Exact Mass: 941.6380492

Exact Mass Matches: 941.6380492

Found 242 metabolites which its exact mass value is equals to given mass value 941.6380492, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PS(24:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

(2S)-2-amino-3-{[hydroxy((2R)-3-(tetracosanoyloxy)-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy)phosphoryl]oxy}propanoic acid

C50H88NO13P (941.5992967999999)


PS(24:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(24:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one tetracosanoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/24:0)

(2S)-2-amino-3-({hydroxy[(2R)-2-(tetracosanoyloxy)-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphoryl}oxy)propanoic acid

C50H88NO13P (941.5992967999999)


PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/24:0) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/24:0), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of tetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PC(24:0/PGE2)

(2-{[(2R)-2-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-3-(tetracosanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C52H96NO11P (941.6720635999999)


PC(24:0/PGE2) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(24:0/PGE2), in particular, consists of one chain of one tetracosanoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(PGE2/24:0)

(2-{[(2R)-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-2-(tetracosanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C52H96NO11P (941.6720635999999)


PC(PGE2/24:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(PGE2/24:0), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of tetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(24:0/PGD2)

(2-{[(2R)-2-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-3-(tetracosanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C52H96NO11P (941.6720635999999)


PC(24:0/PGD2) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(24:0/PGD2), in particular, consists of one chain of one tetracosanoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(PGD2/24:0)

(2-{[(2R)-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-2-(tetracosanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C52H96NO11P (941.6720635999999)


PC(PGD2/24:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(PGD2/24:0), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of tetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(24:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

trimethyl(2-{[(2R)-3-(tetracosanoyloxy)-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)azanium

C52H96NO11P (941.6720635999999)


PC(24:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(24:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one tetracosanoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/24:0)

trimethyl(2-{[(2R)-2-(tetracosanoyloxy)-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)azanium

C52H96NO11P (941.6720635999999)


PC(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/24:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/24:0), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of tetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(24:1(15Z)/PGF2alpha)

(2-{[(2R)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-[(15Z)-tetracos-15-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C52H96NO11P (941.6720635999999)


PC(24:1(15Z)/PGF2alpha) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(24:1(15Z)/PGF2alpha), in particular, consists of one chain of one 15Z-tetracosenoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(PGF2alpha/24:1(15Z))

(2-{[(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-[(15Z)-tetracos-15-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C52H96NO11P (941.6720635999999)


PC(PGF2alpha/24:1(15Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(PGF2alpha/24:1(15Z)), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of 15Z-tetracosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(24:1(15Z)/PGE1)

(2-{[(2R)-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-3-[(15Z)-tetracos-15-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C52H96NO11P (941.6720635999999)


PC(24:1(15Z)/PGE1) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(24:1(15Z)/PGE1), in particular, consists of one chain of one 15Z-tetracosenoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(PGE1/24:1(15Z))

(2-{[(2R)-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-2-[(15Z)-tetracos-15-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C52H96NO11P (941.6720635999999)


PC(PGE1/24:1(15Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(PGE1/24:1(15Z)), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of 15Z-tetracosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(24:1(15Z)/PGD1)

(2-{[(2R)-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-3-[(15Z)-tetracos-15-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C52H96NO11P (941.6720635999999)


PC(24:1(15Z)/PGD1) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(24:1(15Z)/PGD1), in particular, consists of one chain of one 15Z-tetracosenoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(PGD1/24:1(15Z))

(2-{[(2R)-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-2-[(15Z)-tetracos-15-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C52H96NO11P (941.6720635999999)


PC(PGD1/24:1(15Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(PGD1/24:1(15Z)), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of 15Z-tetracosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(11,5)/6 keto-PGF1alpha)

(2-{[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-{[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H88NO13P (941.5992967999999)


PC(DiMe(11,5)/6 keto-PGF1alpha) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(11,5)/6 keto-PGF1alpha), in particular, consists of one chain of one 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(6 keto-PGF1alpha/DiMe(11,5))

(2-{[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-{[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H88NO13P (941.5992967999999)


PC(6 keto-PGF1alpha/DiMe(11,5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(6 keto-PGF1alpha/DiMe(11,5)), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(11,5)/TXB2)

(2-{[(2R)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-{[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H88NO13P (941.5992967999999)


PC(DiMe(11,5)/TXB2) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(11,5)/TXB2), in particular, consists of one chain of one 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(TXB2/DiMe(11,5))

(2-{[(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-{[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H88NO13P (941.5992967999999)


PC(TXB2/DiMe(11,5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(TXB2/DiMe(11,5)), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

Phytic acid sodium salt hydrate

myo-Inositol, hexakis(dihydrogen phosphate) (dodecasodium salt hydrate);Inositol hexaphosphate (dodecasodium salt hydrate)

C6H8Na12O25P6 (941.6552898)


   

Am-Hex-PE O-40:5

N-(1-deoxyfructosyl)-1-(1Z-octadecenyl)-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-glycero-3-phosphoethanolamine

C51H92NO12P (941.6356801999999)


   
   
   
   
   
   
   
   
   
   
   
   

PC(24:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

PC(24:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C52H96NO11P (941.6720635999999)


   

PC(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/24:0)

PC(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/24:0)

C52H96NO11P (941.6720635999999)


   

PS(24:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PS(24:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C50H88NO13P (941.5992967999999)


   

PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/24:0)

PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/24:0)

C50H88NO13P (941.5992967999999)


   

Ins-1-P-Cer(t18:0/2,3-OH-24:0)

Ins-1-P-Cer(t18:0/2,3-OH-24:0)

C48H96NO14P (941.6568085999999)


A ceramide phosphoinositol compound having a tetracosanoyl group attached to the ceramide nitrogen, hydroxylation at C-4 of the long-chain base, and hydroxylation at C-2 and C-3 of the very-long-chain fatty acid.

   
   
   

HexCer 9:1;2O/44:12

HexCer 9:1;2O/44:12

C59H91NO8 (941.6744326)


   

HexCer 15:3;2O/38:10

HexCer 15:3;2O/38:10

C59H91NO8 (941.6744326)


   
   
   
   

HexCer 13:2;2O/40:11

HexCer 13:2;2O/40:11

C59H91NO8 (941.6744326)


   

HexCer 11:1;2O/42:12

HexCer 11:1;2O/42:12

C59H91NO8 (941.6744326)


   
   

HexCer 17:3;2O/36:10

HexCer 17:3;2O/36:10

C59H91NO8 (941.6744326)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C54H88NO10P (941.6145518)


   
   
   
   
   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecanoyloxypropan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecanoyloxypropan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoate

C56H96NO8P (941.6873185999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropan-2-yl] (13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-13,16,19,22,25,28,31-heptaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropan-2-yl] (13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-13,16,19,22,25,28,31-heptaenoate

C56H96NO8P (941.6873185999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropan-2-yl] (12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropan-2-yl] (12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoate

C56H96NO8P (941.6873185999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropan-2-yl] (11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-11,14,17,20,23,26,29-heptaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropan-2-yl] (11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-11,14,17,20,23,26,29-heptaenoate

C56H96NO8P (941.6873185999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-17,20,23,26,29,32,35-heptaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-17,20,23,26,29,32,35-heptaenoate

C56H96NO8P (941.6873185999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoyl]oxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoyl]oxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoate

C56H96NO8P (941.6873185999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-henicosanoyloxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-henicosanoyloxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoate

C56H96NO8P (941.6873185999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-12,15,18,21,24,27,30,33-octaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-12,15,18,21,24,27,30,33-octaenoate

C56H96NO8P (941.6873185999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropan-2-yl] (14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-14,17,20,23,26,29-hexaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropan-2-yl] (14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-14,17,20,23,26,29-hexaenoate

C56H96NO8P (941.6873185999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-15,18,21,24,27,30,33-heptaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-15,18,21,24,27,30,33-heptaenoate

C56H96NO8P (941.6873185999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-16,19,22,25,28,31-hexaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-16,19,22,25,28,31-hexaenoate

C56H96NO8P (941.6873185999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-14,17,20,23,26,29,32,35-octaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-14,17,20,23,26,29,32,35-octaenoate

C56H96NO8P (941.6873185999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-10,13,16,19,22,25,28,31-octaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-10,13,16,19,22,25,28,31-octaenoate

C56H96NO8P (941.6873185999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (16Z,19Z,22Z,25Z,28Z,31Z,34Z,37Z)-tetraconta-16,19,22,25,28,31,34,37-octaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (16Z,19Z,22Z,25Z,28Z,31Z,34Z,37Z)-tetraconta-16,19,22,25,28,31,34,37-octaenoate

C56H96NO8P (941.6873185999999)


   

Hex2Cer 16:0;2O/24:3

Hex2Cer 16:0;2O/24:3

C52H95NO13 (941.680306)


   

Hex2Cer 16:3;2O/24:0

Hex2Cer 16:3;2O/24:0

C52H95NO13 (941.680306)


   

Hex2Cer 16:1;2O/24:2

Hex2Cer 16:1;2O/24:2

C52H95NO13 (941.680306)


   

Hex2Cer 18:0;2O/22:3

Hex2Cer 18:0;2O/22:3

C52H95NO13 (941.680306)


   

Hex2Cer 19:1;2O/21:2

Hex2Cer 19:1;2O/21:2

C52H95NO13 (941.680306)


   

Hex2Cer 18:1;2O/22:2

Hex2Cer 18:1;2O/22:2

C52H95NO13 (941.680306)


   

Hex2Cer 20:1;2O/20:2

Hex2Cer 20:1;2O/20:2

C52H95NO13 (941.680306)


   

Hex2Cer 20:2;2O/20:1

Hex2Cer 20:2;2O/20:1

C52H95NO13 (941.680306)


   

Hex2Cer 20:3;2O/20:0

Hex2Cer 20:3;2O/20:0

C52H95NO13 (941.680306)


   

Hex2Cer 19:3;2O/21:0

Hex2Cer 19:3;2O/21:0

C52H95NO13 (941.680306)


   

Hex2Cer 20:0;2O/20:3

Hex2Cer 20:0;2O/20:3

C52H95NO13 (941.680306)


   

Hex2Cer 16:2;2O/24:1

Hex2Cer 16:2;2O/24:1

C52H95NO13 (941.680306)


   

Hex2Cer 19:2;2O/21:1

Hex2Cer 19:2;2O/21:1

C52H95NO13 (941.680306)


   

Hex2Cer 18:3;2O/22:0

Hex2Cer 18:3;2O/22:0

C52H95NO13 (941.680306)


   

Hex2Cer 18:2;2O/22:1

Hex2Cer 18:2;2O/22:1

C52H95NO13 (941.680306)


   

Hex2Cer 17:3;2O/23:0

Hex2Cer 17:3;2O/23:0

C52H95NO13 (941.680306)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (18Z,21Z,24Z,27Z,30Z,33Z,36Z,39Z)-dotetraconta-18,21,24,27,30,33,36,39-octaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (18Z,21Z,24Z,27Z,30Z,33Z,36Z,39Z)-dotetraconta-18,21,24,27,30,33,36,39-octaenoate

C56H96NO8P (941.6873185999999)


   

[3-octanoyloxy-2-[(16Z,19Z,22Z,25Z,28Z,31Z,34Z,37Z)-tetraconta-16,19,22,25,28,31,34,37-octaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-octanoyloxy-2-[(16Z,19Z,22Z,25Z,28Z,31Z,34Z,37Z)-tetraconta-16,19,22,25,28,31,34,37-octaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

[2-[(17Z,20Z,23Z,26Z,29Z)-dotriaconta-17,20,23,26,29-pentaenoyl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(17Z,20Z,23Z,26Z,29Z)-dotriaconta-17,20,23,26,29-pentaenoyl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

[3-[(Z)-docos-13-enoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-docos-13-enoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

[3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-2-[(15Z,18Z,21Z,24Z,27Z)-triaconta-15,18,21,24,27-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-2-[(15Z,18Z,21Z,24Z,27Z)-triaconta-15,18,21,24,27-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

[3-[(Z)-tetradec-9-enoyl]oxy-2-[(13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-13,16,19,22,25,28,31-heptaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-tetradec-9-enoyl]oxy-2-[(13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-13,16,19,22,25,28,31-heptaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

[2-[(11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-11,14,17,20,23,26,29-heptaenoyl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-11,14,17,20,23,26,29-heptaenoyl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

[3-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-2-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-2-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

[3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-2-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-2-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

[3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-2-[(12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-2-[(12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

[3-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

[3-tetradecanoyloxy-2-[(10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-10,13,16,19,22,25,28,31-octaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-tetradecanoyloxy-2-[(10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-10,13,16,19,22,25,28,31-octaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

[3-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

[3-dodecanoyloxy-2-[(12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-12,15,18,21,24,27,30,33-octaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-dodecanoyloxy-2-[(12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-12,15,18,21,24,27,30,33-octaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

[3-octadecanoyloxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-octadecanoyloxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

[2-[(20Z,23Z,26Z,29Z)-dotriaconta-20,23,26,29-tetraenoyl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(20Z,23Z,26Z,29Z)-dotriaconta-20,23,26,29-tetraenoyl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

[2-[(14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-14,17,20,23,26,29-hexaenoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-14,17,20,23,26,29-hexaenoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

[3-decanoyloxy-2-[(14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-14,17,20,23,26,29,32,35-octaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-decanoyloxy-2-[(14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-14,17,20,23,26,29,32,35-octaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

[2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

[2-[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]oxy-3-hexadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]oxy-3-hexadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(16Z,19Z,22Z)-triaconta-16,19,22-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(16Z,19Z,22Z)-triaconta-16,19,22-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-2-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-2-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

[3-[(Z)-icos-11-enoyl]oxy-2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-icos-11-enoyl]oxy-2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

[3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-2-[(18Z,21Z,24Z,27Z)-triaconta-18,21,24,27-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-2-[(18Z,21Z,24Z,27Z)-triaconta-18,21,24,27-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

[3-[(Z)-octadec-9-enoyl]oxy-2-[(9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-octadec-9-enoyl]oxy-2-[(9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

2,3-bis[[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxy]propyl 2-(trimethylazaniumyl)ethyl phosphate

2,3-bis[[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxy]propyl 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyhexacosan-2-yl]acetamide

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyhexacosan-2-yl]acetamide

C46H87NO18 (941.5922842)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradeca-4,8,12-trien-2-yl]hexacosanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradeca-4,8,12-trien-2-yl]hexacosanamide

C52H95NO13 (941.680306)


   

(7Z,10Z,13Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetracosan-2-yl]hexadeca-7,10,13-trienamide

(7Z,10Z,13Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetracosan-2-yl]hexadeca-7,10,13-trienamide

C52H95NO13 (941.680306)


   

(19Z,22Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydec-4-en-2-yl]triaconta-19,22-dienamide

(19Z,22Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydec-4-en-2-yl]triaconta-19,22-dienamide

C52H95NO13 (941.680306)


   

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydocosan-2-yl]hexanamide

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydocosan-2-yl]hexanamide

C46H87NO18 (941.5922842)


   

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydecan-2-yl]octadecanamide

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydecan-2-yl]octadecanamide

C46H87NO18 (941.5922842)


   

(Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytricosa-4,8-dien-2-yl]heptadec-9-enamide

(Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytricosa-4,8-dien-2-yl]heptadec-9-enamide

C52H95NO13 (941.680306)


   

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyhenicosan-2-yl]heptanamide

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyhenicosan-2-yl]heptanamide

C46H87NO18 (941.5922842)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydocosa-4,8,12-trien-2-yl]octadecanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydocosa-4,8,12-trien-2-yl]octadecanamide

C52H95NO13 (941.680306)


   

(15Z,18Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradec-4-en-2-yl]hexacosa-15,18-dienamide

(15Z,18Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradec-4-en-2-yl]hexacosa-15,18-dienamide

C52H95NO13 (941.680306)


   

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoctadecan-2-yl]decanamide

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoctadecan-2-yl]decanamide

C46H87NO18 (941.5922842)


   

(9Z,12Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytricos-4-en-2-yl]heptadeca-9,12-dienamide

(9Z,12Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytricos-4-en-2-yl]heptadeca-9,12-dienamide

C52H95NO13 (941.680306)


   

(12Z,15Z,18Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradecan-2-yl]hexacosa-12,15,18-trienamide

(12Z,15Z,18Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradecan-2-yl]hexacosa-12,15,18-trienamide

C52H95NO13 (941.680306)


   

(Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradeca-4,8-dien-2-yl]hexacos-15-enamide

(Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradeca-4,8-dien-2-yl]hexacos-15-enamide

C52H95NO13 (941.680306)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhentriaconta-4,8,12-trien-2-yl]nonanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhentriaconta-4,8,12-trien-2-yl]nonanamide

C52H95NO13 (941.680306)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytriaconta-4,8,12-trien-2-yl]decanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytriaconta-4,8,12-trien-2-yl]decanamide

C52H95NO13 (941.680306)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytritriaconta-4,8,12-trien-2-yl]heptanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytritriaconta-4,8,12-trien-2-yl]heptanamide

C52H95NO13 (941.680306)


   

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytetracosan-2-yl]butanamide

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytetracosan-2-yl]butanamide

C46H87NO18 (941.5922842)


   

(17Z,20Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodec-4-en-2-yl]octacosa-17,20-dienamide

(17Z,20Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodec-4-en-2-yl]octacosa-17,20-dienamide

C52H95NO13 (941.680306)


   

(21Z,24Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]dotriaconta-21,24-dienamide

(21Z,24Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]dotriaconta-21,24-dienamide

C52H95NO13 (941.680306)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyheptatriaconta-4,8,12-trien-2-yl]propanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyheptatriaconta-4,8,12-trien-2-yl]propanamide

C52H95NO13 (941.680306)


   

(16Z,19Z,22Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydecan-2-yl]triaconta-16,19,22-trienamide

(16Z,19Z,22Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydecan-2-yl]triaconta-16,19,22-trienamide

C52H95NO13 (941.680306)


   

(Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodeca-4,8-dien-2-yl]octacos-17-enamide

(Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodeca-4,8-dien-2-yl]octacos-17-enamide

C52H95NO13 (941.680306)


   

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyundecan-2-yl]heptadecanamide

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyundecan-2-yl]heptadecanamide

C46H87NO18 (941.5922842)


   

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxypentacosan-2-yl]propanamide

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxypentacosan-2-yl]propanamide

C46H87NO18 (941.5922842)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetracosa-4,8,12-trien-2-yl]hexadecanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetracosa-4,8,12-trien-2-yl]hexadecanamide

C52H95NO13 (941.680306)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyheptacosa-4,8,12-trien-2-yl]tridecanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyheptacosa-4,8,12-trien-2-yl]tridecanamide

C52H95NO13 (941.680306)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetratriaconta-4,8,12-trien-2-yl]hexanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetratriaconta-4,8,12-trien-2-yl]hexanamide

C52H95NO13 (941.680306)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctacosa-4,8,12-trien-2-yl]dodecanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctacosa-4,8,12-trien-2-yl]dodecanamide

C52H95NO13 (941.680306)


   

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyhexadecan-2-yl]dodecanamide

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyhexadecan-2-yl]dodecanamide

C46H87NO18 (941.5922842)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxypentadeca-4,8,12-trien-2-yl]pentacosanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxypentadeca-4,8,12-trien-2-yl]pentacosanamide

C52H95NO13 (941.680306)


   

(Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyheptacosa-4,8-dien-2-yl]tridec-9-enamide

(Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyheptacosa-4,8-dien-2-yl]tridec-9-enamide

C52H95NO13 (941.680306)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydotriaconta-4,8,12-trien-2-yl]octanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydotriaconta-4,8,12-trien-2-yl]octanamide

C52H95NO13 (941.680306)


   

(14Z,17Z,20Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodecan-2-yl]octacosa-14,17,20-trienamide

(14Z,17Z,20Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodecan-2-yl]octacosa-14,17,20-trienamide

C52H95NO13 (941.680306)


   

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytridecan-2-yl]pentadecanamide

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytridecan-2-yl]pentadecanamide

C46H87NO18 (941.5922842)


   

(9Z,12Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetracos-4-en-2-yl]hexadeca-9,12-dienamide

(9Z,12Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetracos-4-en-2-yl]hexadeca-9,12-dienamide

C52H95NO13 (941.680306)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhexacosa-4,8,12-trien-2-yl]tetradecanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhexacosa-4,8,12-trien-2-yl]tetradecanamide

C52H95NO13 (941.680306)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytricosa-4,8,12-trien-2-yl]heptadecanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytricosa-4,8,12-trien-2-yl]heptadecanamide

C52H95NO13 (941.680306)


   

(Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhenicosa-4,8-dien-2-yl]nonadec-9-enamide

(Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhenicosa-4,8-dien-2-yl]nonadec-9-enamide

C52H95NO13 (941.680306)


   

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoctan-2-yl]icosanamide

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoctan-2-yl]icosanamide

C46H87NO18 (941.5922842)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhexatriaconta-4,8,12-trien-2-yl]butanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhexatriaconta-4,8,12-trien-2-yl]butanamide

C52H95NO13 (941.680306)


   

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxypentadecan-2-yl]tridecanamide

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxypentadecan-2-yl]tridecanamide

C46H87NO18 (941.5922842)


   

(9Z,12Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydocos-4-en-2-yl]octadeca-9,12-dienamide

(9Z,12Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydocos-4-en-2-yl]octadeca-9,12-dienamide

C52H95NO13 (941.680306)


   

(9Z,12Z,15Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydocosan-2-yl]octadeca-9,12,15-trienamide

(9Z,12Z,15Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydocosan-2-yl]octadeca-9,12,15-trienamide

C52H95NO13 (941.680306)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxypentacosa-4,8,12-trien-2-yl]pentadecanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxypentacosa-4,8,12-trien-2-yl]pentadecanamide

C52H95NO13 (941.680306)


   

(Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydocosa-4,8-dien-2-yl]octadec-9-enamide

(Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydocosa-4,8-dien-2-yl]octadec-9-enamide

C52H95NO13 (941.680306)


   

(Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhexacosa-4,8-dien-2-yl]tetradec-9-enamide

(Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhexacosa-4,8-dien-2-yl]tetradec-9-enamide

C52H95NO13 (941.680306)


   

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyicosan-2-yl]octanamide

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyicosan-2-yl]octanamide

C46H87NO18 (941.5922842)


   

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytetradecan-2-yl]tetradecanamide

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytetradecan-2-yl]tetradecanamide

C46H87NO18 (941.5922842)


   

(9Z,12Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhenicos-4-en-2-yl]nonadeca-9,12-dienamide

(9Z,12Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhenicos-4-en-2-yl]nonadeca-9,12-dienamide

C52H95NO13 (941.680306)


   

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyheptadecan-2-yl]undecanamide

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyheptadecan-2-yl]undecanamide

C46H87NO18 (941.5922842)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctatriaconta-4,8,12-trien-2-yl]acetamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctatriaconta-4,8,12-trien-2-yl]acetamide

C52H95NO13 (941.680306)


   

(Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxypentacosa-4,8-dien-2-yl]pentadec-9-enamide

(Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxypentacosa-4,8-dien-2-yl]pentadec-9-enamide

C52H95NO13 (941.680306)


   

(Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetracosa-4,8-dien-2-yl]hexadec-9-enamide

(Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetracosa-4,8-dien-2-yl]hexadec-9-enamide

C52H95NO13 (941.680306)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxynonacosa-4,8,12-trien-2-yl]undecanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxynonacosa-4,8,12-trien-2-yl]undecanamide

C52H95NO13 (941.680306)


   

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydodecan-2-yl]hexadecanamide

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydodecan-2-yl]hexadecanamide

C46H87NO18 (941.5922842)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxypentatriaconta-4,8,12-trien-2-yl]pentanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxypentatriaconta-4,8,12-trien-2-yl]pentanamide

C52H95NO13 (941.680306)


   

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytricosan-2-yl]pentanamide

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytricosan-2-yl]pentanamide

C46H87NO18 (941.5922842)


   

(18Z,21Z,24Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctan-2-yl]dotriaconta-18,21,24-trienamide

(18Z,21Z,24Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctan-2-yl]dotriaconta-18,21,24-trienamide

C52H95NO13 (941.680306)


   

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxynonan-2-yl]nonadecanamide

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxynonan-2-yl]nonadecanamide

C46H87NO18 (941.5922842)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhenicosa-4,8,12-trien-2-yl]nonadecanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhenicosa-4,8,12-trien-2-yl]nonadecanamide

C52H95NO13 (941.680306)


   

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxynonadecan-2-yl]nonanamide

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxynonadecan-2-yl]nonanamide

C46H87NO18 (941.5922842)


   

[(2R)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(5E,9E)-hexacosa-5,9-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(5E,9E)-hexacosa-5,9-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

[(2R)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(5E,9E)-hexacosa-5,9-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(5E,9E)-hexacosa-5,9-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

[(2R)-2,3-bis[[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2,3-bis[[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H96NO8P (941.6873185999999)


   

Hex2Cer(39:4)

Hex2Cer(t17:0_22:4)

C51H91NO14 (941.6439226)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

Hex2Cer(40:3)

Hex2Cer(d18:1_22:2)

C52H95NO13 (941.680306)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   

Hex2Cer 14:1;O2/26:2

Hex2Cer 14:1;O2/26:2

C52H95NO13 (941.680306)


   

Hex2Cer 14:2;O2/26:1

Hex2Cer 14:2;O2/26:1

C52H95NO13 (941.680306)


   

Hex2Cer 16:2;O2/24:1

Hex2Cer 16:2;O2/24:1

C52H95NO13 (941.680306)


   

Hex2Cer 18:1;O2/22:2

Hex2Cer 18:1;O2/22:2

C52H95NO13 (941.680306)


   

Hex2Cer 18:2;O2/22:1

Hex2Cer 18:2;O2/22:1

C52H95NO13 (941.680306)


   

Hex2Cer 20:0;O2/20:3

Hex2Cer 20:0;O2/20:3

C52H95NO13 (941.680306)


   

Hex2Cer 20:1;O2/20:2

Hex2Cer 20:1;O2/20:2

C52H95NO13 (941.680306)


   

Hex2Cer 20:2;O2/20:1

Hex2Cer 20:2;O2/20:1

C52H95NO13 (941.680306)


   

Hex2Cer 22:0;O2/18:3

Hex2Cer 22:0;O2/18:3

C52H95NO13 (941.680306)


   

Hex2Cer 22:1;O2/18:2

Hex2Cer 22:1;O2/18:2

C52H95NO13 (941.680306)


   

Hex2Cer 22:2;O2/18:1

Hex2Cer 22:2;O2/18:1

C52H95NO13 (941.680306)


   
   

LacCer 14:1;O2/26:2

LacCer 14:1;O2/26:2

C52H95NO13 (941.680306)


   

LacCer 14:2;O2/26:1

LacCer 14:2;O2/26:1

C52H95NO13 (941.680306)


   

LacCer 16:2;O2/24:1

LacCer 16:2;O2/24:1

C52H95NO13 (941.680306)


   

LacCer 18:1;O2/22:2

LacCer 18:1;O2/22:2

C52H95NO13 (941.680306)


   

LacCer 18:2;O2/22:1

LacCer 18:2;O2/22:1

C52H95NO13 (941.680306)


   

LacCer 20:0;O2/20:3

LacCer 20:0;O2/20:3

C52H95NO13 (941.680306)


   

LacCer 20:1;O2/20:2

LacCer 20:1;O2/20:2

C52H95NO13 (941.680306)


   

LacCer 20:2;O2/20:1

LacCer 20:2;O2/20:1

C52H95NO13 (941.680306)


   

LacCer 22:0;O2/18:3

LacCer 22:0;O2/18:3

C52H95NO13 (941.680306)


   

LacCer 22:1;O2/18:2

LacCer 22:1;O2/18:2

C52H95NO13 (941.680306)


   

LacCer 22:2;O2/18:1

LacCer 22:2;O2/18:1

C52H95NO13 (941.680306)


   
   
   
   
   
   
   

BiotinylPE(34:2)

BiotinylPE(16:0_18:2)

C49H88N3O10PS (941.5927718)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved