Exact Mass: 928.4221304

Exact Mass Matches: 928.4221304

Found 84 metabolites which its exact mass value is equals to given mass value 928.4221304, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PGP(18:3(6Z,9Z,12Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

[(2S)-3-({[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C46H74O15P2 (928.4502714)


PGP(18:3(6Z,9Z,12Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:3(6Z,9Z,12Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one 6Z,9Z,12Z-octadecatrienoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:3(6Z,9Z,12Z))

[(2S)-3-({[(2R)-3-{[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C46H74O15P2 (928.4502714)


PGP(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:3(6Z,9Z,12Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of 6Z,9Z,12Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

[(2S)-3-({[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C46H74O15P2 (928.4502714)


PGP(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one 6Z,9Z,12Z-octadecatrienoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:3(6Z,9Z,12Z))

[(2S)-3-({[(2R)-3-{[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C46H74O15P2 (928.4502714)


PGP(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:3(6Z,9Z,12Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of 6Z,9Z,12Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:3(9Z,12Z,15Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

[(2S)-3-({[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C46H74O15P2 (928.4502714)


PGP(18:3(9Z,12Z,15Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:3(9Z,12Z,15Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one 9Z,12Z,15Z-octadecatrienoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:3(9Z,12Z,15Z))

[(2S)-3-({[(2R)-3-{[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C46H74O15P2 (928.4502714)


PGP(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:3(9Z,12Z,15Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of 9Z,12Z,15Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

[(2S)-3-({[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C46H74O15P2 (928.4502714)


PGP(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one 9Z,12Z,15Z-octadecatrienoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:3(9Z,12Z,15Z))

[(2S)-3-({[(2R)-3-{[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C46H74O15P2 (928.4502714)


PGP(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:3(9Z,12Z,15Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of 9Z,12Z,15Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(5Z,8Z,11Z,14Z)/PGJ2)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C46H74O15P2 (928.4502714)


PGP(20:4(5Z,8Z,11Z,14Z)/PGJ2) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(5Z,8Z,11Z,14Z)/PGJ2), in particular, consists of one chain of one 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(PGJ2/20:4(5Z,8Z,11Z,14Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C46H74O15P2 (928.4502714)


PGP(PGJ2/20:4(5Z,8Z,11Z,14Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGJ2/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(8Z,11Z,14Z,17Z)/PGJ2)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C46H74O15P2 (928.4502714)


PGP(20:4(8Z,11Z,14Z,17Z)/PGJ2) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(8Z,11Z,14Z,17Z)/PGJ2), in particular, consists of one chain of one 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(PGJ2/20:4(8Z,11Z,14Z,17Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C46H74O15P2 (928.4502714)


PGP(PGJ2/20:4(8Z,11Z,14Z,17Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGJ2/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PIP(16:0/18:2(10E,12Z)+=O(9))

{[(1R,3S)-3-({[(2R)-3-(hexadecanoyloxy)-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C43H78O17P2 (928.4713998000001)


PIP(16:0/18:2(10E,12Z)+=O(9)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(16:0/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of hexadecanoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:2(10E,12Z)+=O(9)/16:0)

{[(1R,3S)-3-({[(2R)-2-(hexadecanoyloxy)-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C43H78O17P2 (928.4713998000001)


PIP(18:2(10E,12Z)+=O(9)/16:0) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:2(10E,12Z)+=O(9)/16:0), in particular, consists of one chain of 9-oxo-octadecadienoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(16:0/18:2(9Z,11E)+=O(13))

{[(1R,3S)-3-({[(2R)-3-(hexadecanoyloxy)-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C43H78O17P2 (928.4713998000001)


PIP(16:0/18:2(9Z,11E)+=O(13)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(16:0/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of hexadecanoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:2(9Z,11E)+=O(13)/16:0)

{[(1R,3S)-3-({[(2R)-2-(hexadecanoyloxy)-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C43H78O17P2 (928.4713998000001)


PIP(18:2(9Z,11E)+=O(13)/16:0) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:2(9Z,11E)+=O(13)/16:0), in particular, consists of one chain of 13-oxo-octadecadienoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(16:0/18:3(10,12,15)-OH(9))

{[(1R,3S)-3-({[(2R)-3-(hexadecanoyloxy)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C43H78O17P2 (928.4713998000001)


PIP(16:0/18:3(10,12,15)-OH(9)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(16:0/18:3(10,12,15)-OH(9)), in particular, consists of one chain of hexadecanoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:3(10,12,15)-OH(9)/16:0)

{[(1R,3S)-3-({[(2R)-2-(hexadecanoyloxy)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C43H78O17P2 (928.4713998000001)


PIP(18:3(10,12,15)-OH(9)/16:0) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:3(10,12,15)-OH(9)/16:0), in particular, consists of one chain of 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(16:0/18:3(9,11,15)-OH(13))

{[(1R,3S)-3-({[(2R)-3-(hexadecanoyloxy)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C43H78O17P2 (928.4713998000001)


PIP(16:0/18:3(9,11,15)-OH(13)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(16:0/18:3(9,11,15)-OH(13)), in particular, consists of one chain of hexadecanoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:3(9,11,15)-OH(13)/16:0)

{[(1R,3S)-3-({[(2R)-2-(hexadecanoyloxy)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C43H78O17P2 (928.4713998000001)


PIP(18:3(9,11,15)-OH(13)/16:0) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:3(9,11,15)-OH(13)/16:0), in particular, consists of one chain of 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(16:1(9Z)/18:1(12Z)-O(9S,10R))

{[(1R,3S)-3-({[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C43H78O17P2 (928.4713998000001)


PIP(16:1(9Z)/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(16:1(9Z)/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of 9Z-hexadecenoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:1(12Z)-O(9S,10R)/16:1(9Z))

{[(1R,3S)-3-({[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C43H78O17P2 (928.4713998000001)


PIP(18:1(12Z)-O(9S,10R)/16:1(9Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:1(12Z)-O(9S,10R)/16:1(9Z)), in particular, consists of one chain of 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 9Z-hexadecenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(16:1(9Z)/18:1(9Z)-O(12,13))

{[(1R,3S)-3-({[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C43H78O17P2 (928.4713998000001)


PIP(16:1(9Z)/18:1(9Z)-O(12,13)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(16:1(9Z)/18:1(9Z)-O(12,13)), in particular, consists of one chain of 9Z-hexadecenoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:1(9Z)-O(12,13)/16:1(9Z))

{[(1R,3S)-3-({[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C43H78O17P2 (928.4713998000001)


PIP(18:1(9Z)-O(12,13)/16:1(9Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:1(9Z)-O(12,13)/16:1(9Z)), in particular, consists of one chain of 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 9Z-hexadecenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   
   
   
   
   

Gymnocladussaponin C

Gymnocladussaponin C

C46H72O19 (928.4667562)


   
   

11-O-(2,3,4-tri-O-acetyl-alpha-L-arabinopyranosyl)-26-O-beta-D-glucopyranosyl-(2-O-acetyl)-furometagenin

11-O-(2,3,4-tri-O-acetyl-alpha-L-arabinopyranosyl)-26-O-beta-D-glucopyranosyl-(2-O-acetyl)-furometagenin

C46H72O19 (928.4667562)


   
   

26-O-beta-D-glucopyranosylfurosta-5,25(27)-diene-1beta,3beta,22alpha,26-tetrol 1-O-alpha-L-rhamnopyranosyl-(1->2)-3-acetyl-alpha-L-arabinopyranoside

26-O-beta-D-glucopyranosylfurosta-5,25(27)-diene-1beta,3beta,22alpha,26-tetrol 1-O-alpha-L-rhamnopyranosyl-(1->2)-3-acetyl-alpha-L-arabinopyranoside

C46H72O19 (928.4667562)


   
   
   

aluminum,lanthanum(3+),propan-2-olate

aluminum,lanthanum(3+),propan-2-olate

C36H84Al3LaO12 (928.4472244)


   

PGP(20:4(5Z,8Z,11Z,14Z)/PGJ2)

PGP(20:4(5Z,8Z,11Z,14Z)/PGJ2)

C46H74O15P2 (928.4502714)


   

PGP(PGJ2/20:4(5Z,8Z,11Z,14Z))

PGP(PGJ2/20:4(5Z,8Z,11Z,14Z))

C46H74O15P2 (928.4502714)


   

PGP(20:4(8Z,11Z,14Z,17Z)/PGJ2)

PGP(20:4(8Z,11Z,14Z,17Z)/PGJ2)

C46H74O15P2 (928.4502714)


   

PGP(PGJ2/20:4(8Z,11Z,14Z,17Z))

PGP(PGJ2/20:4(8Z,11Z,14Z,17Z))

C46H74O15P2 (928.4502714)


   

PGP(18:3(6Z,9Z,12Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

PGP(18:3(6Z,9Z,12Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C46H74O15P2 (928.4502714)


   

PGP(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:3(6Z,9Z,12Z))

PGP(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:3(6Z,9Z,12Z))

C46H74O15P2 (928.4502714)


   

PGP(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

PGP(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C46H74O15P2 (928.4502714)


   

PGP(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:3(6Z,9Z,12Z))

PGP(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:3(6Z,9Z,12Z))

C46H74O15P2 (928.4502714)


   

PGP(18:3(9Z,12Z,15Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

PGP(18:3(9Z,12Z,15Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C46H74O15P2 (928.4502714)


   

PGP(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:3(9Z,12Z,15Z))

PGP(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:3(9Z,12Z,15Z))

C46H74O15P2 (928.4502714)


   

PGP(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

PGP(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C46H74O15P2 (928.4502714)


   

PGP(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:3(9Z,12Z,15Z))

PGP(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:3(9Z,12Z,15Z))

C46H74O15P2 (928.4502714)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

HAIYPRH (hydrochloride)

HAIYPRH (hydrochloride)

C41H61ClN14O9 (928.4434246000001)


HAIYPRH hydrochloride, a targeting ligand, can specially bind to transferrin receptor (TfR). HAIYPRH hydrochloride can mediate the transport of nanocarriers across the blood-brain barrier[1].

   

HPV16 E7 (86-93) (TFA)

HPV16 E7 (86-93) (TFA)

C39H67F3N8O12S (928.4551018)


HPV16 E7 (86-93) TFA is a human leukocyte antigen (HLA)-A2.1 restricted HPV16 E7-derived peptide. HPV16 E7 (86-93) TFA is immunogenic in cervical carcinomas[1][2].

   

(1s,3'r,3as,5's,5ar,6s,7s,9as,11as)-7-{[(2r,3r,4s,5s,6r)-6-({[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-6-(hydroxymethyl)-3',3a,6,9a,11a-pentamethyl-5'-propanoyl-4,5,5a,7,8,9,10,11-octahydro-2h-spiro[cyclopenta[a]phenanthrene-1,2'-oxolan]-3-one

(1s,3'r,3as,5's,5ar,6s,7s,9as,11as)-7-{[(2r,3r,4s,5s,6r)-6-({[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-6-(hydroxymethyl)-3',3a,6,9a,11a-pentamethyl-5'-propanoyl-4,5,5a,7,8,9,10,11-octahydro-2h-spiro[cyclopenta[a]phenanthrene-1,2'-oxolan]-3-one

C46H72O19 (928.4667562)


   

1-[2-(2-{[(1-{2-[(2-{[3-(3,5-dichloro-4-methoxyphenyl)-1,2-dihydroxyprop-2-en-1-ylidene]amino}-1,3-dihydroxybutylidene)amino]-4-methylpentanoyl}-4-hydroxy-5-methylpyrrolidin-2-yl)(hydroxy)methylidene]amino}-n-hydroxy-4-methylpentanamido)-3-methylbutanoyl]pyrrolidine-2-carboxylic acid

1-[2-(2-{[(1-{2-[(2-{[3-(3,5-dichloro-4-methoxyphenyl)-1,2-dihydroxyprop-2-en-1-ylidene]amino}-1,3-dihydroxybutylidene)amino]-4-methylpentanoyl}-4-hydroxy-5-methylpyrrolidin-2-yl)(hydroxy)methylidene]amino}-n-hydroxy-4-methylpentanamido)-3-methylbutanoyl]pyrrolidine-2-carboxylic acid

C42H62Cl2N6O13 (928.3751702000001)


   

3-({5-[(12r)-2-[(2s,2'r,3s,3's)-3,3'-dimethyl-[2,2'-bioxiran]-3-yl]-10-[(2r,4r,5s,6r)-4-(dimethylamino)-5-hydroxy-4,6-dimethyloxan-2-yl]-8-[(2s,4s,5s,6s)-4-(dimethylamino)-5-hydroxy-6-methyloxan-2-yl]-11-hydroxy-5-methyl-4,7-dioxo-12h-1-oxatetraphen-12-yl]-1-hydroxypyrrol-2-yl}formamido)propanoic acid

3-({5-[(12r)-2-[(2s,2'r,3s,3's)-3,3'-dimethyl-[2,2'-bioxiran]-3-yl]-10-[(2r,4r,5s,6r)-4-(dimethylamino)-5-hydroxy-4,6-dimethyloxan-2-yl]-8-[(2s,4s,5s,6s)-4-(dimethylamino)-5-hydroxy-6-methyloxan-2-yl]-11-hydroxy-5-methyl-4,7-dioxo-12h-1-oxatetraphen-12-yl]-1-hydroxypyrrol-2-yl}formamido)propanoic acid

C49H60N4O14 (928.410582)


   

abutiloside o

NA

C46H72O19 (928.4667562)


{"Ingredient_id": "HBIN014287","Ingredient_name": "abutiloside o","Alias": "NA","Ingredient_formula": "C46H72O19","Ingredient_Smile": "CC1CC(OC1)(C(=O)OC2CC3C4CC=C5CC(CCC5(C4CCC3(C2C(=O)C)C)C)OC6C(C(C(C(O6)CO)OC7C(C(C(C(O7)C)O)O)O)O)OC8C(C(C(C(O8)C)O)O)O)OC","Ingredient_weight": "929.1 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "48","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "101268566","DrugBank_id": "NA"}

   

[(1r,4s,5s,6s,9s,10s,13r,14r)-6-{[(2r,4r,5s,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9,13-dimethyl-17-oxo-14-[(5-oxooxolan-3-yl)methyl]tetracyclo[11.3.1.0¹,¹⁰.0⁴,⁹]heptadecan-5-yl]methyl acetate

[(1r,4s,5s,6s,9s,10s,13r,14r)-6-{[(2r,4r,5s,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9,13-dimethyl-17-oxo-14-[(5-oxooxolan-3-yl)methyl]tetracyclo[11.3.1.0¹,¹⁰.0⁴,⁹]heptadecan-5-yl]methyl acetate

C46H72O19 (928.4667562)


   

7-{[4-(dimethylamino)-5-({4-hydroxy-5-[(5-hydroxy-6-methyloxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)-6-methyloxan-2-yl]oxy}-9-{[4-(dimethylamino)-5-hydroxy-6-methyloxan-2-yl]oxy}-9-ethyl-1,6,11-trihydroxy-8,10-dihydro-7h-tetracene-5,12-dione

7-{[4-(dimethylamino)-5-({4-hydroxy-5-[(5-hydroxy-6-methyloxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)-6-methyloxan-2-yl]oxy}-9-{[4-(dimethylamino)-5-hydroxy-6-methyloxan-2-yl]oxy}-9-ethyl-1,6,11-trihydroxy-8,10-dihydro-7h-tetracene-5,12-dione

C48H68N2O16 (928.4568608000001)


   

(2s)-1-[(2s)-2-[(2s)-2-({[(2s,4s,5r)-1-[(2s)-2-{[(2s,3r)-2-{[(2z)-3-(3,5-dichloro-4-methoxyphenyl)-1,2-dihydroxyprop-2-en-1-ylidene]amino}-1,3-dihydroxybutylidene]amino}-4-methylpentanoyl]-4-hydroxy-5-methylpyrrolidin-2-yl](hydroxy)methylidene}amino)-n-hydroxy-4-methylpentanamido]-3-methylbutanoyl]pyrrolidine-2-carboxylic acid

(2s)-1-[(2s)-2-[(2s)-2-({[(2s,4s,5r)-1-[(2s)-2-{[(2s,3r)-2-{[(2z)-3-(3,5-dichloro-4-methoxyphenyl)-1,2-dihydroxyprop-2-en-1-ylidene]amino}-1,3-dihydroxybutylidene]amino}-4-methylpentanoyl]-4-hydroxy-5-methylpyrrolidin-2-yl](hydroxy)methylidene}amino)-n-hydroxy-4-methylpentanamido]-3-methylbutanoyl]pyrrolidine-2-carboxylic acid

C42H62Cl2N6O13 (928.3751702000001)


   

(1r,2s,4s,5r,8r,9r,10r,11s,13r,14r,18s,21s)-10-{[(2r,3r,4s,5s,6r)-6-({[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,11-dihydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-22-oxahexacyclo[19.2.1.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-16-en-23-one

(1r,2s,4s,5r,8r,9r,10r,11s,13r,14r,18s,21s)-10-{[(2r,3r,4s,5s,6r)-6-({[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,11-dihydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-22-oxahexacyclo[19.2.1.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-16-en-23-one

C46H72O19 (928.4667562)


   

10-({6-[({4,5-dihydroxy-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)methyl]-3,4,5-trihydroxyoxan-2-yl}oxy)-2,11-dihydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-22-oxahexacyclo[19.2.1.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-16-en-23-one

10-({6-[({4,5-dihydroxy-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)methyl]-3,4,5-trihydroxyoxan-2-yl}oxy)-2,11-dihydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-22-oxahexacyclo[19.2.1.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-16-en-23-one

C46H72O19 (928.4667562)


   

(1r,2s,3as,3bs,7s,9ar,9bs,11ar)-1-acetyl-7-{[(2r,3r,4s,5s,6r)-4-hydroxy-6-(hydroxymethyl)-3,5-bis({[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy})oxan-2-yl]oxy}-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl (2r,4s)-2-methoxy-4-methyloxolane-2-carboxylate

(1r,2s,3as,3bs,7s,9ar,9bs,11ar)-1-acetyl-7-{[(2r,3r,4s,5s,6r)-4-hydroxy-6-(hydroxymethyl)-3,5-bis({[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy})oxan-2-yl]oxy}-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl (2r,4s)-2-methoxy-4-methyloxolane-2-carboxylate

C46H72O19 (928.4667562)


   

2-({2-[(4,5-dihydroxy-2-{[18-hydroxy-22-methoxy-5,20-dimethyl-19-(2-methylprop-1-en-1-yl)-17,21-dioxahexacyclo[14.6.1.0¹,¹⁴.0⁴,¹³.0⁵,¹⁰.0²⁰,²³]tricos-10-en-8-yl]oxy}-6-(hydroxymethyl)oxan-3-yl)oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl}oxy)-6-methyloxane-3,4,5-triol

2-({2-[(4,5-dihydroxy-2-{[18-hydroxy-22-methoxy-5,20-dimethyl-19-(2-methylprop-1-en-1-yl)-17,21-dioxahexacyclo[14.6.1.0¹,¹⁴.0⁴,¹³.0⁵,¹⁰.0²⁰,²³]tricos-10-en-8-yl]oxy}-6-(hydroxymethyl)oxan-3-yl)oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl}oxy)-6-methyloxane-3,4,5-triol

C46H72O19 (928.4667562)


   

(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-2-{[(1r,4s,5r,8s,13r,14s,16s,18r,19r,20r,22r,23r)-18-hydroxy-22-methoxy-5,20-dimethyl-19-(2-methylprop-1-en-1-yl)-17,21-dioxahexacyclo[14.6.1.0¹,¹⁴.0⁴,¹³.0⁵,¹⁰.0²⁰,²³]tricos-10-en-8-yl]oxy}-6-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-2-{[(1r,4s,5r,8s,13r,14s,16s,18r,19r,20r,22r,23r)-18-hydroxy-22-methoxy-5,20-dimethyl-19-(2-methylprop-1-en-1-yl)-17,21-dioxahexacyclo[14.6.1.0¹,¹⁴.0⁴,¹³.0⁵,¹⁰.0²⁰,²³]tricos-10-en-8-yl]oxy}-6-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C46H72O19 (928.4667562)


   

3-{[5-(2-{3,3'-dimethyl-[2,2'-bioxiran]-3-yl}-10-[4-(dimethylamino)-5-hydroxy-4,6-dimethyloxan-2-yl]-8-[4-(dimethylamino)-5-hydroxy-6-methyloxan-2-yl]-11-hydroxy-5-methyl-4,7-dioxo-12h-1-oxatetraphen-12-yl)-1-hydroxypyrrol-2-yl]formamido}propanoic acid

3-{[5-(2-{3,3'-dimethyl-[2,2'-bioxiran]-3-yl}-10-[4-(dimethylamino)-5-hydroxy-4,6-dimethyloxan-2-yl]-8-[4-(dimethylamino)-5-hydroxy-6-methyloxan-2-yl]-11-hydroxy-5-methyl-4,7-dioxo-12h-1-oxatetraphen-12-yl)-1-hydroxypyrrol-2-yl]formamido}propanoic acid

C49H60N4O14 (928.410582)


   

(1s,2s,3ar,3br,7r,9ar,9bs,11ar)-1-acetyl-7-{[(2s,3s,4r,5r,6s)-4-hydroxy-6-(hydroxymethyl)-3,5-bis({[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy})oxan-2-yl]oxy}-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl (2r,4r)-2-methoxy-4-methyloxolane-2-carboxylate

(1s,2s,3ar,3br,7r,9ar,9bs,11ar)-1-acetyl-7-{[(2s,3s,4r,5r,6s)-4-hydroxy-6-(hydroxymethyl)-3,5-bis({[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy})oxan-2-yl]oxy}-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl (2r,4r)-2-methoxy-4-methyloxolane-2-carboxylate

C46H72O19 (928.4667562)


   

7-[(6-{[(4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl)oxy]-6-(hydroxymethyl)-3',3a,6,9a,11a-pentamethyl-5'-propanoyl-4,5,5a,7,8,9,10,11-octahydro-2h-spiro[cyclopenta[a]phenanthrene-1,2'-oxolan]-3-one

7-[(6-{[(4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl)oxy]-6-(hydroxymethyl)-3',3a,6,9a,11a-pentamethyl-5'-propanoyl-4,5,5a,7,8,9,10,11-octahydro-2h-spiro[cyclopenta[a]phenanthrene-1,2'-oxolan]-3-one

C46H72O19 (928.4667562)


   

(1r,2s,3as,3bs,7s,9ar,9bs,11as)-1-acetyl-7-{[(2r,3r,4s,5s,6r)-4-hydroxy-6-(hydroxymethyl)-3,5-bis({[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy})oxan-2-yl]oxy}-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl (2r,4s)-2-methoxy-4-methyloxolane-2-carboxylate

(1r,2s,3as,3bs,7s,9ar,9bs,11as)-1-acetyl-7-{[(2r,3r,4s,5s,6r)-4-hydroxy-6-(hydroxymethyl)-3,5-bis({[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy})oxan-2-yl]oxy}-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl (2r,4s)-2-methoxy-4-methyloxolane-2-carboxylate

C46H72O19 (928.4667562)


   

1-acetyl-7-{[4-hydroxy-6-(hydroxymethyl)-3,5-bis[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl 2-methoxy-4-methyloxolane-2-carboxylate

1-acetyl-7-{[4-hydroxy-6-(hydroxymethyl)-3,5-bis[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl 2-methoxy-4-methyloxolane-2-carboxylate

C46H72O19 (928.4667562)


   

(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-2-{[(1s,4s,5r,8s,13r,14s,16s,18r,19r,20r,22r,23r)-18-hydroxy-22-methoxy-5,20-dimethyl-19-(2-methylprop-1-en-1-yl)-17,21-dioxahexacyclo[14.6.1.0¹,¹⁴.0⁴,¹³.0⁵,¹⁰.0²⁰,²³]tricos-10-en-8-yl]oxy}-6-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-2-{[(1s,4s,5r,8s,13r,14s,16s,18r,19r,20r,22r,23r)-18-hydroxy-22-methoxy-5,20-dimethyl-19-(2-methylprop-1-en-1-yl)-17,21-dioxahexacyclo[14.6.1.0¹,¹⁴.0⁴,¹³.0⁵,¹⁰.0²⁰,²³]tricos-10-en-8-yl]oxy}-6-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C46H72O19 (928.4667562)


   

(5r)-2-{[(3r,5s)-2-{[(2r,3r,4s,6r)-4,5-dihydroxy-2-{[(4s,5r,8s,14s,16s,19r,20r,22r,23r)-18-hydroxy-22-methoxy-5,20-dimethyl-19-(2-methylprop-1-en-1-yl)-17,21-dioxahexacyclo[14.6.1.0¹,¹⁴.0⁴,¹³.0⁵,¹⁰.0²⁰,²³]tricos-10-en-8-yl]oxy}-6-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(5r)-2-{[(3r,5s)-2-{[(2r,3r,4s,6r)-4,5-dihydroxy-2-{[(4s,5r,8s,14s,16s,19r,20r,22r,23r)-18-hydroxy-22-methoxy-5,20-dimethyl-19-(2-methylprop-1-en-1-yl)-17,21-dioxahexacyclo[14.6.1.0¹,¹⁴.0⁴,¹³.0⁵,¹⁰.0²⁰,²³]tricos-10-en-8-yl]oxy}-6-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C46H72O19 (928.4667562)