Exact Mass: 963.3179292
Exact Mass Matches: 963.3179292
Found 46 metabolites which its exact mass value is equals to given mass value 963.3179292
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Tridecanoyl-CoA
C34H60N7O17P3S (963.2979100000001)
Tridecanoyl-CoA is an acyl-CoA with C-13 fatty acid group as the acyl moiety. Acyl-CoA (or formyl-CoA) is a coenzyme involved in the metabolism of fatty acids. It is a temporary compound formed when coenzyme A (CoA) attaches to the end of a long-chain fatty acid inside living cells. The compound undergoes beta oxidation, forming one or more molecules of acetyl-CoA. This, in turn, enters the citric acid cycle, eventually forming several molecules of ATP. Tridecanoyl-CoA is involved in Phytanic acid peroxisomal oxidation pathway as an intermediate reduction product. Tridecanoyl-CoA is an acyl-CoA with C-13 fatty acid group as the acyl moiety.
Anteisotridecanoyl-CoA
C34H60N7O17P3S (963.2979100000001)
A methyl-branched fatty acyl-CoA obtained from the formal condensation of the thiol group of coenzyme A with the carboxy group of anteisotridecanoic acid.
Isotridecanoyl-CoA
C34H60N7O17P3S (963.2979100000001)
A methyl-branched fatty acyl-CoA obtained from the formal condensation of the thiol group of coenzyme A with the carboxy group of isotridecanoic acid (ChEBI: 71437).
5-Methyldodecanoyl-CoA
C34H60N7O17P3S (963.2979100000001)
5-methyldodecanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 5-methyldodecanoic acid thioester of coenzyme A. 5-methyldodecanoyl-coa is an acyl-CoA with 12 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 5-methyldodecanoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 5-methyldodecanoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 5-Methyldodecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 5-Methyldodecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 5-Methyldodecanoyl-CoA into 5-Methyldodecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 5-Methyldodecanoylcarnitine is converted back to 5-Methyldodecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 5-Methyldodecanoyl-CoA occurs in four steps. First, since 5-Methyldodecanoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 5-Methyldodecanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol grou...
6-Methyldodecanoyl-CoA
C34H60N7O17P3S (963.2979100000001)
6-methyldodecanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 6-methyldodecanoic acid thioester of coenzyme A. 6-methyldodecanoyl-coa is an acyl-CoA with 12 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 6-methyldodecanoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 6-methyldodecanoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 6-Methyldodecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 6-Methyldodecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 6-Methyldodecanoyl-CoA into 6-Methyldodecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 6-Methyldodecanoylcarnitine is converted back to 6-Methyldodecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 6-Methyldodecanoyl-CoA occurs in four steps. First, since 6-Methyldodecanoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 6-Methyldodecanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol grou...
3-Methyldodecanoyl-CoA
C34H60N7O17P3S (963.2979100000001)
3-methyldodecanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 3-methyldodecanoic acid thioester of coenzyme A. 3-methyldodecanoyl-coa is an acyl-CoA with 12 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 3-methyldodecanoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 3-methyldodecanoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 3-Methyldodecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 3-Methyldodecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 3-Methyldodecanoyl-CoA into 3-Methyldodecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 3-Methyldodecanoylcarnitine is converted back to 3-Methyldodecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 3-Methyldodecanoyl-CoA occurs in four steps. First, since 3-Methyldodecanoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 3-Methyldodecanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol grou...
7-Methyldodecanoyl-CoA
C34H60N7O17P3S (963.2979100000001)
7-methyldodecanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 7-methyldodecanoic acid thioester of coenzyme A. 7-methyldodecanoyl-coa is an acyl-CoA with 12 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 7-methyldodecanoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 7-methyldodecanoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 7-Methyldodecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 7-Methyldodecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 7-Methyldodecanoyl-CoA into 7-Methyldodecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 7-Methyldodecanoylcarnitine is converted back to 7-Methyldodecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 7-Methyldodecanoyl-CoA occurs in four steps. First, since 7-Methyldodecanoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 7-Methyldodecanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol grou...
11-Methyldodecanoyl-CoA
C34H60N7O17P3S (963.2979100000001)
11-methyldodecanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is an 11-methyldodecanoic acid thioester of coenzyme A. 11-methyldodecanoyl-coa is an acyl-CoA with 12 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 11-methyldodecanoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 11-methyldodecanoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 11-Methyldodecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 11-Methyldodecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 11-Methyldodecanoyl-CoA into 11-Methyldodecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 11-Methyldodecanoylcarnitine is converted back to 11-Methyldodecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 11-Methyldodecanoyl-CoA occurs in four steps. First, since 11-Methyldodecanoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 11-Methyldodecanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes t...
8-Methyldodecanoyl-CoA
C34H60N7O17P3S (963.2979100000001)
8-methyldodecanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is an 8-methyldodecanoic acid thioester of coenzyme A. 8-methyldodecanoyl-coa is an acyl-CoA with 12 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 8-methyldodecanoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 8-methyldodecanoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 8-Methyldodecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 8-Methyldodecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 8-Methyldodecanoyl-CoA into 8-Methyldodecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 8-Methyldodecanoylcarnitine is converted back to 8-Methyldodecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 8-Methyldodecanoyl-CoA occurs in four steps. First, since 8-Methyldodecanoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 8-Methyldodecanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol gro...
4-Methyldodecanoyl-CoA
C34H60N7O17P3S (963.2979100000001)
4-methyldodecanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 4-methyldodecanoic acid thioester of coenzyme A. 4-methyldodecanoyl-coa is an acyl-CoA with 12 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 4-methyldodecanoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 4-methyldodecanoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 4-Methyldodecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 4-Methyldodecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 4-Methyldodecanoyl-CoA into 4-Methyldodecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 4-Methyldodecanoylcarnitine is converted back to 4-Methyldodecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 4-Methyldodecanoyl-CoA occurs in four steps. First, since 4-Methyldodecanoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 4-Methyldodecanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol grou...
10-Methyldodecanoyl-CoA
C34H60N7O17P3S (963.2979100000001)
10-methyldodecanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 10-methyldodecanoic acid thioester of coenzyme A. 10-methyldodecanoyl-coa is an acyl-CoA with 12 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 10-methyldodecanoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 10-methyldodecanoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 10-Methyldodecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 10-Methyldodecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 10-Methyldodecanoyl-CoA into 10-Methyldodecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 10-Methyldodecanoylcarnitine is converted back to 10-Methyldodecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 10-Methyldodecanoyl-CoA occurs in four steps. First, since 10-Methyldodecanoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 10-Methyldodecanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes th...
9-methyldodecanoyl-CoA
C34H60N7O17P3S (963.2979100000001)
9-methyldodecanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 9-methyldodecanoic acid thioester of coenzyme A. 9-methyldodecanoyl-coa is an acyl-CoA with 12 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 9-methyldodecanoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 9-methyldodecanoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 9-methyldodecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 9-methyldodecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 9-methyldodecanoyl-CoA into 9-methyldodecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 9-methyldodecanoylcarnitine is converted back to 9-methyldodecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 9-methyldodecanoyl-CoA occurs in four steps. First, since 9-methyldodecanoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 9-methyldodecanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol grou...
Peonidin 3-feruloyl-diglucoside 5-glucoside
Peonidin 3-feruloyl-diglucoside 5-glucoside is a member of the class of compounds known as anthocyanidin 3-o-6-p-coumaroyl glycosides. Anthocyanidin 3-o-6-p-coumaroyl glycosides are anthocyanidin 3-O-glycosides where the carbohydrate moiety is esterified at the C6 position with a p-coumaric acid. P-coumaric acid is an organic derivative of cinnamic acid, that carries a hydroxyl group at the 4-position of the benzene ring. Peonidin 3-feruloyl-diglucoside 5-glucoside is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Peonidin 3-feruloyl-diglucoside 5-glucoside can be found in sweet potato, which makes peonidin 3-feruloyl-diglucoside 5-glucoside a potential biomarker for the consumption of this food product.
Petunidin 3-O-[6-O-(4-O-(4-O-(beta-D-glucopyranosyl)-feruloyl)-alpha-L-rhamnopyranosyl)-beta-D-glucopyranoside]- 5-O-[beta-D-glucopyranoside]
Petunidin 3-o-[6-o-(4-o-(4-o-(beta-d-glucopyranosyl)-feruloyl)-alpha-l-rhamnopyranosyl)-beta-d-glucopyranoside]- 5-o-[beta-d-glucopyranoside] is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Petunidin 3-o-[6-o-(4-o-(4-o-(beta-d-glucopyranosyl)-feruloyl)-alpha-l-rhamnopyranosyl)-beta-d-glucopyranoside]- 5-o-[beta-d-glucopyranoside] can be found in potato, which makes petunidin 3-o-[6-o-(4-o-(4-o-(beta-d-glucopyranosyl)-feruloyl)-alpha-l-rhamnopyranosyl)-beta-d-glucopyranoside]- 5-o-[beta-d-glucopyranoside] a potential biomarker for the consumption of this food product.
Malvidin 3-caffeylrutinoside-5-glucoside
Petunidin 3-O-[6-O-(4-O-(4-O-(beta-D-glucopyranosyl)-feruloyl)-alpha-L-rhamnopyranosyl)-beta-D-glucopyranoside]- 5-O-[beta-D-glucopyranoside]
CoA 13:0
C34H60N7O17P3S (963.2979100000001)
3-Mercaptopropionyl-Tyr-D-Trp-Lys-Val-Cys-p-chloro-D-Phe-NH2, (Disulfide bond between Deamino-Cys1 and Cys6)
S-[2-[3-[[4-[[[5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 11-methyldodecanethioate
C34H60N7O17P3S (963.2979100000001)
[(2R,3R,4S,5R,6R)-6-[[(2R,3S,4S,5R,6S)-6-[2-(3,4-dihydroxy-5-methoxyphenyl)-7-hydroxy-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromenylium-3-yl]oxy-3,4,5-trihydroxyoxan-2-yl]methoxy]-4,5-dihydroxy-2-methyloxan-3-yl] (E)-3-(3-hydroxy-4-methoxyphenyl)prop-2-enoate
N-acetyl-alpha-neuraminosyl-(2->3)-beta-D-galactosyl-(1->3)-[N-acetyl-alpha-neuraminosyl-(2->6)]-N-acetyl-D-galactosamine
(2S,4S,5R,6R)-5-acetamido-6-[(1S,2R)-2-[(2S,4S,5R,6R)-5-acetamido-2-carboxylato-4-hydroxy-6-[(1R,2R)-1,2,3-trihydroxypropyl]oxan-2-yl]oxy-1,3-dihydroxypropyl]-2-[(2R,3R,4R,5R,6S)-6-[(2R,3S,4R,5R)-5-acetamido-4,6-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy-4-hydroxyoxane-2-carboxylate
isotridecanoyl-CoA
C34H60N7O17P3S (963.2979100000001)
A methyl-branched fatty acyl-CoA obtained from the formal condensation of the thiol group of coenzyme A with the carboxy group of isotridecanoic acid
Tridecanoyl-CoA
C34H60N7O17P3S (963.2979100000001)
A long-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of tridecanoic acid.