Exact Mass: 954.4824

Exact Mass Matches: 954.4824

Found 159 metabolites which its exact mass value is equals to given mass value 954.4824, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

Chiisanoside

6-({[3,4-dihydroxy-6-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl 16-hydroxy-1,2,17-trimethyl-14-oxo-8,18-bis(prop-1-en-2-yl)-13-oxapentacyclo[10.8.1.0²,¹⁰.0⁵,⁹.0¹⁷,²¹]henicosane-5-carboxylic acid

C48H74O19 (954.4824)


   

PIP(16:0/20:3(5Z,8Z,11Z)-O(14R,15S))

{[(1R,3S)-3-({[(2R)-3-(hexadecanoyloxy)-2-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(16:0/20:3(5Z,8Z,11Z)-O(14R,15S)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(16:0/20:3(5Z,8Z,11Z)-O(14R,15S)), in particular, consists of one chain of hexadecanoyl at the C-1 position and one chain of 14,15-epoxyeicosatrienoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:3(5Z,8Z,11Z)-O(14R,15S)/16:0)

{[(1R,3S)-3-({[(2R)-2-(hexadecanoyloxy)-3-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(20:3(5Z,8Z,11Z)-O(14R,15S)/16:0) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:3(5Z,8Z,11Z)-O(14R,15S)/16:0), in particular, consists of one chain of 14,15-epoxyeicosatrienoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(16:0/20:3(5Z,8Z,14Z)-O(11S,12R))

{[(1R,3S)-3-({[(2R)-3-(hexadecanoyloxy)-2-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(16:0/20:3(5Z,8Z,14Z)-O(11S,12R)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(16:0/20:3(5Z,8Z,14Z)-O(11S,12R)), in particular, consists of one chain of hexadecanoyl at the C-1 position and one chain of 11,12-epoxyeicosatrienoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:3(5Z,8Z,14Z)-O(11S,12R)/16:0)

{[(1R,3S)-3-({[(2R)-2-(hexadecanoyloxy)-3-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(20:3(5Z,8Z,14Z)-O(11S,12R)/16:0) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:3(5Z,8Z,14Z)-O(11S,12R)/16:0), in particular, consists of one chain of 11,12-epoxyeicosatrienoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(16:0/20:3(5Z,11Z,14Z)-O(8,9))

{[(1R,3S)-3-({[(2R)-3-(hexadecanoyloxy)-2-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(16:0/20:3(5Z,11Z,14Z)-O(8,9)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(16:0/20:3(5Z,11Z,14Z)-O(8,9)), in particular, consists of one chain of hexadecanoyl at the C-1 position and one chain of 8,9--epoxyeicosatrienoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:3(5Z,11Z,14Z)-O(8,9)/16:0)

{[(1R,3S)-3-({[(2R)-2-(hexadecanoyloxy)-3-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(20:3(5Z,11Z,14Z)-O(8,9)/16:0) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:3(5Z,11Z,14Z)-O(8,9)/16:0), in particular, consists of one chain of 8,9--epoxyeicosatrienoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(16:0/20:3(8Z,11Z,14Z)-O(5,6))

{[(1R,3S)-3-({[(2R)-3-(hexadecanoyloxy)-2-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(16:0/20:3(8Z,11Z,14Z)-O(5,6)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(16:0/20:3(8Z,11Z,14Z)-O(5,6)), in particular, consists of one chain of hexadecanoyl at the C-1 position and one chain of 5,6-epoxyeicosatrienoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:3(8Z,11Z,14Z)-O(5,6)/16:0)

{[(1R,3S)-3-({[(2R)-2-(hexadecanoyloxy)-3-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(20:3(8Z,11Z,14Z)-O(5,6)/16:0) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:3(8Z,11Z,14Z)-O(5,6)/16:0), in particular, consists of one chain of 5,6-epoxyeicosatrienoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(16:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

{[(1R,3S)-3-({[(2R)-3-(hexadecanoyloxy)-2-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(16:0/20:4(5Z,8Z,11Z,14Z)-OH(20)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(16:0/20:4(5Z,8Z,11Z,14Z)-OH(20)), in particular, consists of one chain of hexadecanoyl at the C-1 position and one chain of 20-Hydroxyeicosatetraenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:4(5Z,8Z,11Z,14Z)-OH(20)/16:0)

{[(1R,3S)-3-({[(2R)-2-(hexadecanoyloxy)-3-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(20:4(5Z,8Z,11Z,14Z)-OH(20)/16:0) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:4(5Z,8Z,11Z,14Z)-OH(20)/16:0), in particular, consists of one chain of 20-Hydroxyeicosatetraenoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(16:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

{[(1R,3S)-3-({[(2R)-3-(hexadecanoyloxy)-2-{[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(16:0/20:4(6E,8Z,11Z,14Z)-OH(5S)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(16:0/20:4(6E,8Z,11Z,14Z)-OH(5S)), in particular, consists of one chain of hexadecanoyl at the C-1 position and one chain of 5-Hydroxyeicosatetraenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:4(6E,8Z,11Z,14Z)-OH(5S)/16:0)

{[(1R,3S)-3-({[(2R)-2-(hexadecanoyloxy)-3-{[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(20:4(6E,8Z,11Z,14Z)-OH(5S)/16:0) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:4(6E,8Z,11Z,14Z)-OH(5S)/16:0), in particular, consists of one chain of 5-Hydroxyeicosatetraenoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(16:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

{[(1R,3S)-3-({[(2R)-3-(hexadecanoyloxy)-2-{[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(16:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(16:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)), in particular, consists of one chain of hexadecanoyl at the C-1 position and one chain of 19-Hydroxyeicosatetraenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:4(5Z,8Z,11Z,14Z)-OH(19S)/16:0)

{[(1R,3S)-3-({[(2R)-2-(hexadecanoyloxy)-3-{[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(20:4(5Z,8Z,11Z,14Z)-OH(19S)/16:0) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:4(5Z,8Z,11Z,14Z)-OH(19S)/16:0), in particular, consists of one chain of 19-Hydroxyeicosatetraenoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(16:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

{[(1R,3S)-3-({[(2R)-3-(hexadecanoyloxy)-2-{[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(16:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(16:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)), in particular, consists of one chain of hexadecanoyl at the C-1 position and one chain of 18-Hydroxyeicosatetraenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:4(5Z,8Z,11Z,14Z)-OH(18R)/16:0)

{[(1R,3S)-3-({[(2R)-2-(hexadecanoyloxy)-3-{[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(20:4(5Z,8Z,11Z,14Z)-OH(18R)/16:0) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:4(5Z,8Z,11Z,14Z)-OH(18R)/16:0), in particular, consists of one chain of 18-Hydroxyeicosatetraenoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(16:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

{[(1R,3S)-3-({[(2R)-3-(hexadecanoyloxy)-2-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(16:0/20:4(5Z,8Z,11Z,14Z)-OH(17)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(16:0/20:4(5Z,8Z,11Z,14Z)-OH(17)), in particular, consists of one chain of hexadecanoyl at the C-1 position and one chain of 17-Hydroxyeicosatetraenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:4(5Z,8Z,11Z,14Z)-OH(17)/16:0)

{[(1R,3S)-3-({[(2R)-2-(hexadecanoyloxy)-3-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(20:4(5Z,8Z,11Z,14Z)-OH(17)/16:0) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:4(5Z,8Z,11Z,14Z)-OH(17)/16:0), in particular, consists of one chain of 17-Hydroxyeicosatetraenoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(16:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

{[(1R,3S)-3-({[(2R)-3-(hexadecanoyloxy)-2-{[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(16:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(16:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)), in particular, consists of one chain of hexadecanoyl at the C-1 position and one chain of 16-Hydroxyeicosatetraenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:4(5Z,8Z,11Z,14Z)-OH(16R)/16:0)

{[(1R,3S)-3-({[(2R)-2-(hexadecanoyloxy)-3-{[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(20:4(5Z,8Z,11Z,14Z)-OH(16R)/16:0) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:4(5Z,8Z,11Z,14Z)-OH(16R)/16:0), in particular, consists of one chain of 16-Hydroxyeicosatetraenoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(16:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

{[(1R,3S)-3-({[(2R)-3-(hexadecanoyloxy)-2-{[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(16:0/20:4(5Z,8Z,11Z,13E)-OH(15S)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(16:0/20:4(5Z,8Z,11Z,13E)-OH(15S)), in particular, consists of one chain of hexadecanoyl at the C-1 position and one chain of 15-Hydroxyeicosatetraenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:4(5Z,8Z,11Z,13E)-OH(15S)/16:0)

{[(1R,3S)-3-({[(2R)-2-(hexadecanoyloxy)-3-{[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(20:4(5Z,8Z,11Z,13E)-OH(15S)/16:0) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:4(5Z,8Z,11Z,13E)-OH(15S)/16:0), in particular, consists of one chain of 15-Hydroxyeicosatetraenoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(16:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

{[(1R,3S)-3-({[(2R)-3-(hexadecanoyloxy)-2-{[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(16:0/20:4(5Z,8Z,10E,14Z)-OH(12S)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(16:0/20:4(5Z,8Z,10E,14Z)-OH(12S)), in particular, consists of one chain of hexadecanoyl at the C-1 position and one chain of 12-Hydroxyeicosatetraenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:4(5Z,8Z,10E,14Z)-OH(12S)/16:0)

{[(1R,3S)-3-({[(2R)-2-(hexadecanoyloxy)-3-{[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(20:4(5Z,8Z,10E,14Z)-OH(12S)/16:0) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:4(5Z,8Z,10E,14Z)-OH(12S)/16:0), in particular, consists of one chain of 12-Hydroxyeicosatetraenoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(16:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

{[(1R,3S)-3-({[(2R)-3-(hexadecanoyloxy)-2-{[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(16:0/20:4(5E,8Z,12Z,14Z)-OH(11R)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(16:0/20:4(5E,8Z,12Z,14Z)-OH(11R)), in particular, consists of one chain of hexadecanoyl at the C-1 position and one chain of 11-Hydroxyeicosatetraenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:4(5E,8Z,12Z,14Z)-OH(11R)/16:0)

{[(1R,3S)-3-({[(2R)-2-(hexadecanoyloxy)-3-{[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(20:4(5E,8Z,12Z,14Z)-OH(11R)/16:0) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:4(5E,8Z,12Z,14Z)-OH(11R)/16:0), in particular, consists of one chain of 11-Hydroxyeicosatetraenoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(16:0/20:4(5Z,7E,11Z,14Z)-OH(9))

{[(1R,3S)-3-({[(2R)-3-(hexadecanoyloxy)-2-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(16:0/20:4(5Z,7E,11Z,14Z)-OH(9)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(16:0/20:4(5Z,7E,11Z,14Z)-OH(9)), in particular, consists of one chain of hexadecanoyl at the C-1 position and one chain of 9-Hydroxyeicosatetraenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:4(5Z,7E,11Z,14Z)-OH(9)/16:0)

{[(1R,3S)-3-({[(2R)-2-(hexadecanoyloxy)-3-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(20:4(5Z,7E,11Z,14Z)-OH(9)/16:0) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:4(5Z,7E,11Z,14Z)-OH(9)/16:0), in particular, consists of one chain of 9-Hydroxyeicosatetraenoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(16:1(9Z)/20:3(6,8,11)-OH(5))

{[(1R,3S)-3-({[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(16:1(9Z)/20:3(6,8,11)-OH(5)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(16:1(9Z)/20:3(6,8,11)-OH(5)), in particular, consists of one chain of 9Z-hexadecenoyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:3(6,8,11)-OH(5)/16:1(9Z))

{[(1R,3S)-3-({[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(20:3(6,8,11)-OH(5)/16:1(9Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:3(6,8,11)-OH(5)/16:1(9Z)), in particular, consists of one chain of 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of 9Z-hexadecenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:1(11Z)/18:2(10E,12Z)+=O(9))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-[(11Z)-octadec-11-enoyloxy]-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(18:1(11Z)/18:2(10E,12Z)+=O(9)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:1(11Z)/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of 11Z-octadecenoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:2(10E,12Z)+=O(9)/18:1(11Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-[(11Z)-octadec-11-enoyloxy]-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(18:2(10E,12Z)+=O(9)/18:1(11Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:2(10E,12Z)+=O(9)/18:1(11Z)), in particular, consists of one chain of 9-oxo-octadecadienoyl at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:1(11Z)/18:2(9Z,11E)+=O(13))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-[(11Z)-octadec-11-enoyloxy]-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(18:1(11Z)/18:2(9Z,11E)+=O(13)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:1(11Z)/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of 11Z-octadecenoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:2(9Z,11E)+=O(13)/18:1(11Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-[(11Z)-octadec-11-enoyloxy]-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(18:2(9Z,11E)+=O(13)/18:1(11Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:2(9Z,11E)+=O(13)/18:1(11Z)), in particular, consists of one chain of 13-oxo-octadecadienoyl at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:1(11Z)/18:3(10,12,15)-OH(9))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-3-[(11Z)-octadec-11-enoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(18:1(11Z)/18:3(10,12,15)-OH(9)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:1(11Z)/18:3(10,12,15)-OH(9)), in particular, consists of one chain of 11Z-octadecenoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:3(10,12,15)-OH(9)/18:1(11Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-2-[(11Z)-octadec-11-enoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(18:3(10,12,15)-OH(9)/18:1(11Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:3(10,12,15)-OH(9)/18:1(11Z)), in particular, consists of one chain of 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:1(11Z)/18:3(9,11,15)-OH(13))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-3-[(11Z)-octadec-11-enoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(18:1(11Z)/18:3(9,11,15)-OH(13)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:1(11Z)/18:3(9,11,15)-OH(13)), in particular, consists of one chain of 11Z-octadecenoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:3(9,11,15)-OH(13)/18:1(11Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-2-[(11Z)-octadec-11-enoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(18:3(9,11,15)-OH(13)/18:1(11Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:3(9,11,15)-OH(13)/18:1(11Z)), in particular, consists of one chain of 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:1(15Z)/18:2(10E,12Z)+=O(9))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-[(15Z)-octadec-15-enoyloxy]-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(18:1(15Z)/18:2(10E,12Z)+=O(9)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:1(15Z)/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of 15Z-octadecenoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:2(10E,12Z)+=O(9)/18:1(15Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-[(15Z)-octadec-15-enoyloxy]-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(18:2(10E,12Z)+=O(9)/18:1(15Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:2(10E,12Z)+=O(9)/18:1(15Z)), in particular, consists of one chain of 9-oxo-octadecadienoyl at the C-1 position and one chain of 15Z-octadecenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:1(15Z)/18:2(9Z,11E)+=O(13))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-[(15Z)-octadec-15-enoyloxy]-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(18:1(15Z)/18:2(9Z,11E)+=O(13)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:1(15Z)/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of 15Z-octadecenoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:2(9Z,11E)+=O(13)/18:1(15Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-[(15Z)-octadec-15-enoyloxy]-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(18:2(9Z,11E)+=O(13)/18:1(15Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:2(9Z,11E)+=O(13)/18:1(15Z)), in particular, consists of one chain of 13-oxo-octadecadienoyl at the C-1 position and one chain of 15Z-octadecenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:1(15Z)/18:3(10,12,15)-OH(9))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-3-[(15Z)-octadec-15-enoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(18:1(15Z)/18:3(10,12,15)-OH(9)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:1(15Z)/18:3(10,12,15)-OH(9)), in particular, consists of one chain of 15Z-octadecenoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:3(10,12,15)-OH(9)/18:1(15Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-2-[(15Z)-octadec-15-enoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(18:3(10,12,15)-OH(9)/18:1(15Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:3(10,12,15)-OH(9)/18:1(15Z)), in particular, consists of one chain of 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of 15Z-octadecenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:1(15Z)/18:3(9,11,15)-OH(13))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-3-[(15Z)-octadec-15-enoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(18:1(15Z)/18:3(9,11,15)-OH(13)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:1(15Z)/18:3(9,11,15)-OH(13)), in particular, consists of one chain of 15Z-octadecenoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:3(9,11,15)-OH(13)/18:1(15Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-2-[(15Z)-octadec-15-enoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(18:3(9,11,15)-OH(13)/18:1(15Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:3(9,11,15)-OH(13)/18:1(15Z)), in particular, consists of one chain of 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of 15Z-octadecenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:1(9Z)/18:2(10E,12Z)+=O(9))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-[(9Z)-octadec-9-enoyloxy]-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(18:1(9Z)/18:2(10E,12Z)+=O(9)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:1(9Z)/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of 9Z-octadecenoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:2(10E,12Z)+=O(9)/18:1(9Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-[(9Z)-octadec-9-enoyloxy]-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(18:2(10E,12Z)+=O(9)/18:1(9Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:2(10E,12Z)+=O(9)/18:1(9Z)), in particular, consists of one chain of 9-oxo-octadecadienoyl at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:1(9Z)/18:2(9Z,11E)+=O(13))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-[(9Z)-octadec-9-enoyloxy]-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(18:1(9Z)/18:2(9Z,11E)+=O(13)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:1(9Z)/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of 9Z-octadecenoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:2(9Z,11E)+=O(13)/18:1(9Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-[(9Z)-octadec-9-enoyloxy]-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(18:2(9Z,11E)+=O(13)/18:1(9Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:2(9Z,11E)+=O(13)/18:1(9Z)), in particular, consists of one chain of 13-oxo-octadecadienoyl at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:1(9Z)/18:3(10,12,15)-OH(9))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-3-[(9Z)-octadec-9-enoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(18:1(9Z)/18:3(10,12,15)-OH(9)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:1(9Z)/18:3(10,12,15)-OH(9)), in particular, consists of one chain of 9Z-octadecenoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:3(10,12,15)-OH(9)/18:1(9Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(18:3(10,12,15)-OH(9)/18:1(9Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:3(10,12,15)-OH(9)/18:1(9Z)), in particular, consists of one chain of 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:1(9Z)/18:3(9,11,15)-OH(13))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-3-[(9Z)-octadec-9-enoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(18:1(9Z)/18:3(9,11,15)-OH(13)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:1(9Z)/18:3(9,11,15)-OH(13)), in particular, consists of one chain of 9Z-octadecenoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:3(9,11,15)-OH(13)/18:1(9Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(18:3(9,11,15)-OH(13)/18:1(9Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:3(9,11,15)-OH(13)/18:1(9Z)), in particular, consists of one chain of 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:2(9Z,12Z)/18:1(12Z)-O(9S,10R))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(18:2(9Z,12Z)/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:2(9Z,12Z)/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of 9Z,12Z-octadecadienoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:1(12Z)-O(9S,10R)/18:2(9Z,12Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(18:1(12Z)-O(9S,10R)/18:2(9Z,12Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:1(12Z)-O(9S,10R)/18:2(9Z,12Z)), in particular, consists of one chain of 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:2(9Z,12Z)/18:1(9Z)-O(12,13))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(18:2(9Z,12Z)/18:1(9Z)-O(12,13)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:2(9Z,12Z)/18:1(9Z)-O(12,13)), in particular, consists of one chain of 9Z,12Z-octadecadienoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:1(9Z)-O(12,13)/18:2(9Z,12Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C45H80O17P2 (954.487)


PIP(18:1(9Z)-O(12,13)/18:2(9Z,12Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:1(9Z)-O(12,13)/18:2(9Z,12Z)), in particular, consists of one chain of 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   
   

Tenacissoside A

Tenacissoside A

C48H74O19 (954.4824)


   

MCULE-8419474003

MCULE-8419474003

C48H74O19 (954.4824)


   

Soyasapogenol B base + O-HexA+HexA+dHex

Soyasapogenol B base + O-HexA+HexA+dHex

C48H74O19 (954.4824)


Annotation level-3

   

3-O-2)-O-3)>-(beta-D-glucopyranosyluronic acid)>gypsogenin|3-O-{O-beta-D-glucopyranosyl-(1->2)-O-[alpha-L-rhamnopyranosyl-(1->3)]-(beta-D-glucopyranosyluronic acid)}gypsogenin

3-O-2)-O-3)>-(beta-D-glucopyranosyluronic acid)>gypsogenin|3-O-{O-beta-D-glucopyranosyl-(1->2)-O-[alpha-L-rhamnopyranosyl-(1->3)]-(beta-D-glucopyranosyluronic acid)}gypsogenin

C48H74O19 (954.4824)


   

3-O-[O-beta-D-galactopyranosyl-(1->2)-[O-beta-D-xylopyranosyl-(1->3)]-beta-D-glucopyranuronosyl]gypsogenin methyl ester

3-O-[O-beta-D-galactopyranosyl-(1->2)-[O-beta-D-xylopyranosyl-(1->3)]-beta-D-glucopyranuronosyl]gypsogenin methyl ester

C48H74O19 (954.4824)


   

(20R)-cynanogenin C 3-O-beta-D-glucopyranosyl-(1->4)-beta-D-cymaropyranosyl-(1->4)-alpha-L-diginopyranosyl-(1->4)-beta-D-cymaropyranoside|cynanoside P4

(20R)-cynanogenin C 3-O-beta-D-glucopyranosyl-(1->4)-beta-D-cymaropyranosyl-(1->4)-alpha-L-diginopyranosyl-(1->4)-beta-D-cymaropyranoside|cynanoside P4

C48H74O19 (954.4824)


   

yunganoside H1

yunganoside H1

C48H74O19 (954.4824)


   

dumortierigenin 3-O-alpha-L-rhamnopyranosyl(1->2)-beta-D-glucopyranosyl(1->2)-beta-D-glucopyranoside|dumortierinoside A

dumortierigenin 3-O-alpha-L-rhamnopyranosyl(1->2)-beta-D-glucopyranosyl(1->2)-beta-D-glucopyranoside|dumortierinoside A

C48H74O19 (954.4824)


   

Papyrioside L IIc|[alpha-L-Rhamnopyranosyl(1鈥樏傗垎4)-beta-D-glucopyranosyl(1鈥樏傗垎6-)-beta-D-glucopyranosyl]ester-11-Hydroxy-3,21-dioxo-12-oleanen-28-oic acid

Papyrioside L IIc|[alpha-L-Rhamnopyranosyl(1鈥樏傗垎4)-beta-D-glucopyranosyl(1鈥樏傗垎6-)-beta-D-glucopyranosyl]ester-11-Hydroxy-3,21-dioxo-12-oleanen-28-oic acid

C48H74O19 (954.4824)


   

C48H74O19_6-Deoxyhexopyranosyl-(1->4)-[hexopyranosyl-(1->6)]-1-O-[27-hydroxy-3,27,28-trioxolup-20(29)-en-28-yl]hexopyranose

NCGC00381234-01_C48H74O19_6-Deoxyhexopyranosyl-(1->4)-[hexopyranosyl-(1->6)]-1-O-[27-hydroxy-3,27,28-trioxolup-20(29)-en-28-yl]hexopyranose

C48H74O19 (954.4824)


   

3a-[3,4-dihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]-5-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-2-yl]oxycarbonyl-5b,8,8,11a-tetramethyl-9-oxo-1-prop-1-en-2-yl-2,3,4,5,6,7,7a,10,11,11b,12,13,13a,13b-tetradecahydro-1H-cyclopenta[a]chrysene-5a-carboxylic acid

3a-[3,4-dihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]-5-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-2-yl]oxycarbonyl-5b,8,8,11a-tetramethyl-9-oxo-1-prop-1-en-2-yl-2,3,4,5,6,7,7a,10,11,11b,12,13,13a,13b-tetradecahydro-1H-cyclopenta[a]chrysene-5a-carboxylic acid

C48H74O19 (954.4824)


   

oleanolate-3-beta-D-glucuronoside-(3,1)-galactoside-(4,1)-glucoside

oleanolate-3-beta-D-glucuronoside-(3,1)-galactoside-(4,1)-glucoside

C48H74O19-2 (954.4824)


   

PIP(16:0/20:3(5Z,8Z,11Z)-O(14R,15S))

PIP(16:0/20:3(5Z,8Z,11Z)-O(14R,15S))

C45H80O17P2 (954.487)


   

PIP(20:3(5Z,8Z,11Z)-O(14R,15S)/16:0)

PIP(20:3(5Z,8Z,11Z)-O(14R,15S)/16:0)

C45H80O17P2 (954.487)


   

PIP(16:0/20:3(5Z,8Z,14Z)-O(11S,12R))

PIP(16:0/20:3(5Z,8Z,14Z)-O(11S,12R))

C45H80O17P2 (954.487)


   

PIP(20:3(5Z,8Z,14Z)-O(11S,12R)/16:0)

PIP(20:3(5Z,8Z,14Z)-O(11S,12R)/16:0)

C45H80O17P2 (954.487)


   

PIP(16:0/20:3(5Z,11Z,14Z)-O(8,9))

PIP(16:0/20:3(5Z,11Z,14Z)-O(8,9))

C45H80O17P2 (954.487)


   

PIP(20:3(5Z,11Z,14Z)-O(8,9)/16:0)

PIP(20:3(5Z,11Z,14Z)-O(8,9)/16:0)

C45H80O17P2 (954.487)


   

PIP(16:0/20:3(8Z,11Z,14Z)-O(5,6))

PIP(16:0/20:3(8Z,11Z,14Z)-O(5,6))

C45H80O17P2 (954.487)


   

PIP(20:3(8Z,11Z,14Z)-O(5,6)/16:0)

PIP(20:3(8Z,11Z,14Z)-O(5,6)/16:0)

C45H80O17P2 (954.487)


   

PIP(16:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

PIP(16:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

C45H80O17P2 (954.487)


   

PIP(20:4(5Z,8Z,11Z,14Z)-OH(20)/16:0)

PIP(20:4(5Z,8Z,11Z,14Z)-OH(20)/16:0)

C45H80O17P2 (954.487)


   

PIP(16:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

PIP(16:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

C45H80O17P2 (954.487)


   

PIP(20:4(6E,8Z,11Z,14Z)-OH(5S)/16:0)

PIP(20:4(6E,8Z,11Z,14Z)-OH(5S)/16:0)

C45H80O17P2 (954.487)


   

PIP(16:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

PIP(16:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C45H80O17P2 (954.487)


   

PIP(20:4(5Z,8Z,11Z,14Z)-OH(19S)/16:0)

PIP(20:4(5Z,8Z,11Z,14Z)-OH(19S)/16:0)

C45H80O17P2 (954.487)


   

PIP(16:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

PIP(16:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C45H80O17P2 (954.487)


   

PIP(20:4(5Z,8Z,11Z,14Z)-OH(18R)/16:0)

PIP(20:4(5Z,8Z,11Z,14Z)-OH(18R)/16:0)

C45H80O17P2 (954.487)


   

PIP(16:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

PIP(16:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

C45H80O17P2 (954.487)


   

PIP(20:4(5Z,8Z,11Z,14Z)-OH(17)/16:0)

PIP(20:4(5Z,8Z,11Z,14Z)-OH(17)/16:0)

C45H80O17P2 (954.487)


   

PIP(16:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

PIP(16:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C45H80O17P2 (954.487)


   

PIP(20:4(5Z,8Z,11Z,14Z)-OH(16R)/16:0)

PIP(20:4(5Z,8Z,11Z,14Z)-OH(16R)/16:0)

C45H80O17P2 (954.487)


   

PIP(16:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

PIP(16:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

C45H80O17P2 (954.487)


   

PIP(20:4(5Z,8Z,11Z,13E)-OH(15S)/16:0)

PIP(20:4(5Z,8Z,11Z,13E)-OH(15S)/16:0)

C45H80O17P2 (954.487)


   

PIP(16:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

PIP(16:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

C45H80O17P2 (954.487)


   

PIP(20:4(5Z,8Z,10E,14Z)-OH(12S)/16:0)

PIP(20:4(5Z,8Z,10E,14Z)-OH(12S)/16:0)

C45H80O17P2 (954.487)


   

PIP(16:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

PIP(16:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

C45H80O17P2 (954.487)


   

PIP(20:4(5E,8Z,12Z,14Z)-OH(11R)/16:0)

PIP(20:4(5E,8Z,12Z,14Z)-OH(11R)/16:0)

C45H80O17P2 (954.487)


   

PIP(16:0/20:4(5Z,7E,11Z,14Z)-OH(9))

PIP(16:0/20:4(5Z,7E,11Z,14Z)-OH(9))

C45H80O17P2 (954.487)


   

PIP(20:4(5Z,7E,11Z,14Z)-OH(9)/16:0)

PIP(20:4(5Z,7E,11Z,14Z)-OH(9)/16:0)

C45H80O17P2 (954.487)


   

PIP(16:1(9Z)/20:3(6,8,11)-OH(5))

PIP(16:1(9Z)/20:3(6,8,11)-OH(5))

C45H80O17P2 (954.487)


   

PIP(20:3(6,8,11)-OH(5)/16:1(9Z))

PIP(20:3(6,8,11)-OH(5)/16:1(9Z))

C45H80O17P2 (954.487)


   

PIP(18:1(11Z)/18:2(10E,12Z)+=O(9))

PIP(18:1(11Z)/18:2(10E,12Z)+=O(9))

C45H80O17P2 (954.487)


   

PIP(18:2(10E,12Z)+=O(9)/18:1(11Z))

PIP(18:2(10E,12Z)+=O(9)/18:1(11Z))

C45H80O17P2 (954.487)


   

PIP(18:1(11Z)/18:2(9Z,11E)+=O(13))

PIP(18:1(11Z)/18:2(9Z,11E)+=O(13))

C45H80O17P2 (954.487)


   

PIP(18:2(9Z,11E)+=O(13)/18:1(11Z))

PIP(18:2(9Z,11E)+=O(13)/18:1(11Z))

C45H80O17P2 (954.487)


   

PIP(18:1(15Z)/18:2(10E,12Z)+=O(9))

PIP(18:1(15Z)/18:2(10E,12Z)+=O(9))

C45H80O17P2 (954.487)


   

PIP(18:2(10E,12Z)+=O(9)/18:1(15Z))

PIP(18:2(10E,12Z)+=O(9)/18:1(15Z))

C45H80O17P2 (954.487)


   

PIP(18:1(15Z)/18:2(9Z,11E)+=O(13))

PIP(18:1(15Z)/18:2(9Z,11E)+=O(13))

C45H80O17P2 (954.487)


   

PIP(18:2(9Z,11E)+=O(13)/18:1(15Z))

PIP(18:2(9Z,11E)+=O(13)/18:1(15Z))

C45H80O17P2 (954.487)


   

PIP(18:1(9Z)/18:2(10E,12Z)+=O(9))

PIP(18:1(9Z)/18:2(10E,12Z)+=O(9))

C45H80O17P2 (954.487)


   

PIP(18:2(10E,12Z)+=O(9)/18:1(9Z))

PIP(18:2(10E,12Z)+=O(9)/18:1(9Z))

C45H80O17P2 (954.487)


   

PIP(18:1(9Z)/18:2(9Z,11E)+=O(13))

PIP(18:1(9Z)/18:2(9Z,11E)+=O(13))

C45H80O17P2 (954.487)


   

PIP(18:2(9Z,11E)+=O(13)/18:1(9Z))

PIP(18:2(9Z,11E)+=O(13)/18:1(9Z))

C45H80O17P2 (954.487)


   

PIP(18:2(9Z,12Z)/18:1(12Z)-O(9S,10R))

PIP(18:2(9Z,12Z)/18:1(12Z)-O(9S,10R))

C45H80O17P2 (954.487)


   

PIP(18:1(12Z)-O(9S,10R)/18:2(9Z,12Z))

PIP(18:1(12Z)-O(9S,10R)/18:2(9Z,12Z))

C45H80O17P2 (954.487)


   

PIP(18:1(11Z)/18:3(10,12,15)-OH(9))

PIP(18:1(11Z)/18:3(10,12,15)-OH(9))

C45H80O17P2 (954.487)


   

PIP(18:3(10,12,15)-OH(9)/18:1(11Z))

PIP(18:3(10,12,15)-OH(9)/18:1(11Z))

C45H80O17P2 (954.487)


   

PIP(18:1(11Z)/18:3(9,11,15)-OH(13))

PIP(18:1(11Z)/18:3(9,11,15)-OH(13))

C45H80O17P2 (954.487)


   

PIP(18:3(9,11,15)-OH(13)/18:1(11Z))

PIP(18:3(9,11,15)-OH(13)/18:1(11Z))

C45H80O17P2 (954.487)


   

PIP(18:1(15Z)/18:3(10,12,15)-OH(9))

PIP(18:1(15Z)/18:3(10,12,15)-OH(9))

C45H80O17P2 (954.487)


   

PIP(18:3(10,12,15)-OH(9)/18:1(15Z))

PIP(18:3(10,12,15)-OH(9)/18:1(15Z))

C45H80O17P2 (954.487)


   

PIP(18:1(15Z)/18:3(9,11,15)-OH(13))

PIP(18:1(15Z)/18:3(9,11,15)-OH(13))

C45H80O17P2 (954.487)


   

PIP(18:3(9,11,15)-OH(13)/18:1(15Z))

PIP(18:3(9,11,15)-OH(13)/18:1(15Z))

C45H80O17P2 (954.487)


   

PIP(18:1(9Z)/18:3(10,12,15)-OH(9))

PIP(18:1(9Z)/18:3(10,12,15)-OH(9))

C45H80O17P2 (954.487)


   

PIP(18:3(10,12,15)-OH(9)/18:1(9Z))

PIP(18:3(10,12,15)-OH(9)/18:1(9Z))

C45H80O17P2 (954.487)


   

PIP(18:1(9Z)/18:3(9,11,15)-OH(13))

PIP(18:1(9Z)/18:3(9,11,15)-OH(13))

C45H80O17P2 (954.487)


   

PIP(18:3(9,11,15)-OH(13)/18:1(9Z))

PIP(18:3(9,11,15)-OH(13)/18:1(9Z))

C45H80O17P2 (954.487)


   

PIP(18:2(9Z,12Z)/18:1(9Z)-O(12,13))

PIP(18:2(9Z,12Z)/18:1(9Z)-O(12,13))

C45H80O17P2 (954.487)


   

PIP(18:1(9Z)-O(12,13)/18:2(9Z,12Z))

PIP(18:1(9Z)-O(12,13)/18:2(9Z,12Z))

C45H80O17P2 (954.487)


   

(2s,3s,4s,5r,6r)-5-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxy-6-{[(1s,2s,6s,10r,11r,14s,16r,19r,20s,21r)-2-hydroxy-4,4,11,15,15,19,20-heptamethyl-23-oxo-22-oxahexacyclo[19.2.1.0¹,⁶.0⁷,²⁰.0¹⁰,¹⁹.0¹¹,¹⁶]tetracos-7-en-14-yl]oxy}oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-5-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxy-6-{[(1s,2s,6s,10r,11r,14s,16r,19r,20s,21r)-2-hydroxy-4,4,11,15,15,19,20-heptamethyl-23-oxo-22-oxahexacyclo[19.2.1.0¹,⁶.0⁷,²⁰.0¹⁰,¹⁹.0¹¹,¹⁶]tetracos-7-en-14-yl]oxy}oxane-2-carboxylic acid

C48H74O19 (954.4824)


   

(5s)-4-[(2r,4as,4br,6r,7r,10ar)-6-hydroxy-7-{[(2s,4s,5r,6r)-4-methoxy-5-{[(2s,4s,5r,6s)-4-methoxy-5-{[(2s,4s,5r,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-2,4b-dimethyl-1-oxo-4,4a,5,6,7,8,10,10a-octahydro-3h-phenanthren-2-yl]-5-methyl-5h-furan-2-one

(5s)-4-[(2r,4as,4br,6r,7r,10ar)-6-hydroxy-7-{[(2s,4s,5r,6r)-4-methoxy-5-{[(2s,4s,5r,6s)-4-methoxy-5-{[(2s,4s,5r,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-2,4b-dimethyl-1-oxo-4,4a,5,6,7,8,10,10a-octahydro-3h-phenanthren-2-yl]-5-methyl-5h-furan-2-one

C48H74O19 (954.4824)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8ar,9r,12as,14ar,14bs)-4,4,6a,6b,8a,11,11,14b-octamethyl-14-oxo-9-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,3,4a,5,6,7,8,9,10,12,12a,14a-dodecahydro-1h-picen-3-yl]oxy}-5-{[(2r,3r,4s,5s,6s)-6-carboxy-3,4,5-trihydroxyoxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8ar,9r,12as,14ar,14bs)-4,4,6a,6b,8a,11,11,14b-octamethyl-14-oxo-9-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,3,4a,5,6,7,8,9,10,12,12a,14a-dodecahydro-1h-picen-3-yl]oxy}-5-{[(2r,3r,4s,5s,6s)-6-carboxy-3,4,5-trihydroxyoxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

C48H74O19 (954.4824)


   

(2s,3s,4s,5r,6r)-6-{[(2r,3r,4s,5s,6s)-2-{[(3s,4ar,6as,6br,8as,10s,11r,12ar,14bs)-10-hydroxy-11-(hydroxymethyl)-4,4,6a,6b,8a,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a-dodecahydropicen-3-yl]oxy}-6-carboxy-4,5-dihydroxyoxan-3-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(2r,3r,4s,5s,6s)-2-{[(3s,4ar,6as,6br,8as,10s,11r,12ar,14bs)-10-hydroxy-11-(hydroxymethyl)-4,4,6a,6b,8a,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a-dodecahydropicen-3-yl]oxy}-6-carboxy-4,5-dihydroxyoxan-3-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxane-2-carboxylic acid

C48H74O19 (954.4824)


   

(2r,4as,6br,8ar,12ar,12br,14ar,14bs)-4a-({[(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}carbonyl)-2,6b,9,9,12a,14b-hexamethyl-10-oxo-3,4,5,7,8,8a,11,12,12b,13,14,14a-dodecahydro-1h-picene-2-carboxylic acid

(2r,4as,6br,8ar,12ar,12br,14ar,14bs)-4a-({[(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}carbonyl)-2,6b,9,9,12a,14b-hexamethyl-10-oxo-3,4,5,7,8,8a,11,12,12b,13,14,14a-dodecahydro-1h-picene-2-carboxylic acid

C48H74O19 (954.4824)


   

(1r)-1,11-α-dihydroxy-3,4-seco-lupa-4(23),20(29)-diene-3,28-dioicacid 3,11-lactone28-o-α-l-rhamnopyranosyl-(1→4)-β-d-gluco-pyranosyl(1→6)-β-d-glucopyranoside

NA

C48H74O19 (954.4824)


{"Ingredient_id": "HBIN003006","Ingredient_name": "(1r)-1,11-\u03b1-dihydroxy-3,4-seco-lupa-4(23),20(29)-diene-3,28-dioicacid 3,11-lactone28-o-\u03b1-l-rhamnopyranosyl-(1\u21924)-\u03b2-d-gluco-pyranosyl(1\u21926)-\u03b2-d-glucopyranoside","Alias": "NA","Ingredient_formula": "C48H74O19","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "6114","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (1r,2r,5s,8r,9s,10r,12r,16r,17s,18s,21s)-16-hydroxy-1,2,17-trimethyl-14-oxo-8,18-bis(prop-1-en-2-yl)-13-oxapentacyclo[10.8.1.0²,¹⁰.0⁵,⁹.0¹⁷,²¹]henicosane-5-carboxylate

(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (1r,2r,5s,8r,9s,10r,12r,16r,17s,18s,21s)-16-hydroxy-1,2,17-trimethyl-14-oxo-8,18-bis(prop-1-en-2-yl)-13-oxapentacyclo[10.8.1.0²,¹⁰.0⁵,⁹.0¹⁷,²¹]henicosane-5-carboxylate

C48H74O19 (954.4824)


   

(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (1r,2r,5s,8r,9s,10r,12r,16r,17r,18r,21s)-16-hydroxy-1,2,17-trimethyl-14-oxo-8,18-bis(prop-1-en-2-yl)-13-oxapentacyclo[10.8.1.0²,¹⁰.0⁵,⁹.0¹⁷,²¹]henicosane-5-carboxylate

(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (1r,2r,5s,8r,9s,10r,12r,16r,17r,18r,21s)-16-hydroxy-1,2,17-trimethyl-14-oxo-8,18-bis(prop-1-en-2-yl)-13-oxapentacyclo[10.8.1.0²,¹⁰.0⁵,⁹.0¹⁷,²¹]henicosane-5-carboxylate

C48H74O19 (954.4824)


   

(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (1r,2r,5s,8r,9s,10r,12s,16r,17r,18s,21r)-16-hydroxy-1,2,17-trimethyl-14-oxo-8,18-bis(prop-1-en-2-yl)-13-oxapentacyclo[10.8.1.0²,¹⁰.0⁵,⁹.0¹⁷,²¹]henicosane-5-carboxylate

(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (1r,2r,5s,8r,9s,10r,12s,16r,17r,18s,21r)-16-hydroxy-1,2,17-trimethyl-14-oxo-8,18-bis(prop-1-en-2-yl)-13-oxapentacyclo[10.8.1.0²,¹⁰.0⁵,⁹.0¹⁷,²¹]henicosane-5-carboxylate

C48H74O19 (954.4824)


   

(2s,3s,4s,5r,6r)-6-{[(2r,3r,4s,5s,6s)-2-{[(3s,4s,4ar,6ar,6bs,8ar,9r,14ar,14bs)-9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,14a-dodecahydropicen-3-yl]oxy}-6-carboxy-4,5-dihydroxyoxan-3-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(2r,3r,4s,5s,6s)-2-{[(3s,4s,4ar,6ar,6bs,8ar,9r,14ar,14bs)-9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,14a-dodecahydropicen-3-yl]oxy}-6-carboxy-4,5-dihydroxyoxan-3-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxane-2-carboxylic acid

C48H74O19 (954.4824)


   

6-{[4,4,6a,6b,11,11,14b-heptamethyl-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,5-dihydroxy-4-[2-methoxy-1-(2-methoxy-2-oxoethoxy)-2-oxoethoxy]oxane-2-carboxylic acid

6-{[4,4,6a,6b,11,11,14b-heptamethyl-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,5-dihydroxy-4-[2-methoxy-1-(2-methoxy-2-oxoethoxy)-2-oxoethoxy]oxane-2-carboxylic acid

C48H74O19 (954.4824)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8as,12as,14ar,14br)-8a-carboxy-4-formyl-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8as,12as,14ar,14br)-8a-carboxy-4-formyl-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxane-2-carboxylic acid

C48H74O19 (954.4824)


   

(2s,3s,4s,5r,6s)-6-[(1r,2r,5s,6r,9r,10r,11s,14r,15r,19s,21r)-10,21-bis(hydroxymethyl)-2,5,6,10,14-pentamethyl-22-oxo-23-oxahexacyclo[19.2.1.0²,¹⁹.0⁵,¹⁸.0⁶,¹⁵.0⁹,¹⁴]tetracos-17-en-11-yl]-5-{[(2s,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6s)-6-[(1r,2r,5s,6r,9r,10r,11s,14r,15r,19s,21r)-10,21-bis(hydroxymethyl)-2,5,6,10,14-pentamethyl-22-oxo-23-oxahexacyclo[19.2.1.0²,¹⁹.0⁵,¹⁸.0⁶,¹⁵.0⁹,¹⁴]tetracos-17-en-11-yl]-5-{[(2s,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

C48H74O19 (954.4824)


   

5-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-3,4-dihydroxy-6-({2-hydroxy-4,4,11,15,15,19,20-heptamethyl-23-oxo-22-oxahexacyclo[19.2.1.0¹,⁶.0⁷,²⁰.0¹⁰,¹⁹.0¹¹,¹⁶]tetracos-7-en-14-yl}oxy)oxane-2-carboxylic acid

5-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-3,4-dihydroxy-6-({2-hydroxy-4,4,11,15,15,19,20-heptamethyl-23-oxo-22-oxahexacyclo[19.2.1.0¹,⁶.0⁷,²⁰.0¹⁰,¹⁹.0¹¹,¹⁶]tetracos-7-en-14-yl}oxy)oxane-2-carboxylic acid

C48H74O19 (954.4824)


   

6-{[4-formyl-8a-(methoxycarbonyl)-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxane-2-carboxylic acid

6-{[4-formyl-8a-(methoxycarbonyl)-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxane-2-carboxylic acid

C48H74O19 (954.4824)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8as,12as,14ar,14br)-4-formyl-8a-(methoxycarbonyl)-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8as,12as,14ar,14br)-4-formyl-8a-(methoxycarbonyl)-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

C48H74O19 (954.4824)


   

(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (1r,2r,5s,8r,9r,10r,12r,16r,17s,18s,21s)-16-hydroxy-1,2,17-trimethyl-14-oxo-8,18-bis(prop-1-en-2-yl)-13-oxapentacyclo[10.8.1.0²,¹⁰.0⁵,⁹.0¹⁷,²¹]henicosane-5-carboxylate

(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (1r,2r,5s,8r,9r,10r,12r,16r,17s,18s,21s)-16-hydroxy-1,2,17-trimethyl-14-oxo-8,18-bis(prop-1-en-2-yl)-13-oxapentacyclo[10.8.1.0²,¹⁰.0⁵,⁹.0¹⁷,²¹]henicosane-5-carboxylate

C48H74O19 (954.4824)


   

6-[(6-carboxy-4,5-dihydroxy-2-{[10-hydroxy-11-(hydroxymethyl)-4,4,6a,6b,8a,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a-dodecahydropicen-3-yl]oxy}oxan-3-yl)oxy]-3,4-dihydroxy-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxane-2-carboxylic acid

6-[(6-carboxy-4,5-dihydroxy-2-{[10-hydroxy-11-(hydroxymethyl)-4,4,6a,6b,8a,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a-dodecahydropicen-3-yl]oxy}oxan-3-yl)oxy]-3,4-dihydroxy-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxane-2-carboxylic acid

C48H74O19 (954.4824)


   

6-[(8a-carboxy-4-formyl-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl)oxy]-3-hydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxane-2-carboxylic acid

6-[(8a-carboxy-4-formyl-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl)oxy]-3-hydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxane-2-carboxylic acid

C48H74O19 (954.4824)


   

(1s,3r,6r,7s,8s,9s,10s,11s,14s,16s)-6-acetyl-8-(acetyloxy)-14-{[(2r,4r,5r,6r)-5-{[(2s,3r,4s,5r,6r)-3-hydroxy-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-7,11-dimethyl-2-oxapentacyclo[8.8.0.0¹,³.0³,⁷.0¹¹,¹⁶]octadecan-9-yl (2e)-2-methylbut-2-enoate

(1s,3r,6r,7s,8s,9s,10s,11s,14s,16s)-6-acetyl-8-(acetyloxy)-14-{[(2r,4r,5r,6r)-5-{[(2s,3r,4s,5r,6r)-3-hydroxy-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-7,11-dimethyl-2-oxapentacyclo[8.8.0.0¹,³.0³,⁷.0¹¹,¹⁶]octadecan-9-yl (2e)-2-methylbut-2-enoate

C48H74O19 (954.4824)


   

6-[(6-carboxy-4,5-dihydroxy-2-{[9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,14a-dodecahydropicen-3-yl]oxy}oxan-3-yl)oxy]-3,4-dihydroxy-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxane-2-carboxylic acid

6-[(6-carboxy-4,5-dihydroxy-2-{[9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,14a-dodecahydropicen-3-yl]oxy}oxan-3-yl)oxy]-3,4-dihydroxy-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxane-2-carboxylic acid

C48H74O19 (954.4824)


   

(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (1r,2r,5s,8r,10r,16r,17s,18s)-16-hydroxy-1,2,17-trimethyl-14-oxo-8,18-bis(prop-1-en-2-yl)-13-oxapentacyclo[10.8.1.0²,¹⁰.0⁵,⁹.0¹⁷,²¹]henicosane-5-carboxylate

(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (1r,2r,5s,8r,10r,16r,17s,18s)-16-hydroxy-1,2,17-trimethyl-14-oxo-8,18-bis(prop-1-en-2-yl)-13-oxapentacyclo[10.8.1.0²,¹⁰.0⁵,⁹.0¹⁷,²¹]henicosane-5-carboxylate

C48H74O19 (954.4824)


   

(5r)-4-[(2r,4as,4br,6r,7r,10ar)-6-hydroxy-7-{[(2s,4s,5r,6r)-4-methoxy-5-{[(2s,4s,5r,6s)-4-methoxy-5-{[(2s,4s,5r,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-2,4b-dimethyl-1-oxo-4,4a,5,6,7,8,10,10a-octahydro-3h-phenanthren-2-yl]-5-methyl-5h-furan-2-one

(5r)-4-[(2r,4as,4br,6r,7r,10ar)-6-hydroxy-7-{[(2s,4s,5r,6r)-4-methoxy-5-{[(2s,4s,5r,6s)-4-methoxy-5-{[(2s,4s,5r,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-2,4b-dimethyl-1-oxo-4,4a,5,6,7,8,10,10a-octahydro-3h-phenanthren-2-yl]-5-methyl-5h-furan-2-one

C48H74O19 (954.4824)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-4,4,6a,6b,11,11,14b-heptamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,5-dihydroxy-4-[(1s)-2-methoxy-1-(2-methoxy-2-oxoethoxy)-2-oxoethoxy]oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-4,4,6a,6b,11,11,14b-heptamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,5-dihydroxy-4-[(1s)-2-methoxy-1-(2-methoxy-2-oxoethoxy)-2-oxoethoxy]oxane-2-carboxylic acid

C48H74O19 (954.4824)


   

4a-({[6-({[3,4-dihydroxy-6-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}carbonyl)-2,6b,9,9,12a,14b-hexamethyl-10-oxo-3,4,5,7,8,8a,11,12,12b,13,14,14a-dodecahydro-1h-picene-2-carboxylic acid

4a-({[6-({[3,4-dihydroxy-6-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}carbonyl)-2,6b,9,9,12a,14b-hexamethyl-10-oxo-3,4,5,7,8,8a,11,12,12b,13,14,14a-dodecahydro-1h-picene-2-carboxylic acid

C48H74O19 (954.4824)


   

4-(6-hydroxy-7-{[4-methoxy-5-({4-methoxy-5-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)-6-methyloxan-2-yl]oxy}-2,4b-dimethyl-1-oxo-4,4a,5,6,7,8,10,10a-octahydro-3h-phenanthren-2-yl)-5-methyl-5h-furan-2-one

4-(6-hydroxy-7-{[4-methoxy-5-({4-methoxy-5-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)-6-methyloxan-2-yl]oxy}-2,4b-dimethyl-1-oxo-4,4a,5,6,7,8,10,10a-octahydro-3h-phenanthren-2-yl)-5-methyl-5h-furan-2-one

C48H74O19 (954.4824)


   

(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (1r,2r,5s,8r,9r,10r,12r,16r,17s,18s,21s)-16-hydroxy-1,2,17-trimethyl-14-oxo-8,18-bis(prop-1-en-2-yl)-13-oxapentacyclo[10.8.1.0²,¹⁰.0⁵,⁹.0¹⁷,²¹]henicosane-5-carboxylate

(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (1r,2r,5s,8r,9r,10r,12r,16r,17s,18s,21s)-16-hydroxy-1,2,17-trimethyl-14-oxo-8,18-bis(prop-1-en-2-yl)-13-oxapentacyclo[10.8.1.0²,¹⁰.0⁵,⁹.0¹⁷,²¹]henicosane-5-carboxylate

C48H74O19 (954.4824)


   

(2s,3s,4s,5r,6r)-6-{[(2r,3r,4s,5s,6s)-2-{[(3s,4ar,6as,6br,8as,10r,11r,12ar,14bs)-10-hydroxy-11-(hydroxymethyl)-4,4,6a,6b,8a,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a-dodecahydropicen-3-yl]oxy}-6-carboxy-4,5-dihydroxyoxan-3-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(2r,3r,4s,5s,6s)-2-{[(3s,4ar,6as,6br,8as,10r,11r,12ar,14bs)-10-hydroxy-11-(hydroxymethyl)-4,4,6a,6b,8a,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a-dodecahydropicen-3-yl]oxy}-6-carboxy-4,5-dihydroxyoxan-3-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxane-2-carboxylic acid

C48H74O19 (954.4824)