Exact Mass: 963.4367

Exact Mass Matches: 963.4367

Found 27 metabolites which its exact mass value is equals to given mass value 963.4367, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Lyciumin C

8-Benzyl-3,6,9,12-tetrahydroxy-2-{[1-hydroxy-2-({hydroxy[1-(5-hydroxy-3,4-dihydro-2H-pyrrole-2-carbonyl)pyrrolidin-2-yl]methylidene}amino)-3-(4-hydroxyphenyl)propylidene]amino}-11-(hydroxymethyl)-5-(propan-2-yl)-1,4,7,10,13-pentaazatricyclo[14.6.1.0¹⁷,²²]tricosa-3,6,9,12,16(23),17,19,21-octaene-14-carboxylate

C49H57N9O12 (963.4126)


Isolated from Lycium chinense (Chinese boxthorn). Lyciumin C is found in tea, coffee and coffee products, and herbs and spices. Lyciumin C is found in coffee and coffee products. Lyciumin C is isolated from Lycium chinense (Chinese boxthorn).

   

CDP-DG(i-12:0/20:3(6,8,11)-OH(5))

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-2-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)phosphinic acid

C44H75N3O16P2 (963.4622)


CDP-DG(i-12:0/20:3(6,8,11)-OH(5)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(i-12:0/20:3(6,8,11)-OH(5)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(20:3(6,8,11)-OH(5)/i-12:0)

{[(2R,3S,4R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({hydroxy[(2R)-3-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)phosphinate

C44H75N3O16P2 (963.4622)


CDP-DG(20:3(6,8,11)-OH(5)/i-12:0) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(20:3(6,8,11)-OH(5)/i-12:0), in particular, consists of one chain of one 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(i-14:0/18:2(10E,12Z)+=O(9))

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-3-[(12-methyltridecanoyl)oxy]-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphoryl}oxy)phosphinic acid

C44H75N3O16P2 (963.4622)


CDP-DG(i-14:0/18:2(10E,12Z)+=O(9)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(i-14:0/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(18:2(10E,12Z)+=O(9)/i-14:0)

{[(2R,3S,4R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({hydroxy[(2R)-2-[(12-methyltridecanoyl)oxy]-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphoryl}oxy)phosphinate

C44H75N3O16P2 (963.4622)


CDP-DG(18:2(10E,12Z)+=O(9)/i-14:0) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(18:2(10E,12Z)+=O(9)/i-14:0), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(i-14:0/18:2(9Z,11E)+=O(13))

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-3-[(12-methyltridecanoyl)oxy]-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphoryl}oxy)phosphinic acid

C44H75N3O16P2 (963.4622)


CDP-DG(i-14:0/18:2(9Z,11E)+=O(13)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(i-14:0/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(18:2(9Z,11E)+=O(13)/i-14:0)

{[(2R,3S,4R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({hydroxy[(2R)-2-[(12-methyltridecanoyl)oxy]-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphoryl}oxy)phosphinate

C44H75N3O16P2 (963.4622)


CDP-DG(18:2(9Z,11E)+=O(13)/i-14:0) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(18:2(9Z,11E)+=O(13)/i-14:0), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(i-14:0/18:3(10,12,15)-OH(9))

{[(2R,3S,4R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({hydroxy[(2R)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-3-[(12-methyltridecanoyl)oxy]propoxy]phosphoryl}oxy)phosphinate

C44H75N3O16P2 (963.4622)


CDP-DG(i-14:0/18:3(10,12,15)-OH(9)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(i-14:0/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(18:3(10,12,15)-OH(9)/i-14:0)

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-2-[(12-methyltridecanoyl)oxy]propoxy]phosphoryl}oxy)phosphinic acid

C44H75N3O16P2 (963.4622)


CDP-DG(18:3(10,12,15)-OH(9)/i-14:0) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(18:3(10,12,15)-OH(9)/i-14:0), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(i-14:0/18:3(9,11,15)-OH(13))

{[(2R,3S,4R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({hydroxy[(2R)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-3-[(12-methyltridecanoyl)oxy]propoxy]phosphoryl}oxy)phosphinate

C44H75N3O16P2 (963.4622)


CDP-DG(i-14:0/18:3(9,11,15)-OH(13)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(i-14:0/18:3(9,11,15)-OH(13)), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(18:3(9,11,15)-OH(13)/i-14:0)

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-2-[(12-methyltridecanoyl)oxy]propoxy]phosphoryl}oxy)phosphinic acid

C44H75N3O16P2 (963.4622)


CDP-DG(18:3(9,11,15)-OH(13)/i-14:0) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(18:3(9,11,15)-OH(13)/i-14:0), in particular, consists of one chain of one 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   
   

Lyciumin C

8-benzyl-11-(hydroxymethyl)-2-[3-(4-hydroxyphenyl)-2-({1-[(5-oxopyrrolidin-2-yl)carbonyl]pyrrolidin-2-yl}formamido)propanamido]-3,6,9,12-tetraoxo-5-(propan-2-yl)-1,4,7,10,13-pentaazatricyclo[14.6.1.0^{17,22}]tricosa-16(23),17,19,21-tetraene-14-carboxylic acid

C49H57N9O12 (963.4126)


   

(2R,3R,4R,5R)-5-(4-BENZAMIDO-2-OXOPYRIMIDIN-1(2H)-YL)-2-((BIS(4-METHOXYPHENYL)(PHENYL)METHOXY)METHYL)-4-((TERT-BUTYLDIMETHYLSILYL)OXY)TETRAHYDROFURAN-3-YL (2-CYANOETHYL) DIISOPROPYLPHOSPHORAMIDITE

(2R,3R,4R,5R)-5-(4-BENZAMIDO-2-OXOPYRIMIDIN-1(2H)-YL)-2-((BIS(4-METHOXYPHENYL)(PHENYL)METHOXY)METHYL)-4-((TERT-BUTYLDIMETHYLSILYL)OXY)TETRAHYDROFURAN-3-YL (2-CYANOETHYL) DIISOPROPYLPHOSPHORAMIDITE

C52H66N5O9PSi (963.4367)


   

CDP-DG(i-12:0/20:3(6,8,11)-OH(5))

CDP-DG(i-12:0/20:3(6,8,11)-OH(5))

C44H75N3O16P2 (963.4622)


   

CDP-DG(20:3(6,8,11)-OH(5)/i-12:0)

CDP-DG(20:3(6,8,11)-OH(5)/i-12:0)

C44H75N3O16P2 (963.4622)


   

CDP-DG(i-14:0/18:2(10E,12Z)+=O(9))

CDP-DG(i-14:0/18:2(10E,12Z)+=O(9))

C44H75N3O16P2 (963.4622)


   

CDP-DG(18:2(10E,12Z)+=O(9)/i-14:0)

CDP-DG(18:2(10E,12Z)+=O(9)/i-14:0)

C44H75N3O16P2 (963.4622)


   

CDP-DG(i-14:0/18:2(9Z,11E)+=O(13))

CDP-DG(i-14:0/18:2(9Z,11E)+=O(13))

C44H75N3O16P2 (963.4622)


   

CDP-DG(18:2(9Z,11E)+=O(13)/i-14:0)

CDP-DG(18:2(9Z,11E)+=O(13)/i-14:0)

C44H75N3O16P2 (963.4622)


   

CDP-DG(i-14:0/18:3(10,12,15)-OH(9))

CDP-DG(i-14:0/18:3(10,12,15)-OH(9))

C44H75N3O16P2 (963.4622)


   

CDP-DG(18:3(10,12,15)-OH(9)/i-14:0)

CDP-DG(18:3(10,12,15)-OH(9)/i-14:0)

C44H75N3O16P2 (963.4622)


   

CDP-DG(i-14:0/18:3(9,11,15)-OH(13))

CDP-DG(i-14:0/18:3(9,11,15)-OH(13))

C44H75N3O16P2 (963.4622)


   

CDP-DG(18:3(9,11,15)-OH(13)/i-14:0)

CDP-DG(18:3(9,11,15)-OH(13)/i-14:0)

C44H75N3O16P2 (963.4622)


   

[Des-Arg9]-Bradykinin (acetate)

[Des-Arg9]-Bradykinin (acetate)

C46H65N11O12 (963.4814)


[Des-Arg9]-Bradykinin acetate is a Bradykinin B1 receptor agonist that displays selectivity for B1 over B2 receptors.

   

CMD178 (TFA)

CMD178 (TFA)

C48H60F3N9O9 (963.4466)


CMD178 TFA is a lead peptide that consistently reduced the expression of Foxp3 and STAT5 induced by IL-2/s IL-2Rα signaling and inhibits Treg cell development[1].

   

HAEGTFTSD

HAEGTFTSD

C40H57N11O17 (963.3934)


HAEGTFTSD is a 9-residue peptide of human GLP-1 peptide or GLP-1(7-36), amide (HY-P0054A). GLP-1(7-36), amide is a physiological incretin hormone that stimulates insulin secretionin a glucose-dependant manner[1]