Exact Mass: 959.5969749999999

Exact Mass Matches: 959.5969749999999

Found 51 metabolites which its exact mass value is equals to given mass value 959.5969749999999, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PG(20:1(11Z)/LTE4)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-{[(2R)-1-({[(2S)-2,3-dihydroxypropoxy](hydroxy)phosphoryl}oxy)-3-[(11Z)-icos-11-enoyloxy]propan-2-yl]oxy}-3-oxopropyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C49H86NO13PS (959.5557196)


PG(20:1(11Z)/LTE4) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:1(11Z)/LTE4), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of Leukotriene E4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(LTE4/20:1(11Z))

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-[(2R)-3-({[(2S)-2,3-dihydroxypropoxy](hydroxy)phosphoryl}oxy)-2-[(11Z)-icos-11-enoyloxy]propoxy]-3-oxopropyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C49H86NO13PS (959.5557196)


PG(LTE4/20:1(11Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(LTE4/20:1(11Z)), in particular, consists of one chain of one Leukotriene E4 at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PC(DiMe(13,5)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

(2-{[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C54H90NO11P (959.6251159999999)


PC(DiMe(13,5)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(13,5)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/DiMe(13,5))

(2-{[(2R)-3-{[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-2-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C54H90NO11P (959.6251159999999)


PC(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/DiMe(13,5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/DiMe(13,5)), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(13,5)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

(2-{[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C54H90NO11P (959.6251159999999)


PC(DiMe(13,5)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(13,5)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/DiMe(13,5))

(2-{[(2R)-3-{[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-2-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C54H90NO11P (959.6251159999999)


PC(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/DiMe(13,5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/DiMe(13,5)), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   
   

MIPC(d18:0/16:0(2OH))

N-(2-hydroxyhexadecanoyl)-sphinganine-1-O-[D-mannopyranosyl-alpha1-2-myo-inositol-1-phosphate]

C46H90NO17P (959.5946059999999)


   

MIPC(t18:0/16:0)

N-(hexadecanoyl)-4R-hydroxysphinganine-1-O-[D-mannopyranosyl-alpha1-2-myo-inositol-1-phosphate]

C46H90NO17P (959.5946059999999)


   

MIPC 34:0;O3

N-(hexadecanoyl)-4R-hydroxysphinganine-1-O-[D-mannopyranosyl-alpha1-2-myo-inositol-1-phosphate]

C46H90NO17P (959.5946059999999)


   
   
   

PC(DiMe(13,5)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

PC(DiMe(13,5)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C54H90NO11P (959.6251159999999)


   

PC(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/DiMe(13,5))

PC(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/DiMe(13,5))

C54H90NO11P (959.6251159999999)


   

PC(DiMe(13,5)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

PC(DiMe(13,5)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C54H90NO11P (959.6251159999999)


   

PC(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/DiMe(13,5))

PC(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/DiMe(13,5))

C54H90NO11P (959.6251159999999)


   
   
   

[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C58H90NO8P (959.640371)


   

[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C58H90NO8P (959.640371)


   

[2-[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C58H90NO8P (959.640371)


   

[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C58H90NO8P (959.640371)


   

[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-7,10,13,16,19,22,25,28,31-nonaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-7,10,13,16,19,22,25,28,31-nonaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C58H90NO8P (959.640371)


   

[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C58H90NO8P (959.640371)


   

(11Z,14Z,17Z,20Z,23Z,26Z,29Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydec-4-en-2-yl]dotriaconta-11,14,17,20,23,26,29-heptaenamide

(11Z,14Z,17Z,20Z,23Z,26Z,29Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydec-4-en-2-yl]dotriaconta-11,14,17,20,23,26,29-heptaenamide

C54H89NO13 (959.6333584)


   

(13Z,16Z,19Z,22Z,25Z,28Z,31Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]tetratriaconta-13,16,19,22,25,28,31-heptaenamide

(13Z,16Z,19Z,22Z,25Z,28Z,31Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]tetratriaconta-13,16,19,22,25,28,31-heptaenamide

C54H89NO13 (959.6333584)


   

(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodecan-2-yl]triaconta-6,9,12,15,18,21,24,27-octaenamide

(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodecan-2-yl]triaconta-6,9,12,15,18,21,24,27-octaenamide

C54H89NO13 (959.6333584)


   

(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradec-4-en-2-yl]octacosa-7,10,13,16,19,22,25-heptaenamide

(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradec-4-en-2-yl]octacosa-7,10,13,16,19,22,25-heptaenamide

C54H89NO13 (959.6333584)


   

(11Z,14Z,17Z,20Z,23Z)-N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhexadeca-4,8,12-trien-2-yl]hexacosa-11,14,17,20,23-pentaenamide

(11Z,14Z,17Z,20Z,23Z)-N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhexadeca-4,8,12-trien-2-yl]hexacosa-11,14,17,20,23-pentaenamide

C54H89NO13 (959.6333584)


   

(7Z,10Z,13Z,16Z,19Z)-N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyicosa-4,8,12-trien-2-yl]docosa-7,10,13,16,19-pentaenamide

(7Z,10Z,13Z,16Z,19Z)-N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyicosa-4,8,12-trien-2-yl]docosa-7,10,13,16,19-pentaenamide

C54H89NO13 (959.6333584)


   

(3Z,6Z,9Z,12Z,15Z)-N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetracosa-4,8,12-trien-2-yl]octadeca-3,6,9,12,15-pentaenamide

(3Z,6Z,9Z,12Z,15Z)-N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetracosa-4,8,12-trien-2-yl]octadeca-3,6,9,12,15-pentaenamide

C54H89NO13 (959.6333584)


   

(8Z,11Z,14Z,17Z,20Z,23Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhexadeca-4,8-dien-2-yl]hexacosa-8,11,14,17,20,23-hexaenamide

(8Z,11Z,14Z,17Z,20Z,23Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhexadeca-4,8-dien-2-yl]hexacosa-8,11,14,17,20,23-hexaenamide

C54H89NO13 (959.6333584)


   

(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhexadec-4-en-2-yl]hexacosa-5,8,11,14,17,20,23-heptaenamide

(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhexadec-4-en-2-yl]hexacosa-5,8,11,14,17,20,23-heptaenamide

C54H89NO13 (959.6333584)


   

(12Z,15Z,18Z,21Z,24Z,27Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodeca-4,8-dien-2-yl]triaconta-12,15,18,21,24,27-hexaenamide

(12Z,15Z,18Z,21Z,24Z,27Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodeca-4,8-dien-2-yl]triaconta-12,15,18,21,24,27-hexaenamide

C54H89NO13 (959.6333584)


   

(6Z,9Z,12Z,15Z,18Z,21Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctadeca-4,8-dien-2-yl]tetracosa-6,9,12,15,18,21-hexaenamide

(6Z,9Z,12Z,15Z,18Z,21Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctadeca-4,8-dien-2-yl]tetracosa-6,9,12,15,18,21-hexaenamide

C54H89NO13 (959.6333584)


   

(9Z,12Z,15Z,18Z,21Z,24Z,27Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodec-4-en-2-yl]triaconta-9,12,15,18,21,24,27-heptaenamide

(9Z,12Z,15Z,18Z,21Z,24Z,27Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodec-4-en-2-yl]triaconta-9,12,15,18,21,24,27-heptaenamide

C54H89NO13 (959.6333584)


   

(10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctan-2-yl]tetratriaconta-10,13,16,19,22,25,28,31-octaenamide

(10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctan-2-yl]tetratriaconta-10,13,16,19,22,25,28,31-octaenamide

C54H89NO13 (959.6333584)


   

(5Z,8Z,11Z,14Z,17Z)-N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydocosa-4,8,12-trien-2-yl]icosa-5,8,11,14,17-pentaenamide

(5Z,8Z,11Z,14Z,17Z)-N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydocosa-4,8,12-trien-2-yl]icosa-5,8,11,14,17-pentaenamide

C54H89NO13 (959.6333584)


   

(9Z,12Z,15Z,18Z,21Z)-N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctadeca-4,8,12-trien-2-yl]tetracosa-9,12,15,18,21-pentaenamide

(9Z,12Z,15Z,18Z,21Z)-N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctadeca-4,8,12-trien-2-yl]tetracosa-9,12,15,18,21-pentaenamide

C54H89NO13 (959.6333584)


   

(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydecan-2-yl]dotriaconta-8,11,14,17,20,23,26,29-octaenamide

(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydecan-2-yl]dotriaconta-8,11,14,17,20,23,26,29-octaenamide

C54H89NO13 (959.6333584)


   

(10Z,13Z,16Z,19Z,22Z,25Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradeca-4,8-dien-2-yl]octacosa-10,13,16,19,22,25-hexaenamide

(10Z,13Z,16Z,19Z,22Z,25Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradeca-4,8-dien-2-yl]octacosa-10,13,16,19,22,25-hexaenamide

C54H89NO13 (959.6333584)


   

(4Z,7Z,10Z,13Z,16Z,19Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyicosa-4,8-dien-2-yl]docosa-4,7,10,13,16,19-hexaenamide

(4Z,7Z,10Z,13Z,16Z,19Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyicosa-4,8-dien-2-yl]docosa-4,7,10,13,16,19-hexaenamide

C54H89NO13 (959.6333584)


   

(13Z,16Z,19Z,22Z,25Z)-N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradeca-4,8,12-trien-2-yl]octacosa-13,16,19,22,25-pentaenamide

(13Z,16Z,19Z,22Z,25Z)-N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradeca-4,8,12-trien-2-yl]octacosa-13,16,19,22,25-pentaenamide

C54H89NO13 (959.6333584)


   
   
   
   
   

BiotinylPE(35:0)

BiotinylPE(17:0_18:0)

C50H94N3O10PS (959.6397194)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

n-[(1s)-1-{[(1s)-1-{[(2s,3s)-1,3-dihydroxy-4-{[(1s)-1-{[(3s,6s,11r)-8-hydroxy-3-[(4-hydroxyphenyl)methyl]-6-isopropyl-4-methyl-2,5-dioxo-1-oxa-4,7-diazacyclododeca-7,9-dien-11-yl]-c-hydroxycarbonimidoyl}-2-methylpropyl]-c-hydroxycarbonimidoyl}butan-2-yl]-c-hydroxycarbonimidoyl}-2-methylpropyl]-c-hydroxycarbonimidoyl}-2-hydroxyethyl]decanimidic acid

n-[(1s)-1-{[(1s)-1-{[(2s,3s)-1,3-dihydroxy-4-{[(1s)-1-{[(3s,6s,11r)-8-hydroxy-3-[(4-hydroxyphenyl)methyl]-6-isopropyl-4-methyl-2,5-dioxo-1-oxa-4,7-diazacyclododeca-7,9-dien-11-yl]-c-hydroxycarbonimidoyl}-2-methylpropyl]-c-hydroxycarbonimidoyl}butan-2-yl]-c-hydroxycarbonimidoyl}-2-methylpropyl]-c-hydroxycarbonimidoyl}-2-hydroxyethyl]decanimidic acid

C48H77N7O13 (959.5579072)


   

n-[(1e)-11-[(5e,7e,13e,19e,25s,29s)-15,29-dihydroxy-3,17,21,23-tetramethoxy-5,12,18,24-tetramethyl-9,27-dioxo-10,26-dioxabicyclo[23.3.1]nonacosa-1(28),5,7,13,19-pentaen-11-yl]-4,10-dimethoxy-5,9-dimethyl-6-oxododec-1-en-1-yl]-n-methylformamide

n-[(1e)-11-[(5e,7e,13e,19e,25s,29s)-15,29-dihydroxy-3,17,21,23-tetramethoxy-5,12,18,24-tetramethyl-9,27-dioxo-10,26-dioxabicyclo[23.3.1]nonacosa-1(28),5,7,13,19-pentaen-11-yl]-4,10-dimethoxy-5,9-dimethyl-6-oxododec-1-en-1-yl]-n-methylformamide

C53H85NO14 (959.5969749999999)