Exact Mass: 935.6638684

Exact Mass Matches: 935.6638684

Found 276 metabolites which its exact mass value is equals to given mass value 935.6638684, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PE(DiMe(13,5)/DiMe(13,5))

(2-aminoethoxy)[(2R)-2,3-bis({[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy})propoxy]phosphinic acid

C53H94NO10P (935.6614993999999)


PE(DiMe(13,5)/DiMe(13,5)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(DiMe(13,5)/DiMe(13,5)), in particular, consists of two chains of 14,17-epoxy-15-methyldocosa-14,16-dienoic at the C-1 and C-2 positions. The 14,17-epoxy-15-methyldocosa-14,16-dienoic moieties are derived from fish oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE-NMe(13D5/13M5)

[(2R)-3-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}-2-{[13-(3-methyl-5-pentylfuran-2-yl)tridecanoyl]oxy}propoxy][2-(methylamino)ethoxy]phosphinic acid

C53H94NO10P (935.6614993999999)


PE-NMe(13D5/13M5) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(13D5/13M5), in particular, consists of one chain of 13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoic acid at the C-1 position and one chain of 13-(3-methyl-5-pentylfuran-2-yl)tridecanoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(13M5/13D5)

[(2R)-2-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}-3-{[13-(3-methyl-5-pentylfuran-2-yl)tridecanoyl]oxy}propoxy][2-(methylamino)ethoxy]phosphinic acid

C53H94NO10P (935.6614993999999)


PE-NMe(13M5/13D5) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(13M5/13D5), in particular, consists of one chain of 13-(3-methyl-5-pentylfuran-2-yl)tridecanoic acid at the C-1 position and one chain of 13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(11D5/13D5)

[(2R)-2-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}-3-{[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyl]oxy}propoxy][2-(dimethylamino)ethoxy]phosphinic acid

C53H94NO10P (935.6614993999999)


PE-NMe2(11D5/13D5) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(11D5/13D5), in particular, consists of one chain of 11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoic acid at the C-1 position and one chain of 13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(13D5/11D5)

[(2R)-3-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}-2-{[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyl]oxy}propoxy][2-(dimethylamino)ethoxy]phosphinic acid

C53H94NO10P (935.6614993999999)


PE-NMe2(13D5/11D5) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(13D5/11D5), in particular, consists of one chain of 13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoic acid at the C-1 position and one chain of 11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(13M5/13M5)

[(2R)-2,3-bis({[13-(3-methyl-5-pentylfuran-2-yl)tridecanoyl]oxy})propoxy][2-(dimethylamino)ethoxy]phosphinic acid

C53H94NO10P (935.6614993999999)


PE-NMe2(13M5/13M5) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(13M5/13M5), in particular, consists of one chain of 13-(3-methyl-5-pentylfuran-2-yl)tridecanoic acid at the C-1 position and one chain of 13-(3-methyl-5-pentylfuran-2-yl)tridecanoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PS(24:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

(2S)-2-amino-3-({hydroxy[(2R)-2-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-3-(tetracosanoyloxy)propoxy]phosphoryl}oxy)propanoic acid

C52H90NO11P (935.6251159999999)


PS(24:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(24:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one tetracosanoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/24:0)

(2S)-2-amino-3-({hydroxy[(2R)-3-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-2-(tetracosanoyloxy)propoxy]phosphoryl}oxy)propanoic acid

C52H90NO11P (935.6251159999999)


PS(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/24:0) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/24:0), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of tetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(24:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

(2S)-2-amino-3-({hydroxy[(2R)-2-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-3-(tetracosanoyloxy)propoxy]phosphoryl}oxy)propanoic acid

C52H90NO11P (935.6251159999999)


PS(24:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(24:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one tetracosanoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/24:0)

(2S)-2-amino-3-({hydroxy[(2R)-3-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-2-(tetracosanoyloxy)propoxy]phosphoryl}oxy)propanoic acid

C52H90NO11P (935.6251159999999)


PS(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/24:0) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/24:0), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of tetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(24:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

(2S)-2-amino-3-({hydroxy[(2R)-2-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-3-(tetracosanoyloxy)propoxy]phosphoryl}oxy)propanoic acid

C52H90NO11P (935.6251159999999)


PS(24:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(24:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one tetracosanoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/24:0)

(2S)-2-amino-3-{[hydroxy((2R)-3-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-2-(tetracosanoyloxy)propoxy)phosphoryl]oxy}propanoic acid

C52H90NO11P (935.6251159999999)


PS(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/24:0) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/24:0), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of tetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(24:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

(2S)-2-amino-3-{[hydroxy((2R)-2-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-3-(tetracosanoyloxy)propoxy)phosphoryl]oxy}propanoic acid

C52H90NO11P (935.6251159999999)


PS(24:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(24:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one tetracosanoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/24:0)

(2S)-2-amino-3-{[hydroxy((2R)-3-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-2-(tetracosanoyloxy)propoxy)phosphoryl]oxy}propanoic acid

C52H90NO11P (935.6251159999999)


PS(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/24:0) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/24:0), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of tetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(24:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

(2S)-2-amino-3-({hydroxy[(2R)-2-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}-3-(tetracosanoyloxy)propoxy]phosphoryl}oxy)propanoic acid

C52H90NO11P (935.6251159999999)


PS(24:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(24:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one tetracosanoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/24:0)

(2S)-2-amino-3-{[hydroxy((2R)-3-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}-2-(tetracosanoyloxy)propoxy)phosphoryl]oxy}propanoic acid

C52H90NO11P (935.6251159999999)


PS(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/24:0) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/24:0), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of tetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PC(DiMe(13,5)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

(2-{[(2R)-2-{[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-3-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C52H90NO11P (935.6251159999999)


PC(DiMe(13,5)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(13,5)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of one 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/DiMe(13,5))

(2-{[(2R)-3-{[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-2-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C52H90NO11P (935.6251159999999)


PC(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/DiMe(13,5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/DiMe(13,5)), in particular, consists of one chain of one Leukotriene B4 at the C-1 position and one chain of 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(13,5)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

(2-{[(2R)-2-{[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-3-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C52H90NO11P (935.6251159999999)


PC(DiMe(13,5)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(13,5)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of one 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/DiMe(13,5))

(2-{[(2R)-3-{[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-2-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C52H90NO11P (935.6251159999999)


PC(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/DiMe(13,5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/DiMe(13,5)), in particular, consists of one chain of one 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(13,5)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

(2-{[(2R)-2-{[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-3-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C52H90NO11P (935.6251159999999)


PC(DiMe(13,5)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(13,5)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of one 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/DiMe(13,5))

(2-{[(2R)-3-{[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-2-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C52H90NO11P (935.6251159999999)


PC(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/DiMe(13,5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/DiMe(13,5)), in particular, consists of one chain of one 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   
   
   
   
   
   
   

PS(24:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

PS(24:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

C52H90NO11P (935.6251159999999)


   

PS(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/24:0)

PS(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/24:0)

C52H90NO11P (935.6251159999999)


   

PS(24:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

PS(24:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

C52H90NO11P (935.6251159999999)


   

PS(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/24:0)

PS(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/24:0)

C52H90NO11P (935.6251159999999)


   

PC(DiMe(13,5)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

PC(DiMe(13,5)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

C52H90NO11P (935.6251159999999)


   

PC(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/DiMe(13,5))

PC(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/DiMe(13,5))

C52H90NO11P (935.6251159999999)


   

PC(DiMe(13,5)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

PC(DiMe(13,5)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

C52H90NO11P (935.6251159999999)


   

PC(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/DiMe(13,5))

PC(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/DiMe(13,5))

C52H90NO11P (935.6251159999999)


   

PC(DiMe(13,5)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

PC(DiMe(13,5)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

C52H90NO11P (935.6251159999999)


   

PC(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/DiMe(13,5))

PC(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/DiMe(13,5))

C52H90NO11P (935.6251159999999)


   

PS(24:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

PS(24:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

C52H90NO11P (935.6251159999999)


   

PS(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/24:0)

PS(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/24:0)

C52H90NO11P (935.6251159999999)


   

PS(24:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

PS(24:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

C52H90NO11P (935.6251159999999)


   

PS(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/24:0)

PS(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/24:0)

C52H90NO11P (935.6251159999999)


   

PS(24:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

PS(24:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

C52H90NO11P (935.6251159999999)


   

PS(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/24:0)

PS(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/24:0)

C52H90NO11P (935.6251159999999)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoxy]propan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoxy]propan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

C57H94NO7P (935.6767543999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoxy]propan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoxy]propan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

C57H94NO7P (935.6767543999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]propan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]propan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C57H94NO7P (935.6767543999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]propan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]propan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate

C57H94NO7P (935.6767543999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propan-2-yl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propan-2-yl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate

C57H94NO7P (935.6767543999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propan-2-yl] (10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propan-2-yl] (10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoate

C57H94NO7P (935.6767543999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]propan-2-yl] (11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]propan-2-yl] (11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoate

C57H94NO7P (935.6767543999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoxy]propan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoxy]propan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C57H94NO7P (935.6767543999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propan-2-yl] (13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propan-2-yl] (13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoate

C57H94NO7P (935.6767543999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C57H94NO7P (935.6767543999999)


   

2-amino-3-[[3-docosoxy-2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-docosoxy-2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C54H98NO9P (935.6978828)


   

2-amino-3-[hydroxy-[3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]-2-[(Z)-tetracos-13-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]-2-[(Z)-tetracos-13-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C54H98NO9P (935.6978828)


   

2-amino-3-[hydroxy-[3-[(13Z,16Z)-tetracosa-13,16-dienoxy]-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(13Z,16Z)-tetracosa-13,16-dienoxy]-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C54H98NO9P (935.6978828)


   

2-amino-3-[[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(15Z,18Z)-hexacosa-15,18-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(15Z,18Z)-hexacosa-15,18-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C54H98NO9P (935.6978828)


   

2-amino-3-[hydroxy-[2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxy-3-tetracosoxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxy-3-tetracosoxypropoxy]phosphoryl]oxypropanoic acid

C54H98NO9P (935.6978828)


   

2-amino-3-[[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(Z)-hexacos-15-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(Z)-hexacos-15-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C54H98NO9P (935.6978828)


   

2-amino-3-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C54H98NO9P (935.6978828)


   

2-amino-3-[[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C54H98NO9P (935.6978828)


   

2-amino-3-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-hexacosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-hexacosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C54H98NO9P (935.6978828)


   

2-amino-3-[[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C54H98NO9P (935.6978828)


   

2-amino-3-[[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-[(Z)-hexacos-15-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-[(Z)-hexacos-15-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C54H98NO9P (935.6978828)


   

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-hexacosoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-hexacosoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C54H98NO9P (935.6978828)


   

2-amino-3-[[3-[(Z)-docos-13-enoxy]-2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(Z)-docos-13-enoxy]-2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C54H98NO9P (935.6978828)


   

2-amino-3-[[2-docosanoyloxy-3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-docosanoyloxy-3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C54H98NO9P (935.6978828)


   

2-amino-3-[hydroxy-[2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxy-3-[(Z)-tetracos-13-enoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxy-3-[(Z)-tetracos-13-enoxy]propoxy]phosphoryl]oxypropanoic acid

C54H98NO9P (935.6978828)


   

2-amino-3-[hydroxy-[2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propoxy]phosphoryl]oxypropanoic acid

C54H98NO9P (935.6978828)


   

2-amino-3-[[2-[(Z)-docos-13-enoyl]oxy-3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(Z)-docos-13-enoyl]oxy-3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C54H98NO9P (935.6978828)


   

2-amino-3-[hydroxy-[2-tetracosanoyloxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-tetracosanoyloxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propoxy]phosphoryl]oxypropanoic acid

C54H98NO9P (935.6978828)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoate

C56H90NO8P (935.640371)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-7,10,13,16,19,22,25,28,31-nonaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-7,10,13,16,19,22,25,28,31-nonaenoate

C56H90NO8P (935.640371)


   

AHexCer (O-16:5)16:1;2O/18:4;O

AHexCer (O-16:5)16:1;2O/18:4;O

C56H89NO10 (935.6486134)


   

AHexCer (O-18:5)16:1;2O/16:4;O

AHexCer (O-18:5)16:1;2O/16:4;O

C56H89NO10 (935.6486134)


   

AHexCer (O-16:4)16:1;2O/18:5;O

AHexCer (O-16:4)16:1;2O/18:5;O

C56H89NO10 (935.6486134)


   

AHexCer (O-16:4)18:1;2O/16:5;O

AHexCer (O-16:4)18:1;2O/16:5;O

C56H89NO10 (935.6486134)


   

AHexCer (O-16:5)18:1;2O/16:4;O

AHexCer (O-16:5)18:1;2O/16:4;O

C56H89NO10 (935.6486134)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-6,9,12,15,18,21,24,27,30,33-decaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-6,9,12,15,18,21,24,27,30,33-decaenoate

C56H90NO8P (935.640371)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-8,11,14,17,20,23,26,29,32,35-decaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-8,11,14,17,20,23,26,29,32,35-decaenoate

C56H90NO8P (935.640371)


   

AHexCer (O-18:4)16:1;2O/16:5;O

AHexCer (O-18:4)16:1;2O/16:5;O

C56H89NO10 (935.6486134)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z,34Z,37Z)-tetraconta-7,10,13,16,19,22,25,28,31,34,37-undecaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z,34Z,37Z)-tetraconta-7,10,13,16,19,22,25,28,31,34,37-undecaenoate

C56H90NO8P (935.640371)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z,36Z,39Z)-dotetraconta-9,12,15,18,21,24,27,30,33,36,39-undecaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z,36Z,39Z)-dotetraconta-9,12,15,18,21,24,27,30,33,36,39-undecaenoate

C56H90NO8P (935.640371)


   

2-amino-3-[[3-[(Z)-henicos-11-enoyl]oxy-2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(Z)-henicos-11-enoyl]oxy-2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C53H94NO10P (935.6614993999999)


   

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-pentacosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-pentacosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C53H94NO10P (935.6614993999999)


   

[2-[(11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-11,14,17,20,23,26,29-heptaenoyl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-11,14,17,20,23,26,29-heptaenoyl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H90NO8P (935.640371)


   

[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H90NO8P (935.640371)


   

[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H90NO8P (935.640371)


   

[2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H90NO8P (935.640371)


   

[3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H90NO8P (935.640371)


   

[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H90NO8P (935.640371)


   

[3-octanoyloxy-2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z,34Z,37Z)-tetraconta-7,10,13,16,19,22,25,28,31,34,37-undecaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-octanoyloxy-2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z,34Z,37Z)-tetraconta-7,10,13,16,19,22,25,28,31,34,37-undecaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H90NO8P (935.640371)


   

[2-[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H90NO8P (935.640371)


   

[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H90NO8P (935.640371)


   

[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H90NO8P (935.640371)


   

[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H90NO8P (935.640371)


   

[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-2-[(12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-2-[(12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H90NO8P (935.640371)


   

[3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-2-[(9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-2-[(9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C56H90NO8P (935.640371)


   

2-amino-3-[[3-heptacosanoyloxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-heptacosanoyloxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C53H94NO10P (935.6614993999999)


   

(14Z,17Z,20Z,23Z,26Z,29Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctan-2-yl]dotriaconta-14,17,20,23,26,29-hexaenamide

(14Z,17Z,20Z,23Z,26Z,29Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctan-2-yl]dotriaconta-14,17,20,23,26,29-hexaenamide

C52H89NO13 (935.6333584)


   

(9Z,12Z,15Z)-N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydocosa-4,8,12-trien-2-yl]octadeca-9,12,15-trienamide

(9Z,12Z,15Z)-N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydocosa-4,8,12-trien-2-yl]octadeca-9,12,15-trienamide

C52H89NO13 (935.6333584)


   

(6Z,9Z,12Z,15Z,18Z,21Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhexadecan-2-yl]tetracosa-6,9,12,15,18,21-hexaenamide

(6Z,9Z,12Z,15Z,18Z,21Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhexadecan-2-yl]tetracosa-6,9,12,15,18,21-hexaenamide

C52H89NO13 (935.6333584)


   

(7Z,10Z,13Z)-N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetracosa-4,8,12-trien-2-yl]hexadeca-7,10,13-trienamide

(7Z,10Z,13Z)-N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetracosa-4,8,12-trien-2-yl]hexadeca-7,10,13-trienamide

C52H89NO13 (935.6333584)


   

(9Z,12Z,15Z,18Z,21Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhexadec-4-en-2-yl]tetracosa-9,12,15,18,21-pentaenamide

(9Z,12Z,15Z,18Z,21Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhexadec-4-en-2-yl]tetracosa-9,12,15,18,21-pentaenamide

C52H89NO13 (935.6333584)


   

(15Z,18Z,21Z,24Z,27Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydec-4-en-2-yl]triaconta-15,18,21,24,27-pentaenamide

(15Z,18Z,21Z,24Z,27Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydec-4-en-2-yl]triaconta-15,18,21,24,27-pentaenamide

C52H89NO13 (935.6333584)


   

(13Z,16Z,19Z,22Z,25Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodec-4-en-2-yl]octacosa-13,16,19,22,25-pentaenamide

(13Z,16Z,19Z,22Z,25Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodec-4-en-2-yl]octacosa-13,16,19,22,25-pentaenamide

C52H89NO13 (935.6333584)


   

(11Z,14Z,17Z,20Z,23Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradec-4-en-2-yl]hexacosa-11,14,17,20,23-pentaenamide

(11Z,14Z,17Z,20Z,23Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradec-4-en-2-yl]hexacosa-11,14,17,20,23-pentaenamide

C52H89NO13 (935.6333584)


   

(16Z,19Z,22Z,25Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodeca-4,8-dien-2-yl]octacosa-16,19,22,25-tetraenamide

(16Z,19Z,22Z,25Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodeca-4,8-dien-2-yl]octacosa-16,19,22,25-tetraenamide

C52H89NO13 (935.6333584)


   

(10Z,13Z,16Z,19Z,22Z,25Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodecan-2-yl]octacosa-10,13,16,19,22,25-hexaenamide

(10Z,13Z,16Z,19Z,22Z,25Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodecan-2-yl]octacosa-10,13,16,19,22,25-hexaenamide

C52H89NO13 (935.6333584)


   

(8Z,11Z,14Z,17Z,20Z,23Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradecan-2-yl]hexacosa-8,11,14,17,20,23-hexaenamide

(8Z,11Z,14Z,17Z,20Z,23Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradecan-2-yl]hexacosa-8,11,14,17,20,23-hexaenamide

C52H89NO13 (935.6333584)


   

(17Z,20Z,23Z,26Z,29Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]dotriaconta-17,20,23,26,29-pentaenamide

(17Z,20Z,23Z,26Z,29Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]dotriaconta-17,20,23,26,29-pentaenamide

C52H89NO13 (935.6333584)


   

(5Z,8Z,11Z,14Z,17Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyicos-4-en-2-yl]icosa-5,8,11,14,17-pentaenamide

(5Z,8Z,11Z,14Z,17Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyicos-4-en-2-yl]icosa-5,8,11,14,17-pentaenamide

C52H89NO13 (935.6333584)


   

(7Z,10Z,13Z,16Z,19Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctadec-4-en-2-yl]docosa-7,10,13,16,19-pentaenamide

(7Z,10Z,13Z,16Z,19Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctadec-4-en-2-yl]docosa-7,10,13,16,19-pentaenamide

C52H89NO13 (935.6333584)


   

(6Z,9Z,12Z,15Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydocosa-4,8-dien-2-yl]octadeca-6,9,12,15-tetraenamide

(6Z,9Z,12Z,15Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydocosa-4,8-dien-2-yl]octadeca-6,9,12,15-tetraenamide

C52H89NO13 (935.6333584)


   

(4Z,7Z,10Z,13Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetracosa-4,8-dien-2-yl]hexadeca-4,7,10,13-tetraenamide

(4Z,7Z,10Z,13Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetracosa-4,8-dien-2-yl]hexadeca-4,7,10,13-tetraenamide

C52H89NO13 (935.6333584)


   

(12Z,15Z,18Z)-N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradeca-4,8,12-trien-2-yl]hexacosa-12,15,18-trienamide

(12Z,15Z,18Z)-N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradeca-4,8,12-trien-2-yl]hexacosa-12,15,18-trienamide

C52H89NO13 (935.6333584)


   

(12Z,15Z,18Z,21Z,24Z,27Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydecan-2-yl]triaconta-12,15,18,21,24,27-hexaenamide

(12Z,15Z,18Z,21Z,24Z,27Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydecan-2-yl]triaconta-12,15,18,21,24,27-hexaenamide

C52H89NO13 (935.6333584)


   

(3Z,6Z,9Z,12Z,15Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydocos-4-en-2-yl]octadeca-3,6,9,12,15-pentaenamide

(3Z,6Z,9Z,12Z,15Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydocos-4-en-2-yl]octadeca-3,6,9,12,15-pentaenamide

C52H89NO13 (935.6333584)


   

(4Z,7Z,10Z,13Z,16Z,19Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctadecan-2-yl]docosa-4,7,10,13,16,19-hexaenamide

(4Z,7Z,10Z,13Z,16Z,19Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctadecan-2-yl]docosa-4,7,10,13,16,19-hexaenamide

C52H89NO13 (935.6333584)


   

(14Z,17Z,20Z,23Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradeca-4,8-dien-2-yl]hexacosa-14,17,20,23-tetraenamide

(14Z,17Z,20Z,23Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradeca-4,8-dien-2-yl]hexacosa-14,17,20,23-tetraenamide

C52H89NO13 (935.6333584)


   

(2S)-2-amino-3-[[(2R)-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-pentacosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-pentacosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C53H94NO10P (935.6614993999999)


   

(2S)-2-amino-3-[[(2R)-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-2-pentacosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-2-pentacosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C53H94NO10P (935.6614993999999)


   

(2S)-2-amino-3-[[(2R)-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-pentacosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-pentacosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C53H94NO10P (935.6614993999999)


   

(2S)-2-amino-3-[[(2R)-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-pentacosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-pentacosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C53H94NO10P (935.6614993999999)


   

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-7,10,13,16,19,22,25,28,31-nonaenoyl]amino]octadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-7,10,13,16,19,22,25,28,31-nonaenoyl]amino]octadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C57H96N2O6P+ (935.7005626)


   

2-[hydroxy-[(E)-3-hydroxy-2-[[(10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z,34Z,37Z)-tetraconta-10,13,16,19,22,25,28,31,34,37-decaenoyl]amino]dodec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E)-3-hydroxy-2-[[(10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z,34Z,37Z)-tetraconta-10,13,16,19,22,25,28,31,34,37-decaenoyl]amino]dodec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C57H96N2O6P+ (935.7005626)


   

2-[[(4E,8E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoyl]amino]-3-hydroxyicosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoyl]amino]-3-hydroxyicosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C57H96N2O6P+ (935.7005626)


   

2-[hydroxy-[3-hydroxy-2-[[(11Z,14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z,38Z,41Z)-tetratetraconta-11,14,17,20,23,26,29,32,35,38,41-undecaenoyl]amino]octoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-hydroxy-2-[[(11Z,14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z,38Z,41Z)-tetratetraconta-11,14,17,20,23,26,29,32,35,38,41-undecaenoyl]amino]octoxy]phosphoryl]oxyethyl-trimethylazanium

C57H96N2O6P+ (935.7005626)


   

2-[[(4E,8E,12E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]amino]-3-hydroxyicosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E,12E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]amino]-3-hydroxyicosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C57H96N2O6P+ (935.7005626)


   

2-[hydroxy-[(E)-3-hydroxy-2-[[(14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z,38Z,41Z)-tetratetraconta-14,17,20,23,26,29,32,35,38,41-decaenoyl]amino]oct-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E)-3-hydroxy-2-[[(14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z,38Z,41Z)-tetratetraconta-14,17,20,23,26,29,32,35,38,41-decaenoyl]amino]oct-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C57H96N2O6P+ (935.7005626)


   

2-[hydroxy-[3-hydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z,34Z,37Z)-tetraconta-7,10,13,16,19,22,25,28,31,34,37-undecaenoyl]amino]dodecoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-hydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z,34Z,37Z)-tetraconta-7,10,13,16,19,22,25,28,31,34,37-undecaenoyl]amino]dodecoxy]phosphoryl]oxyethyl-trimethylazanium

C57H96N2O6P+ (935.7005626)


   

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]amino]docosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]amino]docosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

C57H96N2O6P+ (935.7005626)


   

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(13Z,16Z,19Z,22Z,25Z,28Z,31Z,34Z,37Z)-tetraconta-13,16,19,22,25,28,31,34,37-nonaenoyl]amino]dodeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(13Z,16Z,19Z,22Z,25Z,28Z,31Z,34Z,37Z)-tetraconta-13,16,19,22,25,28,31,34,37-nonaenoyl]amino]dodeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C57H96N2O6P+ (935.7005626)


   

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-10,13,16,19,22,25,28,31-octaenoyl]amino]octadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-10,13,16,19,22,25,28,31-octaenoyl]amino]octadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

C57H96N2O6P+ (935.7005626)


   

2-[[(E)-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-6,9,12,15,18,21,24,27,30,33-decaenoyl]amino]-3-hydroxyhexadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(E)-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-6,9,12,15,18,21,24,27,30,33-decaenoyl]amino]-3-hydroxyhexadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C57H96N2O6P+ (935.7005626)


   

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(11Z,14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-11,14,17,20,23,26,29,32,35-nonaenoyl]amino]tetradeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(11Z,14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-11,14,17,20,23,26,29,32,35-nonaenoyl]amino]tetradeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C57H96N2O6P+ (935.7005626)


   

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-14,17,20,23,26,29,32,35-octaenoyl]amino]tetradeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-14,17,20,23,26,29,32,35-octaenoyl]amino]tetradeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

C57H96N2O6P+ (935.7005626)


   

2-[[(4E,8E,12E)-2-[[(12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-12,15,18,21,24,27,30,33-octaenoyl]amino]-3-hydroxyhexadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E,12E)-2-[[(12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-12,15,18,21,24,27,30,33-octaenoyl]amino]-3-hydroxyhexadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C57H96N2O6P+ (935.7005626)


   

2-[[(E)-2-[[(12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z,36Z,39Z)-dotetraconta-12,15,18,21,24,27,30,33,36,39-decaenoyl]amino]-3-hydroxydec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(E)-2-[[(12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z,36Z,39Z)-dotetraconta-12,15,18,21,24,27,30,33,36,39-decaenoyl]amino]-3-hydroxydec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C57H96N2O6P+ (935.7005626)


   

2-[hydroxy-[(E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-8,11,14,17,20,23,26,29,32,35-decaenoyl]amino]tetradec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-8,11,14,17,20,23,26,29,32,35-decaenoyl]amino]tetradec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C57H96N2O6P+ (935.7005626)


   

2-[[(4E,8E)-2-[[(9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-9,12,15,18,21,24,27,30,33-nonaenoyl]amino]-3-hydroxyhexadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E)-2-[[(9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-9,12,15,18,21,24,27,30,33-nonaenoyl]amino]-3-hydroxyhexadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C57H96N2O6P+ (935.7005626)


   

2-[[2-[[(9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z,36Z,39Z)-dotetraconta-9,12,15,18,21,24,27,30,33,36,39-undecaenoyl]amino]-3-hydroxydecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[[(9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z,36Z,39Z)-dotetraconta-9,12,15,18,21,24,27,30,33,36,39-undecaenoyl]amino]-3-hydroxydecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C57H96N2O6P+ (935.7005626)


   

ST(46:7)

ST(d20:2_26:5)

C52H89NO11S (935.6156004000001)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   

Hex2Cer 14:0;O2/24:0;O

Hex2Cer 14:0;O2/24:0;O

C50H97NO14 (935.6908702)


   

Hex2Cer 15:0;O2/23:0;O

Hex2Cer 15:0;O2/23:0;O

C50H97NO14 (935.6908702)


   

Hex2Cer 16:0;O2/22:0;O

Hex2Cer 16:0;O2/22:0;O

C50H97NO14 (935.6908702)


   
   

Hex2Cer 17:0;O2/21:0;O

Hex2Cer 17:0;O2/21:0;O

C50H97NO14 (935.6908702)


   

Hex2Cer 18:0;O2/20:0;O

Hex2Cer 18:0;O2/20:0;O

C50H97NO14 (935.6908702)


   
   
   
   

Hex2Cer 19:0;O2/19:0;O

Hex2Cer 19:0;O2/19:0;O

C50H97NO14 (935.6908702)


   

Hex2Cer 20:0;O2/18:0;O

Hex2Cer 20:0;O2/18:0;O

C50H97NO14 (935.6908702)


   
   
   

Hex2Cer 21:0;O2/17:0;O

Hex2Cer 21:0;O2/17:0;O

C50H97NO14 (935.6908702)


   

Hex2Cer 22:0;O2/16:0;O

Hex2Cer 22:0;O2/16:0;O

C50H97NO14 (935.6908702)


   
   
   
   

LacCer 14:0;O2/24:0;O

LacCer 14:0;O2/24:0;O

C50H97NO14 (935.6908702)


   

LacCer 15:0;O2/23:0;O

LacCer 15:0;O2/23:0;O

C50H97NO14 (935.6908702)


   

LacCer 16:0;O2/22:0;O

LacCer 16:0;O2/22:0;O

C50H97NO14 (935.6908702)


   
   

LacCer 17:0;O2/21:0;O

LacCer 17:0;O2/21:0;O

C50H97NO14 (935.6908702)


   

LacCer 18:0;O2/20:0;O

LacCer 18:0;O2/20:0;O

C50H97NO14 (935.6908702)


   
   
   
   

LacCer 19:0;O2/19:0;O

LacCer 19:0;O2/19:0;O

C50H97NO14 (935.6908702)


   

LacCer 20:0;O2/18:0;O

LacCer 20:0;O2/18:0;O

C50H97NO14 (935.6908702)


   
   
   

LacCer 21:0;O2/17:0;O

LacCer 21:0;O2/17:0;O

C50H97NO14 (935.6908702)


   

LacCer 22:0;O2/16:0;O

LacCer 22:0;O2/16:0;O

C50H97NO14 (935.6908702)


   
   
   
   
   
   
   
   
   
   
   
   
   
   

Hex2Cer(40:6)

Hex2Cer(d18:0_22:6)

C52H89NO13 (935.6333584)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved