene-36-carboxylic acid

(19E,21E,23E,25E,27E,29E,31E)-17-[7-(4-aminophenyl)-5-hydroxy-4-methyl-7-oxoheptan-2-yl]-1,3,5,7,33,37-hexahydroxy-18-methyl-9,13,15-trioxo-16,39-dioxabicyclo[33.3.1]nonatriaconta-19,21,23,25,27,29,31-heptaene-36-carboxylic acid

C53H73NO15 (963.4979947999999)


   
   
   
   
   
   
   
   
   
   
   

1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-1D-myo-inositol 4-phosphate(3-)

1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-1D-myo-inositol 4-phosphate(3-)

C47H81O16P2-3 (963.4999586)


   

1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-1D-myo-inositol 5-phosphate(3-)

1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-1D-myo-inositol 5-phosphate(3-)

C47H81O16P2-3 (963.4999586)


   
   

1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-1D-myo-inositol 4-phosphate(3-)

1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-1D-myo-inositol 4-phosphate(3-)

C47H81O16P2 (963.4999586)


A 1-phosphatidyl-1D-myo-inositol 4-phosphate(3-) obtained by deprotonation of the phosphate OH groups of 1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-1D-myo-inositol 4-phosphate; major species at pH 7.3.

   

1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-1D-myo-inositol 5-phosphate(3-)

1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-1D-myo-inositol 5-phosphate(3-)

C47H81O16P2 (963.4999586)


A 1-phosphatidyl-1D-myo-inositol 5-phosphate(3-) obtained by deprotonation of the phosphate OH groups of 1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-1D-myo-inositol 5-phosphate; major species at pH 7.3.

   

[Des-Arg9]-Bradykinin (acetate)

[Des-Arg9]-Bradykinin (acetate)

C46H65N11O12 (963.481393)


[Des-Arg9]-Bradykinin acetate is a Bradykinin B1 receptor agonist that displays selectivity for B1 over B2 receptors.

   

Carcinoembryonic antigen peptide 1

Carcinoembryonic antigen peptide 1

C43H69N11O14 (963.5025214)


Carcinoembryonic antigen peptide 1 (CAP1) is a tumor marker in lung cancer.