Exact Mass: 928.6193024
Exact Mass Matches: 928.6193024
Found 327 metabolites which its exact mass value is equals to given mass value 928.6193024
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
PG(a-25:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))
PG(a-25:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-25:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of one 22-methyltetracosanoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/a-25:0)
PG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/a-25:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/a-25:0), in particular, consists of one chain of one Leukotriene B4 at the C-1 position and one chain of 22-methyltetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(a-25:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))
PG(a-25:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-25:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of one 22-methyltetracosanoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/a-25:0)
PG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/a-25:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/a-25:0), in particular, consists of one chain of one 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 22-methyltetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(a-25:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))
PG(a-25:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-25:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of one 22-methyltetracosanoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/a-25:0)
PG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/a-25:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/a-25:0), in particular, consists of one chain of one 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 22-methyltetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(i-24:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
PG(i-24:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-24:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 22-methyltricosanoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-24:0)
PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-24:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-24:0), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 22-methyltricosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PC(P-18:0/LTE4)
C49H89N2O10PS (928.5975224000001)
PC(P-18:0/LTE4) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-18:0/LTE4), in particular, consists of one chain of one 1Z-octadecenyl at the C-1 position and one chain of Leukotriene E4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(LTE4/P-18:0)
C49H89N2O10PS (928.5975224000001)
PC(LTE4/P-18:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(LTE4/P-18:0), in particular, consists of one chain of one Leukotriene E4 at the C-1 position and one chain of 1Z-octadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PI(19:0/22:4(7Z,10Z,13Z,16Z))
PI(20:4(5Z,8Z,11Z,14Z)/21:0)
PI(21:0/20:4(5Z,8Z,11Z,14Z))
PI(22:4(7Z,10Z,13Z,16Z)/19:0)
PI(O-20:0/22:4(7Z,10Z,13Z,16Z))
Tetraisopropyl di(dioctylphosphate) titanate
C44H98O12P2Ti (928.6012638000001)
phosphono [(6Z,10Z,14Z,18Z,22Z,26Z,30Z,34E,38E)-3,7,11,15,19,23,27,31,35,39,43-undecamethyltetratetraconta-6,10,14,18,22,26,30,34,38,42-decaenyl] hydrogen phosphate
2-[[(2R)-2-[7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]-6-oxoheptanoyl]oxy-3-[(13Z,16Z)-docosa-13,16-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-3-[7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]-6-oxoheptanoyl]oxy-2-[(13Z,16Z)-docosa-13,16-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-2-[(Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]oxan-3-yl]hept-5-enoyl]oxy-3-[(13Z,16Z)-docosa-13,16-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-3-[(Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]oxan-3-yl]hept-5-enoyl]oxy-2-[(13Z,16Z)-docosa-13,16-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-2-[7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]heptanoyloxy]-3-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-3-[7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]heptanoyloxy]-2-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] icosanoate
[1-[(9Z,12Z)-hexadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate
[1-hexacosoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propan-2-yl] (Z)-octadec-9-enoate
[1-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] hexadecanoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate
[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-hexacos-15-enoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (Z)-tetracos-13-enoate
[1-[(15Z,18Z)-hexacosa-15,18-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetracosoxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propan-2-yl] octadecanoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (13Z,16Z)-docosa-13,16-dienoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-icosoxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetracos-13-enoxy]propan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
[1-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-icos-11-enoate
[1-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-hexadec-9-enoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octadecoxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate
[1-hexadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] (Z)-docos-13-enoate
[1-[(13Z,16Z)-docosa-13,16-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate
[1-[(Z)-hexadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate
[1-[(Z)-hexacos-15-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate
[1-docosoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] tetracosanoate
[1-[(Z)-docos-13-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] docosanoate
[1-[(11Z,14Z)-henicosa-11,14-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate
[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] hexacosanoate
[1-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate
[6-[3-[(Z)-docos-13-enoyl]oxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[6-[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-[(Z)-henicos-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[6-[3-docosanoyloxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] nonadecanoate
[1-[(Z)-pentadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate
[1-tridecanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate
6-[2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
[6-[3-hexacosanoyloxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[6-[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-icosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[1-[(Z)-heptadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate
[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxypropyl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate
[6-[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(Z)-icos-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
6-[3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
6-[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
[1-heptadecanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
6-[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-tetracosanoyloxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
[3,4,5-trihydroxy-6-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-[(Z)-tetracos-13-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
6-[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(Z)-tetracos-13-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
[6-[3-[(Z)-hexacos-15-enoyl]oxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[1-pentadecanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate
[3,4,5-trihydroxy-6-[3-[(Z)-octadec-9-enoyl]oxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[6-[2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[1-[(Z)-tetradec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate
6-[2-[(Z)-hexacos-15-enoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
[1-[(Z)-hexadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate
6-[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (Z)-nonadec-9-enoate
[3,4,5-trihydroxy-6-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-tetracosanoyloxypropoxy]oxan-2-yl]methanesulfonic acid
[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (Z)-octadec-9-enoate
[1-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate
[1-heptadecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate
[1-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonadecanoyloxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
[3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropyl] (Z)-henicos-11-enoate
[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] pentacosanoate
[3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropyl] henicosanoate
[3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] tricosanoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate
[2-[(9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate
[2-[(7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-3-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] (9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoate
[2-[(9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[2-[(7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate
[2-[(9Z,11Z,13Z,15Z)-henicosa-9,11,13,15-tetraenoyl]oxy-3-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate
[3-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienoyl]oxy-2-[(7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate
[2-[(7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-3-[(7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate
[1-[(7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate
[2-[(4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate
[2-[(7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoyl]oxy-3-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate
[2-[(4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[1-[(7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-3-[(4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoate
[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropan-2-yl] henicosanoate
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,11E)-octadeca-9,11-dienoyl]oxy-2-[(E)-tetracos-15-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-6-[(2S)-3-[(E)-docos-13-enoyl]oxy-2-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-[(E)-tetracos-15-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-nonadecanoyloxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E)-octadeca-6,9-dienoyl]oxy-2-[(E)-tetracos-15-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-[(E)-tetracos-15-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-6-[(2S)-3-[(13E,16E)-docosa-13,16-dienoyl]oxy-2-[(E)-icos-13-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (2E,4E)-octadeca-2,4-dienoate
[(2S,3S,6S)-6-[(2S)-3-[(5E,9E)-hexacosa-5,9-dienoyl]oxy-2-[(E)-hexadec-7-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-6-[(2S)-2-[(5E,9E)-hexacosa-5,9-dienoyl]oxy-3-[(E)-hexadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-6-[(2S)-2-[(13E,16E)-docosa-13,16-dienoyl]oxy-3-[(E)-icos-13-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate
[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropyl] henicosanoate
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] tricosanoate
[(2R)-2-pentadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate
[(2S,3S,6S)-6-[3-[(E)-hexacos-11-enoyl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S)-2-heptadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate
[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropan-2-yl] henicosanoate
[(2S)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-octadec-6-enoate
[(2S)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-octadec-4-enoate
[(2S,3S,6S)-6-[(2S)-2-[(E)-docos-13-enoyl]oxy-3-[(5E,8E)-icosa-5,8-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-[(E)-tetracos-15-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (6E,9E)-octadeca-6,9-dienoate
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-[(E)-tetracos-15-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S)-1-[(E)-heptadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate
[(2S,3S,6S)-6-[3-hexacosanoyloxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-6-[(2S)-3-[(5E,9E)-hexacosa-5,9-dienoyl]oxy-2-[(E)-hexadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-6-[(2S)-3-docosanoyloxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] tricosanoate
[(2S)-1-[(E)-heptadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate
[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (E)-octadec-9-enoate
[(2S)-1-[(E)-heptadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate
[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (9E,12E)-octadeca-9,12-dienoate
[2-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoate
[(2S)-2-heptadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate
[(2S,3S,6S)-6-[(2S)-3-docosanoyloxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] tricosanoate
[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (9E,11E)-octadeca-9,11-dienoate
[(2S,3S,6S)-6-[(2S)-2-docosanoyloxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-[(E)-tetracos-15-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-6-[(2S)-2-[(13E,16E)-docosa-13,16-dienoyl]oxy-3-[(E)-icos-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-tetracosanoyloxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] octadec-17-enoate
[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (E)-octadec-11-enoate
[(2S)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-octadec-7-enoate
[(2S)-1-pentadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate
[(2S)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] octadec-17-enoate
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-tetracosanoyloxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-octadec-13-enoate
[(2R)-2-pentadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate
[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-pentacos-11-enoate
[(2S)-1-heptadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate
[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (E)-octadec-4-enoate
[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (11E,14E)-pentacosa-11,14-dienoate
[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (E)-octadec-13-enoate
[(2S,3S,6S)-6-[(2S)-3-[(13E,16E)-docosa-13,16-dienoyl]oxy-2-[(E)-icos-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S)-2-heptadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate
[(2S,3S,6S)-6-[(2S)-2-[(5E,9E)-hexacosa-5,9-dienoyl]oxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-6-[(2S)-3-[(E)-docos-13-enoyl]oxy-2-[(5E,8E)-icosa-5,8-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropyl] henicosanoate
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-tetracosanoyloxypropoxy]oxan-2-yl]methanesulfonic acid
[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (5E,8E)-icosa-5,8-dienoate
[(2R)-1-heptadecanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate
[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] pentacosanoate
[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (11E,14E)-icosa-11,14-dienoate
[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-nonadecanoyloxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate
[(2S)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-octadec-11-enoate
[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E)-octadeca-9,12-dienoyl]oxy-2-[(E)-tetracos-15-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S)-1-[(E)-heptadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate
[(2S,3S,6S)-6-[(2S)-2-docosanoyloxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S)-1-pentadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate
[(2S)-1-heptadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate
[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (E)-octadec-7-enoate
[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] nonadecanoate
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-tetracosanoyloxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] tricosanoate
[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-nonadec-9-enoate
[(2S)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-octadec-9-enoate
[(2S,3S,6S)-6-[(2S)-2-[(E)-docos-13-enoyl]oxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (E)-octadec-6-enoate
2-[carboxy-[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium
2-[carboxy-[2-[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium
2-[carboxy-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium
2-[carboxy-[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-2-[(9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium
2-[2,3-bis[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxy]propoxy-carboxymethoxy]ethyl-trimethylazanium
2-[carboxy-[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium
2-[carboxy-[3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium
2-[carboxy-[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoyl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]methoxy]ethyl-trimethylazanium
DGDG(36:3)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
SQDG(42:3)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
DGDG(35:3)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved