Exact Mass: 913.4949

Exact Mass Matches: 913.4949

Found 41 metabolites which its exact mass value is equals to given mass value 913.4949, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Aab(1) avermectin

N-[6-({6-[6-(butan-2-yl)-21,24-dihydroxy-5,11,13,22-tetramethyl-5,6-dihydro-3,7,19-trioxaspiro[pyran-2,6-tetracyclo[15.6.1.1^{4,8}.0^{20,24}]pentacosane]-10,14,16,22-tetraen-2-oneoxy]-4-methoxy-2-methyloxan-3-yl}oxy)-4-methoxy-2-methyloxan-3-yl]acetamide

C50H75NO14 (913.5187)


   

PS(22:5(4Z,7Z,10Z,13Z,16Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

(2S)-2-amino-3-({[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C50H76NO12P (913.5105)


PS(22:5(4Z,7Z,10Z,13Z,16Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:5(4Z,7Z,10Z,13Z,16Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/22:5(4Z,7Z,10Z,13Z,16Z))

(2S)-2-amino-3-({[(2R)-3-{[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-2-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C50H76NO12P (913.5105)


PS(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/22:5(4Z,7Z,10Z,13Z,16Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(22:5(4Z,7Z,10Z,13Z,16Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

(2S)-2-amino-3-({[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C50H76NO12P (913.5105)


PS(22:5(4Z,7Z,10Z,13Z,16Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:5(4Z,7Z,10Z,13Z,16Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/22:5(4Z,7Z,10Z,13Z,16Z))

(2S)-2-amino-3-({[(2R)-3-{[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-2-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C50H76NO12P (913.5105)


PS(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/22:5(4Z,7Z,10Z,13Z,16Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(22:5(7Z,10Z,13Z,16Z,19Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

(2S)-2-amino-3-({[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C50H76NO12P (913.5105)


PS(22:5(7Z,10Z,13Z,16Z,19Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:5(7Z,10Z,13Z,16Z,19Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/22:5(7Z,10Z,13Z,16Z,19Z))

PS(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/22:5(7Z,10Z,13Z,16Z,19Z))

C50H76NO12P (913.5105)


PS(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/22:5(7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(22:5(7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

(2S)-2-amino-3-({[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C50H76NO12P (913.5105)


PS(22:5(7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:5(7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/22:5(7Z,10Z,13Z,16Z,19Z))

(2S)-2-amino-3-({[(2R)-3-{[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C50H76NO12P (913.5105)


PS(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/22:5(7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   
   
   

anabaenopeptin MM913

anabaenopeptin MM913

C49H67N7O10 (913.4949)


   

Eprinomectin

Pesticide4_Eprinomectin_C50H75NO14_(1R,2S,4S,5S,6R,8R,10E,12S,13S,14E,16E,20R,21R,24S)-6-[(2R)-2-Butanyl]-21,24-dihydroxy-5,11,13,22-tetramethyl-2-oxo-5,6-dihydrospiro[pyran-2,6-[3,7,19]trioxatetracyclo[15.6.1.1~4,8~.0~20,24~]pentacosa[10,14,16,22]tetraen]-12-yl 4-O-(4-acetamido-2,4,6-trideoxy-3-O-methyl-alpha-L-arabino-hexopyranosyl)-2,6-dideoxy-3-O-methyl-alpha-L-arabino-hexopyranoside

C50H75NO14 (913.5187)


   

pyran]-7-yl 4-O-[4-(acetylamino)-2,4,6-trideoxy-3-O-met

pyran]-7-yl 4-O-[4-(acetylamino)-2,4,6-trideoxy-3-O-met

C50H75NO14 (913.5187)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

PS(22:5(4Z,7Z,10Z,13Z,16Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

PS(22:5(4Z,7Z,10Z,13Z,16Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C50H76NO12P (913.5105)


   

PS(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/22:5(4Z,7Z,10Z,13Z,16Z))

PS(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/22:5(4Z,7Z,10Z,13Z,16Z))

C50H76NO12P (913.5105)


   

PS(22:5(4Z,7Z,10Z,13Z,16Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

PS(22:5(4Z,7Z,10Z,13Z,16Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C50H76NO12P (913.5105)


   

PS(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/22:5(4Z,7Z,10Z,13Z,16Z))

PS(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/22:5(4Z,7Z,10Z,13Z,16Z))

C50H76NO12P (913.5105)


   

PS(22:5(7Z,10Z,13Z,16Z,19Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

PS(22:5(7Z,10Z,13Z,16Z,19Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C50H76NO12P (913.5105)


   

PS(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/22:5(7Z,10Z,13Z,16Z,19Z))

PS(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/22:5(7Z,10Z,13Z,16Z,19Z))

C50H76NO12P (913.5105)


   

PS(22:5(7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

PS(22:5(7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C50H76NO12P (913.5105)


   

PS(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/22:5(7Z,10Z,13Z,16Z,19Z))

PS(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/22:5(7Z,10Z,13Z,16Z,19Z))

C50H76NO12P (913.5105)


   

N-[(2S,3S,4S,6S)-6-[(2S,3S,4S,6R)-6-[(1R,2R,3S,4S,6S,8R,10E,12S,13S,14E,16E,20R,21R,24S)-2-[(2S)-butan-2-yl]-21,24-dihydroxy-3,11,13,22-tetramethyl-2-oxospiro[2,3-dihydropyran-6,6-3,7,19-trioxatetracyclo[15.6.1.14,8.020,24]pentacosa-10,14,16,22-tetraene]-12-yl]oxy-4-methoxy-2-methyloxan-3-yl]oxy-4-methoxy-2-methyloxan-3-yl]acetamide

N-[(2S,3S,4S,6S)-6-[(2S,3S,4S,6R)-6-[(1R,2R,3S,4S,6S,8R,10E,12S,13S,14E,16E,20R,21R,24S)-2-[(2S)-butan-2-yl]-21,24-dihydroxy-3,11,13,22-tetramethyl-2-oxospiro[2,3-dihydropyran-6,6-3,7,19-trioxatetracyclo[15.6.1.14,8.020,24]pentacosa-10,14,16,22-tetraene]-12-yl]oxy-4-methoxy-2-methyloxan-3-yl]oxy-4-methoxy-2-methyloxan-3-yl]acetamide

C50H75NO14 (913.5187)


   

N-[(2S,3R,4R,6S)-6-[(2S,3S,4R,6R)-6-[(1R,2R,3S,4S,6S,8R,10E,12S,13S,14E,16E,20R,21R,24S)-2-[(2S)-butan-2-yl]-21,24-dihydroxy-3,11,13,22-tetramethyl-2-oxospiro[2,3-dihydropyran-6,6-3,7,19-trioxatetracyclo[15.6.1.14,8.020,24]pentacosa-10,14,16,22-tetraene]-12-yl]oxy-4-methoxy-2-methyloxan-3-yl]oxy-4-methoxy-2-methyloxan-3-yl]acetamide

N-[(2S,3R,4R,6S)-6-[(2S,3S,4R,6R)-6-[(1R,2R,3S,4S,6S,8R,10E,12S,13S,14E,16E,20R,21R,24S)-2-[(2S)-butan-2-yl]-21,24-dihydroxy-3,11,13,22-tetramethyl-2-oxospiro[2,3-dihydropyran-6,6-3,7,19-trioxatetracyclo[15.6.1.14,8.020,24]pentacosa-10,14,16,22-tetraene]-12-yl]oxy-4-methoxy-2-methyloxan-3-yl]oxy-4-methoxy-2-methyloxan-3-yl]acetamide

C50H75NO14 (913.5187)


   
   
   
   

Hex3Cer 24:2;O4

Hex3Cer 24:2;O4

C42H75NO20 (913.4882)


   

n-[(1r)-1-{[(3s,6r,9r,12r,15r,16s)-3-[(2r)-butan-2-yl]-9-(3-carbamimidamidopropyl)-5,8,11,14-tetrahydroxy-6,12-bis[(4-hydroxyphenyl)methyl]-16-methyl-2-oxo-1-oxa-4,7,10,13-tetraazacyclohexadeca-4,7,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}-2-phenylethyl]butanimidic acid

n-[(1r)-1-{[(3s,6r,9r,12r,15r,16s)-3-[(2r)-butan-2-yl]-9-(3-carbamimidamidopropyl)-5,8,11,14-tetrahydroxy-6,12-bis[(4-hydroxyphenyl)methyl]-16-methyl-2-oxo-1-oxa-4,7,10,13-tetraazacyclohexadeca-4,7,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}-2-phenylethyl]butanimidic acid

C47H63N9O10 (913.4698)


   

{[(10r,11s,12s,14r,16s,20s,21r,22s,24e)-20-[(2s,3s,7r,8r,9r,10e)-2,8-dimethoxy-3,7,9-trimethyl-11-(n-methylformamido)-6-oxoundec-10-en-1-yl]-10,12,22-trihydroxy-11,14,21-trimethyl-18-oxo-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1²,⁵.1⁶,⁹]hentriaconta-1(28),2(31),4,6(30),8,24,26(29)-heptaen-16-yl]oxy}methanimidic acid

{[(10r,11s,12s,14r,16s,20s,21r,22s,24e)-20-[(2s,3s,7r,8r,9r,10e)-2,8-dimethoxy-3,7,9-trimethyl-11-(n-methylformamido)-6-oxoundec-10-en-1-yl]-10,12,22-trihydroxy-11,14,21-trimethyl-18-oxo-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1²,⁵.1⁶,⁹]hentriaconta-1(28),2(31),4,6(30),8,24,26(29)-heptaen-16-yl]oxy}methanimidic acid

C46H67N5O14 (913.4684)


   

Eprinomectin B1a

Eprinomectin B1a

C50H75NO14 (913.5187)


-

   

abutiloside h

NA

C46H75NO17 (913.5035)


{"Ingredient_id": "HBIN014280","Ingredient_name": "abutiloside h","Alias": "NA","Ingredient_formula": "C46H75NO17","Ingredient_Smile": "CC1C(C(C(C(O1)OC2C(OC(C(C2O)O)OC3CCC4(C5CCC6(C(C5CC=C4C3)CC(C6C(C)C(=O)CCC(C)CNC(=O)C)O)C)C)CO)OC7C(C(C(CO7)O)O)O)O)O","Ingredient_weight": "914.1 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "41","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "102303460","DrugBank_id": "NA"}

   

n-[(2r,6s)-6-[(1r,2r,3as,3bs,7s,9ar,9bs,11as)-7-{[(2r,3r,4r,5s,6r)-5-{[(2s,3r,4r,5r,6s)-4,5-dihydroxy-6-methyl-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-2-methyl-5-oxoheptyl]ethanimidic acid

n-[(2r,6s)-6-[(1r,2r,3as,3bs,7s,9ar,9bs,11as)-7-{[(2r,3r,4r,5s,6r)-5-{[(2s,3r,4r,5r,6s)-4,5-dihydroxy-6-methyl-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-2-methyl-5-oxoheptyl]ethanimidic acid

C46H75NO17 (913.5035)


   

(2s)-2-({[(3s,6s,9s,12s,15r)-3,12-bis[(2s)-butan-2-yl]-2,5,11,14-tetrahydroxy-6-[2-(4-hydroxyphenyl)ethyl]-7-methyl-8-oxo-9-(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)-3-(4-hydroxyphenyl)propanoic acid

(2s)-2-({[(3s,6s,9s,12s,15r)-3,12-bis[(2s)-butan-2-yl]-2,5,11,14-tetrahydroxy-6-[2-(4-hydroxyphenyl)ethyl]-7-methyl-8-oxo-9-(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)-3-(4-hydroxyphenyl)propanoic acid

C49H67N7O10 (913.4949)


   

n-(1-{[9-(3-carbamimidamidopropyl)-5,8,11,14-tetrahydroxy-6,12-bis[(4-hydroxyphenyl)methyl]-16-methyl-2-oxo-3-(sec-butyl)-1-oxa-4,7,10,13-tetraazacyclohexadeca-4,7,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}-2-phenylethyl)butanimidic acid

n-(1-{[9-(3-carbamimidamidopropyl)-5,8,11,14-tetrahydroxy-6,12-bis[(4-hydroxyphenyl)methyl]-16-methyl-2-oxo-3-(sec-butyl)-1-oxa-4,7,10,13-tetraazacyclohexadeca-4,7,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}-2-phenylethyl)butanimidic acid

C47H63N9O10 (913.4698)


   

3-(4-hydroxyphenyl)-2-[({2,5,11,14-tetrahydroxy-6-[2-(4-hydroxyphenyl)ethyl]-7-methyl-8-oxo-9-(2-phenylethyl)-3,12-bis(sec-butyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]propanoic acid

3-(4-hydroxyphenyl)-2-[({2,5,11,14-tetrahydroxy-6-[2-(4-hydroxyphenyl)ethyl]-7-methyl-8-oxo-9-(2-phenylethyl)-3,12-bis(sec-butyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]propanoic acid

C49H67N7O10 (913.4949)


   

{[(10r,11s,12s,14r,16s,20s,21r,22s)-20-[(2s,3s,7r,8r,9r,10e)-2,8-dimethoxy-3,7,9-trimethyl-11-(n-methylformamido)-6-oxoundec-10-en-1-yl]-10,12,22-trihydroxy-11,14,21-trimethyl-18-oxo-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1²,⁵.1⁶,⁹]hentriaconta-1(28),2(31),4,6(30),8,24,26(29)-heptaen-16-yl]oxy}methanimidic acid

{[(10r,11s,12s,14r,16s,20s,21r,22s)-20-[(2s,3s,7r,8r,9r,10e)-2,8-dimethoxy-3,7,9-trimethyl-11-(n-methylformamido)-6-oxoundec-10-en-1-yl]-10,12,22-trihydroxy-11,14,21-trimethyl-18-oxo-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1²,⁵.1⁶,⁹]hentriaconta-1(28),2(31),4,6(30),8,24,26(29)-heptaen-16-yl]oxy}methanimidic acid

C46H67N5O14 (913.4684)


   

n-[6-(7-{[5-({4,5-dihydroxy-6-methyl-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl)-2-methyl-5-oxoheptyl]ethanimidic acid

n-[6-(7-{[5-({4,5-dihydroxy-6-methyl-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl)-2-methyl-5-oxoheptyl]ethanimidic acid

C46H75NO17 (913.5035)


   

n-[(2r,6s)-6-[(1r,2r,3as,3bs,7s,9ar,9bs,11as)-7-{[(2r,3r,4r,5r,6r)-5-{[(2s,3r,4r,5r,6s)-4,5-dihydroxy-6-methyl-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-2-methyl-5-oxoheptyl]ethanimidic acid

n-[(2r,6s)-6-[(1r,2r,3as,3bs,7s,9ar,9bs,11as)-7-{[(2r,3r,4r,5r,6r)-5-{[(2s,3r,4r,5r,6s)-4,5-dihydroxy-6-methyl-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-2-methyl-5-oxoheptyl]ethanimidic acid

C46H75NO17 (913.5035)