Exact Mass: 916.5489
Exact Mass Matches: 916.5489
Found 87 metabolites which its exact mass value is equals to given mass value 916.5489
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Gynosaponin I
Notoginsenoside Fd is a natural product found in Panax ginseng and Panax notoginseng with data available. Gynosaponin I is found in tea. Gynosaponin I is a constituent of Panax notoginseng (ginseng). Constituent of Panax notoginseng (ginseng). Gynosaponin I is found in tea. Gynostemma Extract (Ginsenoside C-Mx1) is a natural product. Gynostemma Extract (Ginsenoside C-Mx1) is a natural product.
Protopanaxadiol 3-glucoside 20-[arabinosyl-(1->2)-glucoside]
Protopanaxadiol 3-glucoside 20-[arabinosyl-(1->2)-glucoside] is found in tea. Protopanaxadiol 3-glucoside 20-[arabinosyl-(1->2)-glucoside] is a constituent of Panax notoginseng (ginseng)
Notoginsenoside Fe
Notoginsenoside Fe is found in tea. Notoginsenoside Fe is a constituent of leaves of Panax notoginseng (ginseng) Constituent of leaves of Panax notoginseng (ginseng). Notoginsenoside Fe is found in tea. Notoginsenoside Fe is a natural compound isolated from Panax pseudo-ginseng. Notoginsenoside Fe is a natural compound isolated from Panax pseudo-ginseng.
Maduramicin
Anibiotic approved as a feed additive for broiler chickens in the U
Vinaginsenoside R16
Vinaginsenoside R16 is found in tea. Vinaginsenoside R16 is a constituent of Panax vietnamensis (Vietnamese ginseng) Constituent of Panax vietnamensis (Vietnamese ginseng). Vinaginsenoside R16 is found in tea.
Vinaginsenoside R17
Vinaginsenoside R18 is found in tea. Vinaginsenoside R18 is a constituent of Panax vietnamensis (Vietnamese ginseng)
Maduramycin
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents
PGP(i-20:0/18:1(12Z)-2OH(9,10))
PGP(i-20:0/18:1(12Z)-2OH(9,10)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-20:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(18:1(12Z)-2OH(9,10)/i-20:0)
PGP(18:1(12Z)-2OH(9,10)/i-20:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(12Z)-2OH(9,10)/i-20:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
ginsenoside mb
Notoginsenoside Fe is a triterpenoid. Notoginsenoside Fe is a natural product found in Panax japonicus with data available. Notoginsenoside Fe is a natural compound isolated from Panax pseudo-ginseng. Notoginsenoside Fe is a natural compound isolated from Panax pseudo-ginseng.
Notoginsenoside Ft1
Notoginsenoside Ft1 is a natural product found in Centella asiatica with data available. Notoginsenoside Ft1 is a saponin isolated from Panax notoginseng; stimulator of angiogenesis. IC50 value: Target: angiogenesis stimulator in vitro: Ft1 increases translocalization of hypoxia-inducible factor-1α (HIF-1α) from cytoplasm to nuclei, where it binds to the vascular endothelial growth factor (VEGF) promoter, increasing the expression of VEGF mRNA and the subsequent secretion of the growth factor. Ft1 induces the activation of PI3K/AKT and Raf/MEK/ERK signaling pathways [1]. Among the saponins examined, Ft1 was the most potent procoagulant and induced dose-dependent platelet aggregation. Ft1 reduced plasma coagulation indexes, decreased tail bleeding time and increased thrombogenesis. Moreover, it potentiated ADP-induced platelet aggregation and increased cytosolic Ca(2+) accumulation, effects that were attenuated by clopidogrel. Ft1 binds to platelet P2Y12 receptors. The increase in intracellular Ca(2+) evoked by Ft1 in HEK293 cells overexpressing P2Y12 receptors could be blocked by ticagrelor [2]. Ft1 caused endothelium-dependent relaxations, which were abolished by l-NAME (inhibitor of nitric oxide synthases) and ODQ (inhibitor of soluble guanylyl cyclase). Ft1 increased the cGMP level in rat mesenteric arteries. GR and ER were present in the endothelial layer and their antagonism by RU486 and PHTPP, respectively, inhibited Ft1-induced endothelium-dependent relaxations and phosphorylations of eNOS, Akt and ERK1/2 [3]. Ft1 showed the best inhibitory effect on cell proliferation of SH-SY5Y cells with IC50 of 45μM. Ft1 not only arrested the cell cycle at S, G2/M stages, but also promoted cell apoptosis. Ft1 up-regulated the protein expressions of cleaved caspase 3, phospho-p53, p21, and cyclin B1, but down-regulated that of Bcl-2. Moreover, Ft1 enhanced the phosphorylation of ERK1/2, JNK and p38 MAPK [4]. in vivo: Ft1 promotes the formation of blood vessels in Matrigel plug and wound healing in mice [1]. Notoginsenoside Ft1 is a saponin isolated from Panax notoginseng; stimulator of angiogenesis. IC50 value: Target: angiogenesis stimulator in vitro: Ft1 increases translocalization of hypoxia-inducible factor-1α (HIF-1α) from cytoplasm to nuclei, where it binds to the vascular endothelial growth factor (VEGF) promoter, increasing the expression of VEGF mRNA and the subsequent secretion of the growth factor. Ft1 induces the activation of PI3K/AKT and Raf/MEK/ERK signaling pathways [1]. Among the saponins examined, Ft1 was the most potent procoagulant and induced dose-dependent platelet aggregation. Ft1 reduced plasma coagulation indexes, decreased tail bleeding time and increased thrombogenesis. Moreover, it potentiated ADP-induced platelet aggregation and increased cytosolic Ca(2+) accumulation, effects that were attenuated by clopidogrel. Ft1 binds to platelet P2Y12 receptors. The increase in intracellular Ca(2+) evoked by Ft1 in HEK293 cells overexpressing P2Y12 receptors could be blocked by ticagrelor [2]. Ft1 caused endothelium-dependent relaxations, which were abolished by l-NAME (inhibitor of nitric oxide synthases) and ODQ (inhibitor of soluble guanylyl cyclase). Ft1 increased the cGMP level in rat mesenteric arteries. GR and ER were present in the endothelial layer and their antagonism by RU486 and PHTPP, respectively, inhibited Ft1-induced endothelium-dependent relaxations and phosphorylations of eNOS, Akt and ERK1/2 [3]. Ft1 showed the best inhibitory effect on cell proliferation of SH-SY5Y cells with IC50 of 45μM. Ft1 not only arrested the cell cycle at S, G2/M stages, but also promoted cell apoptosis. Ft1 up-regulated the protein expressions of cleaved caspase 3, phospho-p53, p21, and cyclin B1, but down-regulated that of Bcl-2. Moreover, Ft1 enhanced the phosphorylation of ERK1/2, JNK and p38 MAPK [4]. in vivo: Ft1 promotes the formation of blood vessels in Matrigel plug and wound healing in mice [1]. Notoginsenoside Ft1 is a saponin isolated from Panax notoginseng; stimulator of angiogenesis. IC50 value: Target: angiogenesis stimulator in vitro: Ft1 increases translocalization of hypoxia-inducible factor-1α (HIF-1α) from cytoplasm to nuclei, where it binds to the vascular endothelial growth factor (VEGF) promoter, increasing the expression of VEGF mRNA and the subsequent secretion of the growth factor. Ft1 induces the activation of PI3K/AKT and Raf/MEK/ERK signaling pathways [1]. Among the saponins examined, Ft1 was the most potent procoagulant and induced dose-dependent platelet aggregation. Ft1 reduced plasma coagulation indexes, decreased tail bleeding time and increased thrombogenesis. Moreover, it potentiated ADP-induced platelet aggregation and increased cytosolic Ca(2+) accumulation, effects that were attenuated by clopidogrel. Ft1 binds to platelet P2Y12 receptors. The increase in intracellular Ca(2+) evoked by Ft1 in HEK293 cells overexpressing P2Y12 receptors could be blocked by ticagrelor [2]. Ft1 caused endothelium-dependent relaxations, which were abolished by l-NAME (inhibitor of nitric oxide synthases) and ODQ (inhibitor of soluble guanylyl cyclase). Ft1 increased the cGMP level in rat mesenteric arteries. GR and ER were present in the endothelial layer and their antagonism by RU486 and PHTPP, respectively, inhibited Ft1-induced endothelium-dependent relaxations and phosphorylations of eNOS, Akt and ERK1/2 [3]. Ft1 showed the best inhibitory effect on cell proliferation of SH-SY5Y cells with IC50 of 45μM. Ft1 not only arrested the cell cycle at S, G2/M stages, but also promoted cell apoptosis. Ft1 up-regulated the protein expressions of cleaved caspase 3, phospho-p53, p21, and cyclin B1, but down-regulated that of Bcl-2. Moreover, Ft1 enhanced the phosphorylation of ERK1/2, JNK and p38 MAPK [4]. in vivo: Ft1 promotes the formation of blood vessels in Matrigel plug and wound healing in mice [1].
7,8-dihydroisoxuxuarine Halpha|methyl (3S,4S,8R,9R,9R,13S,13S,14R,14S,17R,17S,18S,18R,20R,20R,22S)-3,22-dihydroxy-2,6,21-trioxo-3,3:2,4-dioxy-29-nordi(friedela)-1(10),1,3,5,5(10),7-hexaen-29-oate
3-O-beta-D-glucopyranosyl-2alpha-hydroxydammar-24-en-20(S)-yl O-beta-D-xylopyranosyl-(1->6)-beta-D-glucopyranoside
7,8-dihydroisoxuxuarine Ialpha|methyl (3S,4S,8R,9R,9R,13S,13S,14R,14S,17S,17R,18R,18S,20R,20R,22S)-3,22-dihydroxy-2,6,21-trioxo-3,3:2,4-dioxy-29-nordi(friedela)-1(10),1,3,5,5(10),7-hexaen-29-oate
3-(O-beta-D-xylopyranosyl-(1->2)-alpha-L-rhamnopyranosyl)-22-O-beta-D-glucopyranosyl-6alpha,16beta-dihydroxyhopane|lotoideside B
3beta-O-[alpha-L-rhamnopyranosyl-(1?2)-beta-L-glucopyranosyl]-15beta-O-(alpha-L-rhamnopyranosyl)-5alpha-cholestan-16beta-yl acetate|acanthifolioside G
lotoidoside A|mollugogenol A 3-O-[alpha-L-rhamnopyranosyl-(1->2)-beta-D-xylopyranosyl]-22-O-beta-D-glucopyranoside
(20R)-ginsenoside Rg3|(3beta,12beta,20R)-12,20-dihydroxydammar-24-en-3-yl O-beta-D-xylopyranosyl-(1->2)-O-beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranoside|notoginsenoside Ft1
Notoginsenoside Fe
Notoginsenoside Fe is a natural compound isolated from Panax pseudo-ginseng. Notoginsenoside Fe is a natural compound isolated from Panax pseudo-ginseng.
Gypenoside IX
Gynostemma Extract is a natural product found in Gynostemma pentaphyllum, Panax ginseng, and other organisms with data available. Gynostemma Extract (Ginsenoside C-Mx1) is a natural product. Gynostemma Extract (Ginsenoside C-Mx1) is a natural product.
Ginsenoside Rd2
Ginsenoside Rd2 is a natural product found in Panax ginseng, Centella asiatica, and Aralia elata with data available.
Vinaginsenoside R16
Vinaginsenoside R17
Protopanaxadiol 3-glucoside 20-[arabinosyl-(1->2)-glucoside]
Gynosaponin I
Gynostemma Extract (Ginsenoside C-Mx1) is a natural product. Gynostemma Extract (Ginsenoside C-Mx1) is a natural product.
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[1-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate
[1-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate
[1-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate
[1-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-2-[[(3S,5R,8R,9R,10R,12R,13R,14R,17S)-12-hydroxy-17-[(2S)-2-hydroxy-6-methylhept-5-en-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-6-[[(2R,3S,4R,5S)-3,4,5-trihydroxyoxan-2-yl]oxymethyl]oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol
(2s,3s,4s,5s,6r)-2-{[(2s)-2-[(1r,3ar,3br,5ar,7s,9ar,9bs,11r,11ar)-11-hydroxy-3a,3b,6,6,9a-pentamethyl-7-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-en-2-yl]oxy}-6-({[(2s,3s,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxane-3,4,5-triol
(2s,3r,4s,5s,6r)-2-{[(2s)-2-[(1s,3ar,3br,5ar,7r,8r,9ar,9br,11ar)-8-hydroxy-3a,3b,6,6,9a-pentamethyl-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-en-2-yl]oxy}-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxane-3,4,5-triol
(2s,3r,4s,5s,6s)-2-{[(1r,3as,3br,5ar,7s,9as,9br,11s,11ar)-1-[(2s)-2-{[(2r,3r,4r,5s,6s)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2r,3r,4r,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-6-methylhept-5-en-2-yl]-11-hydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
2-({2-[9-({4,5-dihydroxy-6-methyl-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-4,7-dihydroxy-5a,5b,8,8,11a,13b-hexamethyl-hexadecahydrocyclopenta[a]chrysen-3-yl]propan-2-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol
2-{[1-(2-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-6-methylhept-5-en-2-yl)-11-hydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(2s,3r,4s,5s,6r)-2-{[2-(11-hydroxy-3a,3b,6,6-tetramethyl-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-tetradecahydrocyclopenta[a]phenanthren-1-yl)-6-methylhept-5-en-2-yl]oxy}-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxane-3,4,5-triol
3β-o-β-d-glucopyranosyl-20-o-[α-l-arabino-pyranosyl(1→2)-β-d-glucopyranosyl]3β,12β,20(s)-trihydroxydammar-24-ene
{"Ingredient_id": "HBIN008317","Ingredient_name": "3\u03b2-o-\u03b2-d-glucopyranosyl-20-o-[\u03b1-l-arabino-pyranosyl(1\u21922)-\u03b2-d-glucopyranosyl]3\u03b2,12\u03b2,20(s)-trihydroxydammar-24-ene","Alias": "NA","Ingredient_formula": "C47H80O17","Ingredient_Smile": "CC(=CCCC(C)(C1CCC2(C1C(CC3C2(CCC4C3(CCC(C4(C)C)OC5C(C(C(C(O5)CO)O)O)O)C)C)O)C)OC6C(C(C(C(O6)CO)O)O)OC7C(C(C(CO7)O)O)O)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT15612","TCMID_id": "8604","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}