Exact Mass: 901.5524

Exact Mass Matches: 901.5524

Found 124 metabolites which its exact mass value is equals to given mass value 901.5524, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Macrocin

2-[6-[5-(4,5-dihydroxy-4,6-dimethyloxan-2-yl)oxy-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy-15-[(4,5-dihydroxy-3-methoxy-6-methyloxan-2-yl)oxymethyl]-16-ethyl-4-hydroxy-5,9,13-trimethyl-2,10-dioxo-1-oxacyclohexadeca-11,13-dien-7-yl]acetaldehyde

C45H75NO17 (901.5035)


A macrolide antibiotic that is tylonolide having mono- and diglycosyl moieties attached to two of its hydroxy groups. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007933 - Leucomycins

   

beta1-Tomatidine

2-[(2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7,9,13-tetramethyl-5-oxaspiro[pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane-6,2-piperidine]oxy}oxan-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C45H75NO17 (901.5035)


beta1-Tomatidine is found in garden tomato. beta1-Tomatidine is present in tomatoe Present in tomatoes. beta1-Tomatidine is found in garden tomato.

   

PA(21:0/LTE4)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-{[(2R)-1-(henicosanoyloxy)-3-(phosphonooxy)propan-2-yl]oxy}-3-oxopropyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C47H84NO11PS (901.5502)


PA(21:0/LTE4) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(21:0/LTE4), in particular, consists of one chain of one heneicosanoyl at the C-1 position and one chain of Leukotriene E4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(LTE4/21:0)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-[(2R)-2-(henicosanoyloxy)-3-(phosphonooxy)propoxy]-3-oxopropyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C47H84NO11PS (901.5502)


PA(LTE4/21:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(LTE4/21:0), in particular, consists of one chain of one Leukotriene E4 at the C-1 position and one chain of heneicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-21:0/LTE4)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-{[(2R)-1-[(18-methylicosanoyl)oxy]-3-(phosphonooxy)propan-2-yl]oxy}-3-oxopropyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C47H84NO11PS (901.5502)


PA(a-21:0/LTE4) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-21:0/LTE4), in particular, consists of one chain of one 18-methyleicosanoyl at the C-1 position and one chain of Leukotriene E4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(LTE4/a-21:0)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-[(2R)-2-[(18-methylicosanoyl)oxy]-3-(phosphonooxy)propoxy]-3-oxopropyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C47H84NO11PS (901.5502)


PA(LTE4/a-21:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(LTE4/a-21:0), in particular, consists of one chain of one Leukotriene E4 at the C-1 position and one chain of 18-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-21:0/LTE4)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-{[(2R)-1-[(19-methylicosanoyl)oxy]-3-(phosphonooxy)propan-2-yl]oxy}-3-oxopropyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C47H84NO11PS (901.5502)


PA(i-21:0/LTE4) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-21:0/LTE4), in particular, consists of one chain of one 19-methyleicosanoyl at the C-1 position and one chain of Leukotriene E4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(LTE4/i-21:0)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-[(2R)-2-[(19-methylicosanoyl)oxy]-3-(phosphonooxy)propoxy]-3-oxopropyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C47H84NO11PS (901.5502)


PA(LTE4/i-21:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(LTE4/i-21:0), in particular, consists of one chain of one Leukotriene E4 at the C-1 position and one chain of 19-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:2(11Z,14Z)/6 keto-PGF1alpha)

(2S)-2-amino-3-({[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C46H80NO14P (901.5316)


PS(20:2(11Z,14Z)/6 keto-PGF1alpha) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:2(11Z,14Z)/6 keto-PGF1alpha), in particular, consists of one chain of one 11Z,14Z-eicosadienoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(6 keto-PGF1alpha/20:2(11Z,14Z))

(2S)-2-amino-3-({[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C46H80NO14P (901.5316)


PS(6 keto-PGF1alpha/20:2(11Z,14Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(6 keto-PGF1alpha/20:2(11Z,14Z)), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 11Z,14Z-eicosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:2(11Z,14Z)/TXB2)

(2S)-2-amino-3-({[(2R)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C46H80NO14P (901.5316)


PS(20:2(11Z,14Z)/TXB2) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:2(11Z,14Z)/TXB2), in particular, consists of one chain of one 11Z,14Z-eicosadienoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(TXB2/20:2(11Z,14Z))

(2S)-2-amino-3-({[(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C46H80NO14P (901.5316)


PS(TXB2/20:2(11Z,14Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(TXB2/20:2(11Z,14Z)), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 11Z,14Z-eicosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(DiMe(13,5)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

(2-aminoethoxy)[(2R)-3-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}-2-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}propoxy]phosphinic acid

C51H84NO10P (901.5833)


PE(DiMe(13,5)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(DiMe(13,5)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/DiMe(13,5))

(2-aminoethoxy)[(2R)-2-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}-3-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}propoxy]phosphinic acid

C51H84NO10P (901.5833)


PE(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/DiMe(13,5)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/DiMe(13,5)), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(DiMe(13,5)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

(2-aminoethoxy)[(2R)-3-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}-2-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}propoxy]phosphinic acid

C51H84NO10P (901.5833)


PE(DiMe(13,5)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(DiMe(13,5)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/DiMe(13,5))

(2-aminoethoxy)[(2R)-2-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}-3-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}propoxy]phosphinic acid

C51H84NO10P (901.5833)


PE(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/DiMe(13,5)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/DiMe(13,5)), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(DiMe(13,5)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

(2-aminoethoxy)[(2R)-3-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}-2-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}propoxy]phosphinic acid

C51H84NO10P (901.5833)


PE(DiMe(13,5)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(DiMe(13,5)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/DiMe(13,5))

(2-aminoethoxy)[(2R)-2-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}-3-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}propoxy]phosphinic acid

C51H84NO10P (901.5833)


PE(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/DiMe(13,5)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/DiMe(13,5)), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(DiMe(13,5)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

(2-aminoethoxy)[(2R)-3-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}-2-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}propoxy]phosphinic acid

C51H84NO10P (901.5833)


PE(DiMe(13,5)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(DiMe(13,5)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/DiMe(13,5))

(2-aminoethoxy)[(2R)-2-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}-3-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}propoxy]phosphinic acid

C51H84NO10P (901.5833)


PE(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/DiMe(13,5)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/DiMe(13,5)), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(DiMe(13,5)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

(2-aminoethoxy)[(2R)-3-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}-2-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphinic acid

C51H84NO10P (901.5833)


PE(DiMe(13,5)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(DiMe(13,5)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/DiMe(13,5))

(2-aminoethoxy)[(2R)-2-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}-3-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphinic acid

C51H84NO10P (901.5833)


PE(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/DiMe(13,5)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/DiMe(13,5)), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PC(22:5(4Z,7Z,10Z,13Z,16Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

(2-{[(2R)-3-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H80NO11P (901.5469)


PC(22:5(4Z,7Z,10Z,13Z,16Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:5(4Z,7Z,10Z,13Z,16Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/22:5(4Z,7Z,10Z,13Z,16Z))

(2-{[(2R)-2-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H80NO11P (901.5469)


PC(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/22:5(4Z,7Z,10Z,13Z,16Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:5(7Z,10Z,13Z,16Z,19Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

(2-{[(2R)-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H80NO11P (901.5469)


PC(22:5(7Z,10Z,13Z,16Z,19Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:5(7Z,10Z,13Z,16Z,19Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/22:5(7Z,10Z,13Z,16Z,19Z))

(2-{[(2R)-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H80NO11P (901.5469)


PC(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/22:5(7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/PGE2)

(2-{[(2R)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-2-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H80NO11P (901.5469)


PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/PGE2) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/PGE2), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(PGE2/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

(2-{[(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H80NO11P (901.5469)


PC(PGE2/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(PGE2/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/PGD2)

(2-{[(2R)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-2-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H80NO11P (901.5469)


PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/PGD2) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/PGD2), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(PGD2/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

(2-{[(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H80NO11P (901.5469)


PC(PGD2/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(PGD2/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

(2-{[(2R)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H80NO11P (901.5469)


PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

(2-{[(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H80NO11P (901.5469)


PC(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

SM(d19:0/LTE4)

(2-{[(2S,3R)-2-{[(2R)-2-amino-3-{[(4S,5R,6E,8E,10Z,13Z)-1-carboxy-4-hydroxynonadeca-6,8,10,13-tetraen-5-yl]sulphanyl}-1-hydroxypropylidene]amino}-3-hydroxynonadecyl phosphonato]oxy}ethyl)trimethylazanium

C47H88N3O9PS (901.5979)


SM(d19:0/LTE4) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:0/LTE4) consists of a sphingosine backbone and a Leukotriene E4 chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

Antibiotic CP 56063

Antibiotic CP 56063

C45H75NO17 (901.5035)


   

27-O-demethylrapamycin

27-O-demethylrapamycin

C50H79NO13 (901.5551)


   

(25?鈥?-Solanidan-3??,23??-dihydroxy 3-O-??-D-glucopyranosyl(1鈥樏傗垎2)-??-D-glucopyranosyl (1鈥樏傗垎4)-??-D-galactopyranoside

(25?鈥?-Solanidan-3??,23??-dihydroxy 3-O-??-D-glucopyranosyl(1鈥樏傗垎2)-??-D-glucopyranosyl (1鈥樏傗垎4)-??-D-galactopyranoside

C45H75NO17 (901.5035)


   

β-Tomatine

beta-D-Galactopyranoside, (3beta,5alpha,22beta,25S)-spirosolan-3-yl O-beta-D-glucopyranosyl-(1-->2)-O-beta-D-glucopyranosyl-(1-->4)-

C45H75NO17 (901.5035)


   

b1-Tomatine

2-[(2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7,9,13-tetramethyl-5-oxaspiro[pentacyclo[10.8.0.0^{2,9}.0^{4,8}.0^{13,18}]icosane-6,2-piperidine]oxy}oxan-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C45H75NO17 (901.5035)


   

Am-Hex-PE 36:4

N-(1-deoxyfructosyl)-1-hexadecanoyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphoethanolamine

C47H84NO13P (901.568)


   

RKRSRAE

RKRSRAE

C35H67N17O11 (901.5206)


PKG Substrate is a selective substrate for cGMP-dependent protein kinase (PKG).

   
   
   
   
   
   
   

PS(20:2(11Z,14Z)/TXB2)

PS(20:2(11Z,14Z)/TXB2)

C46H80NO14P (901.5316)


   

PS(TXB2/20:2(11Z,14Z))

PS(TXB2/20:2(11Z,14Z))

C46H80NO14P (901.5316)


   

PS(20:2(11Z,14Z)/6 keto-PGF1alpha)

PS(20:2(11Z,14Z)/6 keto-PGF1alpha)

C46H80NO14P (901.5316)


   

PS(6 keto-PGF1alpha/20:2(11Z,14Z))

PS(6 keto-PGF1alpha/20:2(11Z,14Z))

C46H80NO14P (901.5316)


   

PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/PGE2)

PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/PGE2)

C50H80NO11P (901.5469)


   

PC(PGE2/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

PC(PGE2/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

C50H80NO11P (901.5469)


   

PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/PGD2)

PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/PGD2)

C50H80NO11P (901.5469)


   

PC(PGD2/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

PC(PGD2/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

C50H80NO11P (901.5469)


   

PE(DiMe(13,5)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

PE(DiMe(13,5)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

C51H84NO10P (901.5833)


   

PE(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/DiMe(13,5))

PE(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/DiMe(13,5))

C51H84NO10P (901.5833)


   

PE(DiMe(13,5)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

PE(DiMe(13,5)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

C51H84NO10P (901.5833)


   

PE(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/DiMe(13,5))

PE(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/DiMe(13,5))

C51H84NO10P (901.5833)


   

PE(DiMe(13,5)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

PE(DiMe(13,5)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

C51H84NO10P (901.5833)


   

PE(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/DiMe(13,5))

PE(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/DiMe(13,5))

C51H84NO10P (901.5833)


   

PE(DiMe(13,5)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

PE(DiMe(13,5)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

C51H84NO10P (901.5833)


   

PE(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/DiMe(13,5))

PE(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/DiMe(13,5))

C51H84NO10P (901.5833)


   

PE(DiMe(13,5)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

PE(DiMe(13,5)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

C51H84NO10P (901.5833)


   

PE(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/DiMe(13,5))

PE(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/DiMe(13,5))

C51H84NO10P (901.5833)


   

PC(22:5(4Z,7Z,10Z,13Z,16Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PC(22:5(4Z,7Z,10Z,13Z,16Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C50H80NO11P (901.5469)


   

PC(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/22:5(4Z,7Z,10Z,13Z,16Z))

PC(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/22:5(4Z,7Z,10Z,13Z,16Z))

C50H80NO11P (901.5469)


   

PC(22:5(7Z,10Z,13Z,16Z,19Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PC(22:5(7Z,10Z,13Z,16Z,19Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C50H80NO11P (901.5469)


   

PC(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/22:5(7Z,10Z,13Z,16Z,19Z))

PC(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/22:5(7Z,10Z,13Z,16Z,19Z))

C50H80NO11P (901.5469)


   

PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C50H80NO11P (901.5469)


   

PC(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

PC(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

C50H80NO11P (901.5469)


   
   

2-[[(2R)-2-[(2R)-2-amino-3-[(4S,5R,6E,8E,10Z,13Z)-1-carboxy-4-hydroxynonadeca-6,8,10,13-tetraen-5-yl]sulfanylpropanoyl]oxy-3-[(E)-hexadec-1-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(2R)-2-amino-3-[(4S,5R,6E,8E,10Z,13Z)-1-carboxy-4-hydroxynonadeca-6,8,10,13-tetraen-5-yl]sulfanylpropanoyl]oxy-3-[(E)-hexadec-1-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C47H86N2O10PS+ (901.574)


   

2-[[(2R)-3-[(2R)-2-amino-3-[(4S,5R,6E,8E,10Z,13Z)-1-carboxy-4-hydroxynonadeca-6,8,10,13-tetraen-5-yl]sulfanylpropanoyl]oxy-2-[(E)-hexadec-1-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(2R)-2-amino-3-[(4S,5R,6E,8E,10Z,13Z)-1-carboxy-4-hydroxynonadeca-6,8,10,13-tetraen-5-yl]sulfanylpropanoyl]oxy-2-[(E)-hexadec-1-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C47H86N2O10PS+ (901.574)


   
   
   

3-[(3R,6R,9R,12R,15R,22S)-3-[(2S)-butan-2-yl]-18-[(1S)-1-hydroxyethyl]-6-[(4-hydroxyphenyl)methyl]-12,15-dimethyl-2,5,8,11,14,17,20-heptaoxo-22-[(2S)-tridecan-2-yl]-1-oxa-4,7,10,13,16,19-hexazacyclodocos-9-yl]propanamide

3-[(3R,6R,9R,12R,15R,22S)-3-[(2S)-butan-2-yl]-18-[(1S)-1-hydroxyethyl]-6-[(4-hydroxyphenyl)methyl]-12,15-dimethyl-2,5,8,11,14,17,20-heptaoxo-22-[(2S)-tridecan-2-yl]-1-oxa-4,7,10,13,16,19-hexazacyclodocos-9-yl]propanamide

C46H75N7O11 (901.5524)


   
   

SHexCer 23:3;2O/19:1;O

SHexCer 23:3;2O/19:1;O

C48H87NO12S (901.5949)


   

SHexCer 26:2;2O/16:2;O

SHexCer 26:2;2O/16:2;O

C48H87NO12S (901.5949)


   

SHexCer 19:3;2O/23:1;O

SHexCer 19:3;2O/23:1;O

C48H87NO12S (901.5949)


   

SHexCer 18:2;2O/24:2;O

SHexCer 18:2;2O/24:2;O

C48H87NO12S (901.5949)


   

SHexCer 24:2;2O/18:2;O

SHexCer 24:2;2O/18:2;O

C48H87NO12S (901.5949)


   

SHexCer 18:3;2O/24:1;O

SHexCer 18:3;2O/24:1;O

C48H87NO12S (901.5949)


   

SHexCer 22:2;2O/20:2;O

SHexCer 22:2;2O/20:2;O

C48H87NO12S (901.5949)


   

SHexCer 16:3;2O/26:1;O

SHexCer 16:3;2O/26:1;O

C48H87NO12S (901.5949)


   

SHexCer 20:3;2O/22:1;O

SHexCer 20:3;2O/22:1;O

C48H87NO12S (901.5949)


   

SHexCer 17:3;2O/25:1;O

SHexCer 17:3;2O/25:1;O

C48H87NO12S (901.5949)


   

SHexCer 21:3;2O/21:1;O

SHexCer 21:3;2O/21:1;O

C48H87NO12S (901.5949)


   

SHexCer 20:2;2O/22:2;O

SHexCer 20:2;2O/22:2;O

C48H87NO12S (901.5949)


   

SHexCer 16:2;2O/26:2;O

SHexCer 16:2;2O/26:2;O

C48H87NO12S (901.5949)


   

SHexCer 26:3;2O/16:1;O

SHexCer 26:3;2O/16:1;O

C48H87NO12S (901.5949)


   

SHexCer 24:3;2O/18:1;O

SHexCer 24:3;2O/18:1;O

C48H87NO12S (901.5949)


   

SHexCer 22:3;2O/20:1;O

SHexCer 22:3;2O/20:1;O

C48H87NO12S (901.5949)


   

Lnaps 19:2/N-26:6

Lnaps 19:2/N-26:6

C51H84NO10P (901.5833)


   

Lnaps 26:7/N-19:1

Lnaps 26:7/N-19:1

C51H84NO10P (901.5833)


   

Lnaps 21:1/N-24:7

Lnaps 21:1/N-24:7

C51H84NO10P (901.5833)


   

Lnaps 19:1/N-26:7

Lnaps 19:1/N-26:7

C51H84NO10P (901.5833)


   

Lnaps 21:2/N-24:6

Lnaps 21:2/N-24:6

C51H84NO10P (901.5833)


   

Lnaps 26:6/N-19:2

Lnaps 26:6/N-19:2

C51H84NO10P (901.5833)


   

Lnaps 24:7/N-21:1

Lnaps 24:7/N-21:1

C51H84NO10P (901.5833)


   

Lnaps 24:6/N-21:2

Lnaps 24:6/N-21:2

C51H84NO10P (901.5833)


   

(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodeca-4,8-dien-2-yl]hexacosa-5,8,11,14,17,20,23-heptaenamide

(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodeca-4,8-dien-2-yl]hexacosa-5,8,11,14,17,20,23-heptaenamide

C50H79NO13 (901.5551)


   

(4Z,7Z,10Z,13Z,16Z,19Z)-N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhexadeca-4,8,12-trien-2-yl]docosa-4,7,10,13,16,19-hexaenamide

(4Z,7Z,10Z,13Z,16Z,19Z)-N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhexadeca-4,8,12-trien-2-yl]docosa-4,7,10,13,16,19-hexaenamide

C50H79NO13 (901.5551)


   

(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]triaconta-6,9,12,15,18,21,24,27-octaenamide

(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]triaconta-6,9,12,15,18,21,24,27-octaenamide

C50H79NO13 (901.5551)


   

(6Z,9Z,12Z,15Z,18Z,21Z)-N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradeca-4,8,12-trien-2-yl]tetracosa-6,9,12,15,18,21-hexaenamide

(6Z,9Z,12Z,15Z,18Z,21Z)-N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradeca-4,8,12-trien-2-yl]tetracosa-6,9,12,15,18,21-hexaenamide

C50H79NO13 (901.5551)


   

beta1-Tomatidine

beta1-Tomatidine

C45H75NO17 (901.5035)


   

BiotinylPE(31:1)

BiotinylPE(13:0_18:1)

C46H84N3O10PS (901.5615)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   

Hex3Cer 24:0;O3

Hex3Cer 24:0;O3

C42H79NO19 (901.5246)


   
   

(25ξ)-solanidan-3β,23β-dihydroxy 3-o-β-d-glu-copyranosyl(1→2)-β-d-glucopyranosyl(1→4)-β-d-galactopyranoside

NA

C45H75NO17 (901.5035)


{"Ingredient_id": "HBIN004811","Ingredient_name": "(25\u03be)-solanidan-3\u03b2,23\u03b2-dihydroxy 3-o-\u03b2-d-glu-copyranosyl(1\u21922)-\u03b2-d-glucopyranosyl(1\u21924)-\u03b2-d-galactopyranoside","Alias": "NA","Ingredient_formula": "C45H75NO17","Ingredient_Smile": "CC1CC(C2C(C3C(N2C1)CC4C3(CCC5C4CCC6C5(CCC(C6)OC7C(C(C(C(O7)CO)OC8C(C(C(C(O8)CO)O)O)OC9C(C(C(C(O9)CO)O)O)O)O)O)C)C)C)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "20036","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

(4s)-4-{[(2r)-6-amino-2-{[(2r)-1,3-dihydroxy-2-{[(2s)-1-hydroxy-2-{[(2r)-1-hydroxy-4-(c-hydroxycarbonimidoyl)-2-[(1-hydroxytridecylidene)amino]butylidene]amino}-3-(c-hydroxycarbonimidoyl)propylidene]amino}propylidene]amino}-1-hydroxyhexylidene]amino}-4-{[(1s,2r)-1-carboxy-2-hydroxypropyl]-c-hydroxycarbonimidoyl}butanoic acid

(4s)-4-{[(2r)-6-amino-2-{[(2r)-1,3-dihydroxy-2-{[(2s)-1-hydroxy-2-{[(2r)-1-hydroxy-4-(c-hydroxycarbonimidoyl)-2-[(1-hydroxytridecylidene)amino]butylidene]amino}-3-(c-hydroxycarbonimidoyl)propylidene]amino}propylidene]amino}-1-hydroxyhexylidene]amino}-4-{[(1s,2r)-1-carboxy-2-hydroxypropyl]-c-hydroxycarbonimidoyl}butanoic acid

C40H71N9O14 (901.512)


   

9-({5-[(4,5-dihydroxy-4,6-dimethyloxan-2-yl)oxy]-4-(dimethylamino)-6-methyloxan-2-yl}oxy)-3,10-diethyl-7-hydroxy-2-{[(5-hydroxy-3,4-dimethoxy-6-methyloxan-2-yl)oxy]methyl}-8,12,16-trimethyl-4,17-dioxabicyclo[14.1.0]heptadec-14-ene-5,13-dione

9-({5-[(4,5-dihydroxy-4,6-dimethyloxan-2-yl)oxy]-4-(dimethylamino)-6-methyloxan-2-yl}oxy)-3,10-diethyl-7-hydroxy-2-{[(5-hydroxy-3,4-dimethoxy-6-methyloxan-2-yl)oxy]methyl}-8,12,16-trimethyl-4,17-dioxabicyclo[14.1.0]heptadec-14-ene-5,13-dione

C46H79NO16 (901.5399)