Exact Mass: 898.6537

Exact Mass Matches: 898.6537

Found 294 metabolites which its exact mass value is equals to given mass value 898.6537, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PG(i-24:0/20:3(5Z,8Z,11Z)-O(14R,15S))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(22-methyltricosanoyl)oxy]-2-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy]phosphinic acid

C50H91O11P (898.6299)


PG(i-24:0/20:3(5Z,8Z,11Z)-O(14R,15S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-24:0/20:3(5Z,8Z,11Z)-O(14R,15S)), in particular, consists of one chain of one 22-methyltricosanoyl at the C-1 position and one chain of 14,15-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:3(5Z,8Z,11Z)-O(14R,15S)/i-24:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(22-methyltricosanoyl)oxy]-3-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy]phosphinic acid

C50H91O11P (898.6299)


PG(20:3(5Z,8Z,11Z)-O(14R,15S)/i-24:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:3(5Z,8Z,11Z)-O(14R,15S)/i-24:0), in particular, consists of one chain of one 14,15-epoxyeicosatrienoyl at the C-1 position and one chain of 22-methyltricosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-24:0/20:3(5Z,8Z,14Z)-O(11S,12R))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(22-methyltricosanoyl)oxy]-2-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propoxy]phosphinic acid

C50H91O11P (898.6299)


PG(i-24:0/20:3(5Z,8Z,14Z)-O(11S,12R)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-24:0/20:3(5Z,8Z,14Z)-O(11S,12R)), in particular, consists of one chain of one 22-methyltricosanoyl at the C-1 position and one chain of 11,12-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:3(5Z,8Z,14Z)-O(11S,12R)/i-24:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(22-methyltricosanoyl)oxy]-3-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propoxy]phosphinic acid

C50H91O11P (898.6299)


PG(20:3(5Z,8Z,14Z)-O(11S,12R)/i-24:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:3(5Z,8Z,14Z)-O(11S,12R)/i-24:0), in particular, consists of one chain of one 11,12-epoxyeicosatrienoyl at the C-1 position and one chain of 22-methyltricosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-24:0/20:3(5Z,11Z,14Z)-O(8,9))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(22-methyltricosanoyl)oxy]-2-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphinic acid

C50H91O11P (898.6299)


PG(i-24:0/20:3(5Z,11Z,14Z)-O(8,9)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-24:0/20:3(5Z,11Z,14Z)-O(8,9)), in particular, consists of one chain of one 22-methyltricosanoyl at the C-1 position and one chain of 8,9--epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:3(5Z,11Z,14Z)-O(8,9)/i-24:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(22-methyltricosanoyl)oxy]-3-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphinic acid

C50H91O11P (898.6299)


PG(20:3(5Z,11Z,14Z)-O(8,9)/i-24:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:3(5Z,11Z,14Z)-O(8,9)/i-24:0), in particular, consists of one chain of one 8,9--epoxyeicosatrienoyl at the C-1 position and one chain of 22-methyltricosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-24:0/20:3(8Z,11Z,14Z)-O(5,6))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(22-methyltricosanoyl)oxy]-2-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphinic acid

C50H91O11P (898.6299)


PG(i-24:0/20:3(8Z,11Z,14Z)-O(5,6)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-24:0/20:3(8Z,11Z,14Z)-O(5,6)), in particular, consists of one chain of one 22-methyltricosanoyl at the C-1 position and one chain of 5,6-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:3(8Z,11Z,14Z)-O(5,6)/i-24:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(22-methyltricosanoyl)oxy]-3-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphinic acid

C50H91O11P (898.6299)


PG(20:3(8Z,11Z,14Z)-O(5,6)/i-24:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:3(8Z,11Z,14Z)-O(5,6)/i-24:0), in particular, consists of one chain of one 5,6-epoxyeicosatrienoyl at the C-1 position and one chain of 22-methyltricosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-24:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(22-methyltricosanoyl)oxy]propoxy]phosphinic acid

C50H91O11P (898.6299)


PG(i-24:0/20:4(5Z,8Z,11Z,14Z)-OH(20)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-24:0/20:4(5Z,8Z,11Z,14Z)-OH(20)), in particular, consists of one chain of one 22-methyltricosanoyl at the C-1 position and one chain of 20-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-24:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(22-methyltricosanoyl)oxy]propoxy]phosphinic acid

C50H91O11P (898.6299)


PG(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-24:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-24:0), in particular, consists of one chain of one 20-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 22-methyltricosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-24:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-3-[(22-methyltricosanoyl)oxy]propoxy]phosphinic acid

C50H91O11P (898.6299)


PG(i-24:0/20:4(6E,8Z,11Z,14Z)-OH(5S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-24:0/20:4(6E,8Z,11Z,14Z)-OH(5S)), in particular, consists of one chain of one 22-methyltricosanoyl at the C-1 position and one chain of 5-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-24:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-2-[(22-methyltricosanoyl)oxy]propoxy]phosphinic acid

C50H91O11P (898.6299)


PG(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-24:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-24:0), in particular, consists of one chain of one 5-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 22-methyltricosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-24:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(22-methyltricosanoyl)oxy]propoxy]phosphinic acid

C50H91O11P (898.6299)


PG(i-24:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-24:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)), in particular, consists of one chain of one 22-methyltricosanoyl at the C-1 position and one chain of 19-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-24:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(22-methyltricosanoyl)oxy]propoxy]phosphinic acid

C50H91O11P (898.6299)


PG(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-24:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-24:0), in particular, consists of one chain of one 19-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 22-methyltricosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-24:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(22-methyltricosanoyl)oxy]propoxy]phosphinic acid

C50H91O11P (898.6299)


PG(i-24:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-24:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)), in particular, consists of one chain of one 22-methyltricosanoyl at the C-1 position and one chain of 18-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-24:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(22-methyltricosanoyl)oxy]propoxy]phosphinic acid

C50H91O11P (898.6299)


PG(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-24:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-24:0), in particular, consists of one chain of one 18-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 22-methyltricosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-24:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(22-methyltricosanoyl)oxy]propoxy]phosphinic acid

C50H91O11P (898.6299)


PG(i-24:0/20:4(5Z,8Z,11Z,14Z)-OH(17)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-24:0/20:4(5Z,8Z,11Z,14Z)-OH(17)), in particular, consists of one chain of one 22-methyltricosanoyl at the C-1 position and one chain of 17-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-24:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(22-methyltricosanoyl)oxy]propoxy]phosphinic acid

C50H91O11P (898.6299)


PG(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-24:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-24:0), in particular, consists of one chain of one 17-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 22-methyltricosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-24:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(22-methyltricosanoyl)oxy]propoxy]phosphinic acid

C50H91O11P (898.6299)


PG(i-24:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-24:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)), in particular, consists of one chain of one 22-methyltricosanoyl at the C-1 position and one chain of 16-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-24:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(22-methyltricosanoyl)oxy]propoxy]phosphinic acid

C50H91O11P (898.6299)


PG(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-24:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-24:0), in particular, consists of one chain of one 16-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 22-methyltricosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-24:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-3-[(22-methyltricosanoyl)oxy]propoxy]phosphinic acid

C50H91O11P (898.6299)


PG(i-24:0/20:4(5Z,8Z,11Z,13E)-OH(15S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-24:0/20:4(5Z,8Z,11Z,13E)-OH(15S)), in particular, consists of one chain of one 22-methyltricosanoyl at the C-1 position and one chain of 15-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-24:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-2-[(22-methyltricosanoyl)oxy]propoxy]phosphinic acid

C50H91O11P (898.6299)


PG(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-24:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-24:0), in particular, consists of one chain of one 15-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 22-methyltricosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-24:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-3-[(22-methyltricosanoyl)oxy]propoxy]phosphinic acid

C50H91O11P (898.6299)


PG(i-24:0/20:4(5Z,8Z,10E,14Z)-OH(12S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-24:0/20:4(5Z,8Z,10E,14Z)-OH(12S)), in particular, consists of one chain of one 22-methyltricosanoyl at the C-1 position and one chain of 12-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-24:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-2-[(22-methyltricosanoyl)oxy]propoxy]phosphinic acid

C50H91O11P (898.6299)


PG(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-24:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-24:0), in particular, consists of one chain of one 12-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 22-methyltricosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-24:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-3-[(22-methyltricosanoyl)oxy]propoxy]phosphinic acid

C50H91O11P (898.6299)


PG(i-24:0/20:4(5E,8Z,12Z,14Z)-OH(11R)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-24:0/20:4(5E,8Z,12Z,14Z)-OH(11R)), in particular, consists of one chain of one 22-methyltricosanoyl at the C-1 position and one chain of 11-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-24:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-2-[(22-methyltricosanoyl)oxy]propoxy]phosphinic acid

C50H91O11P (898.6299)


PG(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-24:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-24:0), in particular, consists of one chain of one 11-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 22-methyltricosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-24:0/20:4(5Z,7E,11Z,14Z)-OH(9))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-3-[(22-methyltricosanoyl)oxy]propoxy]phosphinic acid

C50H91O11P (898.6299)


PG(i-24:0/20:4(5Z,7E,11Z,14Z)-OH(9)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-24:0/20:4(5Z,7E,11Z,14Z)-OH(9)), in particular, consists of one chain of one 22-methyltricosanoyl at the C-1 position and one chain of 9-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,7E,11Z,14Z)-OH(9)/i-24:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-2-[(22-methyltricosanoyl)oxy]propoxy]phosphinic acid

C50H91O11P (898.6299)


PG(20:4(5Z,7E,11Z,14Z)-OH(9)/i-24:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,7E,11Z,14Z)-OH(9)/i-24:0), in particular, consists of one chain of one 9-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 22-methyltricosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   
   

Kansuiphorin B

Kansuiphorin B

C54H90O10 (898.6534)


A tetracyclic diterpenoid that is 6,7-epoxy-13-hydroxyingenol in which the hydroxy groups at positions 3, 13 and 20 are esterified by 2,3-dimethylbutyric acid, lauric acid and palmitic acid. Isolated from the roots of Euphorbia kansui, it exhibits anti-cancerous activity.

   

dichapetalin D

dichapetalin D

C57H86O8 (898.6322)


   

1-hexacosanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphoserine

1-hexacosanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphoserine

C50H93NO10P- (898.6537)


   

PG(i-24:0/20:3(5Z,8Z,11Z)-O(14R,15S))

PG(i-24:0/20:3(5Z,8Z,11Z)-O(14R,15S))

C50H91O11P (898.6299)


   

PG(20:3(5Z,8Z,11Z)-O(14R,15S)/i-24:0)

PG(20:3(5Z,8Z,11Z)-O(14R,15S)/i-24:0)

C50H91O11P (898.6299)


   

PG(i-24:0/20:3(5Z,8Z,14Z)-O(11S,12R))

PG(i-24:0/20:3(5Z,8Z,14Z)-O(11S,12R))

C50H91O11P (898.6299)


   

PG(20:3(5Z,8Z,14Z)-O(11S,12R)/i-24:0)

PG(20:3(5Z,8Z,14Z)-O(11S,12R)/i-24:0)

C50H91O11P (898.6299)


   

PG(i-24:0/20:3(5Z,11Z,14Z)-O(8,9))

PG(i-24:0/20:3(5Z,11Z,14Z)-O(8,9))

C50H91O11P (898.6299)


   

PG(20:3(5Z,11Z,14Z)-O(8,9)/i-24:0)

PG(20:3(5Z,11Z,14Z)-O(8,9)/i-24:0)

C50H91O11P (898.6299)


   

PG(i-24:0/20:3(8Z,11Z,14Z)-O(5,6))

PG(i-24:0/20:3(8Z,11Z,14Z)-O(5,6))

C50H91O11P (898.6299)


   

PG(20:3(8Z,11Z,14Z)-O(5,6)/i-24:0)

PG(20:3(8Z,11Z,14Z)-O(5,6)/i-24:0)

C50H91O11P (898.6299)


   

PG(i-24:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

PG(i-24:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

C50H91O11P (898.6299)


   

PG(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-24:0)

PG(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-24:0)

C50H91O11P (898.6299)


   

PG(i-24:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

PG(i-24:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

C50H91O11P (898.6299)


   

PG(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-24:0)

PG(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-24:0)

C50H91O11P (898.6299)


   

PG(i-24:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

PG(i-24:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C50H91O11P (898.6299)


   

PG(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-24:0)

PG(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-24:0)

C50H91O11P (898.6299)


   

PG(i-24:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

PG(i-24:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C50H91O11P (898.6299)


   

PG(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-24:0)

PG(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-24:0)

C50H91O11P (898.6299)


   

PG(i-24:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

PG(i-24:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

C50H91O11P (898.6299)


   

PG(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-24:0)

PG(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-24:0)

C50H91O11P (898.6299)


   

PG(i-24:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

PG(i-24:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C50H91O11P (898.6299)


   

PG(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-24:0)

PG(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-24:0)

C50H91O11P (898.6299)


   

PG(i-24:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

PG(i-24:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

C50H91O11P (898.6299)


   

PG(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-24:0)

PG(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-24:0)

C50H91O11P (898.6299)


   

PG(i-24:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

PG(i-24:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

C50H91O11P (898.6299)


   

PG(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-24:0)

PG(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-24:0)

C50H91O11P (898.6299)


   

PG(i-24:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

PG(i-24:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

C50H91O11P (898.6299)


   

PG(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-24:0)

PG(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-24:0)

C50H91O11P (898.6299)


   

PG(i-24:0/20:4(5Z,7E,11Z,14Z)-OH(9))

PG(i-24:0/20:4(5Z,7E,11Z,14Z)-OH(9))

C50H91O11P (898.6299)


   

PG(20:4(5Z,7E,11Z,14Z)-OH(9)/i-24:0)

PG(20:4(5Z,7E,11Z,14Z)-OH(9)/i-24:0)

C50H91O11P (898.6299)


   

2-[[(2R)-2-[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-3-docosanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-3-docosanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H93NO10P+ (898.6537)


   

2-[[(2R)-3-[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-2-docosanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-2-docosanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H93NO10P+ (898.6537)


   

2-[[(2R)-2-[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy-3-docosanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy-3-docosanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H93NO10P+ (898.6537)


   

2-[[(2R)-3-[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy-2-docosanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy-2-docosanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H93NO10P+ (898.6537)


   

2-[[(2R)-2-[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy-3-docosanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy-3-docosanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H93NO10P+ (898.6537)


   

2-[[(2R)-3-[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy-2-docosanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy-2-docosanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H93NO10P+ (898.6537)


   

2-[[(2R)-2-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-3-[(Z)-docos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-3-[(Z)-docos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H93NO10P+ (898.6537)


   

2-[[(2R)-3-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-2-[(Z)-docos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-2-[(Z)-docos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H93NO10P+ (898.6537)


   

Mgdg O-18:3_28:4

Mgdg O-18:3_28:4

C55H94O9 (898.6897)


   

Mgdg O-24:2_22:5

Mgdg O-24:2_22:5

C55H94O9 (898.6897)


   

Mgdg O-24:5_22:2

Mgdg O-24:5_22:2

C55H94O9 (898.6897)


   

Mgdg O-28:2_18:5

Mgdg O-28:2_18:5

C55H94O9 (898.6897)


   

Mgdg O-20:0_26:7

Mgdg O-20:0_26:7

C55H94O9 (898.6897)


   

Mgdg O-18:0_28:7

Mgdg O-18:0_28:7

C55H94O9 (898.6897)


   

Mgdg O-28:5_18:2

Mgdg O-28:5_18:2

C55H94O9 (898.6897)


   

Mgdg O-26:5_20:2

Mgdg O-26:5_20:2

C55H94O9 (898.6897)


   

Mgdg O-28:3_18:4

Mgdg O-28:3_18:4

C55H94O9 (898.6897)


   

Mgdg O-28:6_18:1

Mgdg O-28:6_18:1

C55H94O9 (898.6897)


   

Mgdg O-18:2_28:5

Mgdg O-18:2_28:5

C55H94O9 (898.6897)


   

Mgdg O-22:5_24:2

Mgdg O-22:5_24:2

C55H94O9 (898.6897)


   

Mgdg O-20:3_26:4

Mgdg O-20:3_26:4

C55H94O9 (898.6897)


   

Mgdg O-28:7_18:0

Mgdg O-28:7_18:0

C55H94O9 (898.6897)


   

Mgdg O-26:3_20:4

Mgdg O-26:3_20:4

C55H94O9 (898.6897)


   

Mgdg O-24:4_22:3

Mgdg O-24:4_22:3

C55H94O9 (898.6897)


   

Mgdg O-22:1_24:6

Mgdg O-22:1_24:6

C55H94O9 (898.6897)


   

Mgdg O-24:3_22:4

Mgdg O-24:3_22:4

C55H94O9 (898.6897)


   

Mgdg O-18:5_28:2

Mgdg O-18:5_28:2

C55H94O9 (898.6897)


   

ST 28:2;O;Hex;FA 24:6

ST 28:2;O;Hex;FA 24:6

C58H90O7 (898.6686)


   

Mgdg O-22:2_24:5

Mgdg O-22:2_24:5

C55H94O9 (898.6897)


   

Mgdg O-20:5_26:2

Mgdg O-20:5_26:2

C55H94O9 (898.6897)


   

Mgdg O-20:2_26:5

Mgdg O-20:2_26:5

C55H94O9 (898.6897)


   

Mgdg O-24:1_22:6

Mgdg O-24:1_22:6

C55H94O9 (898.6897)


   

Mgdg O-24:6_22:1

Mgdg O-24:6_22:1

C55H94O9 (898.6897)


   

Mgdg O-18:1_28:6

Mgdg O-18:1_28:6

C55H94O9 (898.6897)


   

Mgdg O-26:4_20:3

Mgdg O-26:4_20:3

C55H94O9 (898.6897)


   

Mgdg O-26:6_20:1

Mgdg O-26:6_20:1

C55H94O9 (898.6897)


   

Mgdg O-20:4_26:3

Mgdg O-20:4_26:3

C55H94O9 (898.6897)


   

Mgdg O-22:6_24:1

Mgdg O-22:6_24:1

C55H94O9 (898.6897)


   

Mgdg O-22:3_24:4

Mgdg O-22:3_24:4

C55H94O9 (898.6897)


   

Mgdg O-26:7_20:0

Mgdg O-26:7_20:0

C55H94O9 (898.6897)


   

Mgdg O-26:2_20:5

Mgdg O-26:2_20:5

C55H94O9 (898.6897)


   

Mgdg O-28:4_18:3

Mgdg O-28:4_18:3

C55H94O9 (898.6897)


   

Mgdg O-18:4_28:3

Mgdg O-18:4_28:3

C55H94O9 (898.6897)


   

Mgdg O-22:4_24:3

Mgdg O-22:4_24:3

C55H94O9 (898.6897)


   

Mgdg O-20:1_26:6

Mgdg O-20:1_26:6

C55H94O9 (898.6897)


   

PE-Cer 26:2;2O/26:6

PE-Cer 26:2;2O/26:6

C54H95N2O6P (898.6927)


   

PE-Cer 26:3;2O/26:5

PE-Cer 26:3;2O/26:5

C54H95N2O6P (898.6927)


   

PE-Cer 26:1;2O/26:7

PE-Cer 26:1;2O/26:7

C54H95N2O6P (898.6927)


   

[(E)-3-hydroxy-2-[[(19Z,22Z,25Z,28Z,31Z,34Z,37Z)-tetraconta-19,22,25,28,31,34,37-heptaenoyl]amino]non-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(19Z,22Z,25Z,28Z,31Z,34Z,37Z)-tetraconta-19,22,25,28,31,34,37-heptaenoyl]amino]non-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C54H95N2O6P (898.6927)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-icosoxypropan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-icosoxypropan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate

C52H99O9P (898.7026)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propan-2-yl] tetracosanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propan-2-yl] tetracosanoate

C52H99O9P (898.7026)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]propan-2-yl] icosanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]propan-2-yl] icosanoate

C52H99O9P (898.7026)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetracosoxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetracosoxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C52H99O9P (898.7026)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(15Z,18Z)-hexacosa-15,18-dienoxy]propan-2-yl] (Z)-icos-11-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(15Z,18Z)-hexacosa-15,18-dienoxy]propan-2-yl] (Z)-icos-11-enoate

C52H99O9P (898.7026)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-docosoxypropan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-docosoxypropan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

C52H99O9P (898.7026)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexacos-15-enoxy]propan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexacos-15-enoxy]propan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C52H99O9P (898.7026)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propan-2-yl] (Z)-docos-13-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propan-2-yl] (Z)-docos-13-enoate

C52H99O9P (898.7026)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (Z)-hexacos-15-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (Z)-hexacos-15-enoate

C52H99O9P (898.7026)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-docos-13-enoxy]propan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-docos-13-enoxy]propan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C52H99O9P (898.7026)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] hexacosanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] hexacosanoate

C52H99O9P (898.7026)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetracos-13-enoxy]propan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetracos-13-enoxy]propan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C52H99O9P (898.7026)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexacosoxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexacosoxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C52H99O9P (898.7026)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-docosa-13,16-dienoxy]propan-2-yl] (Z)-tetracos-13-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-docosa-13,16-dienoxy]propan-2-yl] (Z)-tetracos-13-enoate

C52H99O9P (898.7026)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

C52H99O9P (898.7026)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propan-2-yl] docosanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propan-2-yl] docosanoate

C52H99O9P (898.7026)


   

[2-[[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]amino]-3-hydroxyheptadecyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]amino]-3-hydroxyheptadecyl] 2-(trimethylazaniumyl)ethyl phosphate

C54H95N2O6P (898.6927)


   

[(E)-2-[[(15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-15,18,21,24,27,30,33-heptaenoyl]amino]-3-hydroxytridec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-15,18,21,24,27,30,33-heptaenoyl]amino]-3-hydroxytridec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C54H95N2O6P (898.6927)


   

[(E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoyl]amino]nonadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoyl]amino]nonadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C54H95N2O6P (898.6927)


   

[(4E,8E,12E)-3-hydroxy-2-[[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoyl]amino]henicosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoyl]amino]henicosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C54H95N2O6P (898.6927)


   

[(E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxytricos-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxytricos-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C54H95N2O6P (898.6927)


   

[(4E,8E,12E)-3-hydroxy-2-[[(15Z,18Z,21Z,24Z,27Z)-triaconta-15,18,21,24,27-pentaenoyl]amino]nonadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(15Z,18Z,21Z,24Z,27Z)-triaconta-15,18,21,24,27-pentaenoyl]amino]nonadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C54H95N2O6P (898.6927)


   

[(4E,8E)-3-hydroxy-2-[[(16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-16,19,22,25,28,31-hexaenoyl]amino]pentadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-16,19,22,25,28,31-hexaenoyl]amino]pentadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C54H95N2O6P (898.6927)


   

[(4E,8E)-2-[[(18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-18,21,24,27,30,33-hexaenoyl]amino]-3-hydroxytrideca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-2-[[(18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-18,21,24,27,30,33-hexaenoyl]amino]-3-hydroxytrideca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C54H95N2O6P (898.6927)


   

[(4E,8E,12E)-2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxytricosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxytricosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C54H95N2O6P (898.6927)


   

[(4E,8E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxyheptacosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxyheptacosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C54H95N2O6P (898.6927)


   

[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]pentacosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]pentacosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C54H95N2O6P (898.6927)


   

[(E)-3-hydroxy-2-[[(17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-17,20,23,26,29,32,35-heptaenoyl]amino]undec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-17,20,23,26,29,32,35-heptaenoyl]amino]undec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C54H95N2O6P (898.6927)


   

[(E)-3-hydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]amino]henicos-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]amino]henicos-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C54H95N2O6P (898.6927)


   

[(E)-3-hydroxy-2-[[(13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-13,16,19,22,25,28,31-heptaenoyl]amino]pentadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-13,16,19,22,25,28,31-heptaenoyl]amino]pentadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C54H95N2O6P (898.6927)


   

[(4E,8E,12E)-3-hydroxy-2-[[(19Z,22Z,25Z,28Z,31Z)-tetratriaconta-19,22,25,28,31-pentaenoyl]amino]pentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(19Z,22Z,25Z,28Z,31Z)-tetratriaconta-19,22,25,28,31-pentaenoyl]amino]pentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C54H95N2O6P (898.6927)


   

[(4E,8E,12E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxyheptacosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxyheptacosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C54H95N2O6P (898.6927)


   

[(4E,8E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]pentacosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]pentacosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C54H95N2O6P (898.6927)


   

[(4E,8E,12E)-2-[[(17Z,20Z,23Z,26Z,29Z)-dotriaconta-17,20,23,26,29-pentaenoyl]amino]-3-hydroxyheptadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(17Z,20Z,23Z,26Z,29Z)-dotriaconta-17,20,23,26,29-pentaenoyl]amino]-3-hydroxyheptadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C54H95N2O6P (898.6927)


   

[(4E,8E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxytricosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxytricosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C54H95N2O6P (898.6927)


   

[(4E,8E,12E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]hentriaconta-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]hentriaconta-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C54H95N2O6P (898.6927)


   

[(4E,8E,12E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]nonacosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]nonacosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C54H95N2O6P (898.6927)


   

[(4E,8E)-2-[[(14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-14,17,20,23,26,29-hexaenoyl]amino]-3-hydroxyheptadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-2-[[(14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-14,17,20,23,26,29-hexaenoyl]amino]-3-hydroxyheptadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C54H95N2O6P (898.6927)


   

[3-hydroxy-2-[[(10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-10,13,16,19,22,25,28,31-octaenoyl]amino]pentadecyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hydroxy-2-[[(10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-10,13,16,19,22,25,28,31-octaenoyl]amino]pentadecyl] 2-(trimethylazaniumyl)ethyl phosphate

C54H95N2O6P (898.6927)


   

[(4E,8E)-3-hydroxy-2-[[(12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoyl]amino]nonadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoyl]amino]nonadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C54H95N2O6P (898.6927)


   

[(4E,8E)-3-hydroxy-2-[[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]amino]henicosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]amino]henicosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C54H95N2O6P (898.6927)


   

[(E)-2-[[(11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-11,14,17,20,23,26,29-heptaenoyl]amino]-3-hydroxyheptadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-11,14,17,20,23,26,29-heptaenoyl]amino]-3-hydroxyheptadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C54H95N2O6P (898.6927)


   

[2-[[(12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-12,15,18,21,24,27,30,33-octaenoyl]amino]-3-hydroxytridecyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[[(12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-12,15,18,21,24,27,30,33-octaenoyl]amino]-3-hydroxytridecyl] 2-(trimethylazaniumyl)ethyl phosphate

C54H95N2O6P (898.6927)


   

[3-hydroxy-2-[[(14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-14,17,20,23,26,29,32,35-octaenoyl]amino]undecyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hydroxy-2-[[(14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-14,17,20,23,26,29,32,35-octaenoyl]amino]undecyl] 2-(trimethylazaniumyl)ethyl phosphate

C54H95N2O6P (898.6927)


   

[3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]amino]nonadecyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]amino]nonadecyl] 2-(trimethylazaniumyl)ethyl phosphate

C54H95N2O6P (898.6927)


   
   

[3-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

[3-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

C60H82O6 (898.6111)


   

3,4,5-trihydroxy-6-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]oxane-2-carboxylic acid

3,4,5-trihydroxy-6-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]oxane-2-carboxylic acid

C53H86O11 (898.617)


   

6-[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C53H86O11 (898.617)


   

6-[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(Z)-docos-13-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(Z)-docos-13-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C53H86O11 (898.617)


   

3,4,5-trihydroxy-6-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]oxane-2-carboxylic acid

3,4,5-trihydroxy-6-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]oxane-2-carboxylic acid

C53H86O11 (898.617)


   

6-[3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C53H86O11 (898.617)


   

6-[2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C53H86O11 (898.617)


   

6-[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C53H86O11 (898.617)


   

[3-hydroxy-2-[[(16Z,19Z,22Z,25Z,28Z,31Z,34Z,37Z)-tetraconta-16,19,22,25,28,31,34,37-octaenoyl]amino]nonyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hydroxy-2-[[(16Z,19Z,22Z,25Z,28Z,31Z,34Z,37Z)-tetraconta-16,19,22,25,28,31,34,37-octaenoyl]amino]nonyl] 2-(trimethylazaniumyl)ethyl phosphate

C54H95N2O6P (898.6927)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-hexacos-15-enoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-hexacos-15-enoate

C51H95O10P (898.6662)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-nonadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-nonadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

C51H95O10P (898.6662)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] heptacosanoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] heptacosanoate

C51H95O10P (898.6662)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] pentacosanoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] pentacosanoate

C51H95O10P (898.6662)


   

[1-[[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] tricosanoate

[1-[[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] tricosanoate

C51H95O10P (898.6662)


   

[1-[[2-[(Z)-henicos-11-enoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-[[2-[(Z)-henicos-11-enoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C51H95O10P (898.6662)


   

[1-[[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-tetracos-13-enoate

[1-[[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-tetracos-13-enoate

C51H95O10P (898.6662)


   

Adgga 12:0_12:0_18:0

Adgga 12:0_12:0_18:0

C51H94O12 (898.6745)


   

Adgga 18:0_12:0_12:0

Adgga 18:0_12:0_12:0

C51H94O12 (898.6745)


   

Adgga 14:0_12:0_16:0

Adgga 14:0_12:0_16:0

C51H94O12 (898.6745)


   

Adgga 16:0_12:0_14:0

Adgga 16:0_12:0_14:0

C51H94O12 (898.6745)


   

Adgga 14:0_14:0_14:0

Adgga 14:0_14:0_14:0

C51H94O12 (898.6745)


   

Adgga 12:0_14:0_16:0

Adgga 12:0_14:0_16:0

C51H94O12 (898.6745)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropyl] pentacosanoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropyl] pentacosanoate

C51H95O10P (898.6662)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

C51H95O10P (898.6662)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropyl] (Z)-hexacos-15-enoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropyl] (Z)-hexacos-15-enoate

C51H95O10P (898.6662)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] heptacosanoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] heptacosanoate

C51H95O10P (898.6662)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoyl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoyl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C51H95O10P (898.6662)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxypropyl] tricosanoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxypropyl] tricosanoate

C51H95O10P (898.6662)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropyl] (Z)-tetracos-13-enoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropyl] (Z)-tetracos-13-enoate

C51H95O10P (898.6662)


   

[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C50H91O11P (898.6299)


   

[1-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C50H91O11P (898.6299)


   

[1-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C50H91O11P (898.6299)


   

[3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxy-2-tetradecanoyloxypropyl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxy-2-tetradecanoyloxypropyl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C50H91O11P (898.6299)


   

[3-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] hexadecanoate

[3-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] hexadecanoate

C50H91O11P (898.6299)


   

[1-[[3-dodecanoyloxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] hexadecanoate

[1-[[3-dodecanoyloxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] hexadecanoate

C50H91O11P (898.6299)


   

[3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (Z)-hexadec-9-enoate

[3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (Z)-hexadec-9-enoate

C50H91O11P (898.6299)


   

[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropan-2-yl] (Z)-hexadec-9-enoate

[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropan-2-yl] (Z)-hexadec-9-enoate

C50H91O11P (898.6299)


   

[1-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (Z)-hexadec-9-enoate

[1-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (Z)-hexadec-9-enoate

C50H91O11P (898.6299)


   

[1-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C50H91O11P (898.6299)


   

[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropan-2-yl] hexadecanoate

[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropan-2-yl] hexadecanoate

C50H91O11P (898.6299)


   

[3-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (9Z,12Z)-octadeca-9,12-dienoate

[3-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (9Z,12Z)-octadeca-9,12-dienoate

C50H91O11P (898.6299)


   

[1-dodecanoyloxy-3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-dodecanoyloxy-3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C50H91O11P (898.6299)


   

[1-dodecanoyloxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-dodecanoyloxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C50H91O11P (898.6299)


   

[3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (9Z,12Z)-hexadeca-9,12-dienoate

[3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (9Z,12Z)-hexadeca-9,12-dienoate

C50H91O11P (898.6299)


   

[3-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-2-tetradecanoyloxypropyl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[3-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-2-tetradecanoyloxypropyl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C50H91O11P (898.6299)


   

[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C50H91O11P (898.6299)


   

[3-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] (Z)-hexadec-9-enoate

[3-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] (Z)-hexadec-9-enoate

C50H91O11P (898.6299)


   

[1-dodecanoyloxy-3-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-dodecanoyloxy-3-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C50H91O11P (898.6299)


   

[2-dodecanoyloxy-3-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxypropyl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[2-dodecanoyloxy-3-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxypropyl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C50H91O11P (898.6299)


   

[1-[[3-dodecanoyloxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-hexadec-9-enoate

[1-[[3-dodecanoyloxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-hexadec-9-enoate

C50H91O11P (898.6299)


   

[(8E,12E,16E)-3,4-dihydroxy-2-[[(12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoyl]amino]octadeca-8,12,16-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(8E,12E,16E)-3,4-dihydroxy-2-[[(12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoyl]amino]octadeca-8,12,16-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C53H91N2O7P (898.6564)


   

[(8E,12E)-3,4-dihydroxy-2-[[(9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoyl]amino]octadeca-8,12-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(8E,12E)-3,4-dihydroxy-2-[[(9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoyl]amino]octadeca-8,12-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C53H91N2O7P (898.6564)


   

[(E)-3,4-dihydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]amino]octadec-8-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3,4-dihydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]amino]octadec-8-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C53H91N2O7P (898.6564)


   

[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropyl] (7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoate

[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropyl] (7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoate

C60H82O6 (898.6111)


   

[(2R)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropyl] pentacosanoate

[(2R)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropyl] pentacosanoate

C51H95O10P (898.6662)


   

[1-carboxy-3-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C57H88NO7+ (898.656)


   

[1-carboxy-3-[2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropoxy]propyl]-trimethylazanium

C57H88NO7+ (898.656)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropan-2-yl] pentacosanoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropan-2-yl] pentacosanoate

C51H95O10P (898.6662)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropan-2-yl] pentacosanoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropan-2-yl] pentacosanoate

C51H95O10P (898.6662)


   

[1-carboxy-3-[3-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxy-2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxy-2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C57H88NO7+ (898.656)


   

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C57H88NO7+ (898.656)


   

[1-carboxy-3-[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropoxy]propyl]-trimethylazanium

C57H88NO7+ (898.656)


   

[(2R)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropyl] pentacosanoate

[(2R)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropyl] pentacosanoate

C51H95O10P (898.6662)


   

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C57H88NO7+ (898.656)


   

[1-carboxy-3-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C57H88NO7+ (898.656)


   

[1-carboxy-3-[2-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxy-3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxy-3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C57H88NO7+ (898.656)


   

2-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C54H93NO7P+ (898.6689)


   

2-[[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C54H93NO7P+ (898.6689)


   

2-[[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C53H89NO8P+ (898.6325)


   

2-[hydroxy-[2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C54H93NO7P+ (898.6689)


   

2-[[2-[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C53H89NO8P+ (898.6325)


   

2-[[2-[(9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-9,12,15,18,21,24,27,30,33-nonaenoyl]oxy-3-nonanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-9,12,15,18,21,24,27,30,33-nonaenoyl]oxy-3-nonanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C53H89NO8P+ (898.6325)


   

2-[hydroxy-[3-[(Z)-pentadec-9-enoyl]oxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(Z)-pentadec-9-enoyl]oxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C53H89NO8P+ (898.6325)


   

2-[hydroxy-[2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-7,10,13,16,19,22,25,28,31-nonaenoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-7,10,13,16,19,22,25,28,31-nonaenoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C53H89NO8P+ (898.6325)


   

2-[[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C53H89NO8P+ (898.6325)


   

2-[[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoyl]oxy-3-tridecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoyl]oxy-3-tridecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C53H89NO8P+ (898.6325)


   

2-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C54H93NO7P+ (898.6689)


   

2-[hydroxy-[3-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoxy]-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoxy]-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C54H93NO7P+ (898.6689)


   

2-[hydroxy-[3-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoxy]-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoxy]-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C54H93NO7P+ (898.6689)


   

2-[hydroxy-[2-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C54H93NO7P+ (898.6689)


   

2-[[3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C54H93NO7P+ (898.6689)


   

2-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C54H93NO7P+ (898.6689)


   

2-[hydroxy-[3-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C54H93NO7P+ (898.6689)


   

2-[hydroxy-[3-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C54H93NO7P+ (898.6689)


   

2-[[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C54H93NO7P+ (898.6689)


   

2-[[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C54H93NO7P+ (898.6689)


   

2-[[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C54H93NO7P+ (898.6689)


   

2-[[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C54H93NO7P+ (898.6689)


   

2-[hydroxy-[2-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C54H93NO7P+ (898.6689)


   

2-[[2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C54H93NO7P+ (898.6689)


   

2-[[3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C54H93NO7P+ (898.6689)


   

2-[[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C54H93NO7P+ (898.6689)


   

2-[[3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C54H93NO7P+ (898.6689)


   

2-[[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C54H93NO7P+ (898.6689)


   

2-[hydroxy-[2-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C54H93NO7P+ (898.6689)


   

2-[[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C54H93NO7P+ (898.6689)


   

2-[[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C54H93NO7P+ (898.6689)


   

phosphatidylserine 44:2(1-)

phosphatidylserine 44:2(1-)

C50H93NO10P (898.6537)


A 3-sn-phosphatidyl-L-serine(1-) in which the acyl groups at C-1 and C-2 contain 44 carbons in total and 2 double bonds.

   

PG(45:3)

PG(27:1_18:2)

C51H95O10P (898.6662)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

MGDG(45:7)

MGDG(22:5_23:2)

C54H90O10 (898.6534)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

MGDG O-45:8;O

MGDG O-45:8;O

C54H90O10 (898.6534)


   

MGDG O-46:7

MGDG O-46:7

C55H94O9 (898.6897)


   
   
   
   
   

PG O-20:1/26:2

PG O-20:1/26:2

C52H99O9P (898.7026)


   

PG O-20:2/26:1

PG O-20:2/26:1

C52H99O9P (898.7026)


   

PG O-22:2/24:1

PG O-22:2/24:1

C52H99O9P (898.7026)


   
   

PG P-20:0/26:2

PG P-20:0/26:2

C52H99O9P (898.7026)


   

PG P-20:0/26:2 or PG O-20:1/26:2

PG P-20:0/26:2 or PG O-20:1/26:2

C52H99O9P (898.7026)


   

PG P-20:1/26:1

PG P-20:1/26:1

C52H99O9P (898.7026)


   

PG P-20:1/26:1 or PG O-20:2/26:1

PG P-20:1/26:1 or PG O-20:2/26:1

C52H99O9P (898.7026)


   

PG P-22:1/24:1

PG P-22:1/24:1

C52H99O9P (898.7026)


   

PG P-22:1/24:1 or PG O-22:2/24:1

PG P-22:1/24:1 or PG O-22:2/24:1

C52H99O9P (898.7026)


   
   

PG P-46:2 or PG O-46:3

PG P-46:2 or PG O-46:3

C52H99O9P (898.7026)


   
   
   
   
   
   
   
   
   
   
   
   

2-hydroxy-6-[(1s,2r,3r,5r,6r,9s,14s,15r,18s)-3-hydroxy-2,6,14-trimethyl-9-phenyl-8-oxahexacyclo[16.3.1.0¹,¹⁸.0²,¹⁵.0⁵,¹⁴.0⁶,¹¹]docosa-11,16-dien-19-yl]-7-methoxy-2-methyl-4,7-dioxoheptyl octadecanoate

2-hydroxy-6-[(1s,2r,3r,5r,6r,9s,14s,15r,18s)-3-hydroxy-2,6,14-trimethyl-9-phenyl-8-oxahexacyclo[16.3.1.0¹,¹⁸.0²,¹⁵.0⁵,¹⁴.0⁶,¹¹]docosa-11,16-dien-19-yl]-7-methoxy-2-methyl-4,7-dioxoheptyl octadecanoate

C57H86O8 (898.6322)


   

(3s)-5-{[(2r,3s,6e,10e,15s,19s,23s,27s,31s)-2,3,15,19,23,27,31-heptahydroxy-3,7,11,15,19,23,27,31,35-nonamethylhexatriaconta-6,10,34-trien-1-yl]oxy}-3-hydroxy-3-methyl-5-oxopentanoic acid

(3s)-5-{[(2r,3s,6e,10e,15s,19s,23s,27s,31s)-2,3,15,19,23,27,31-heptahydroxy-3,7,11,15,19,23,27,31,35-nonamethylhexatriaconta-6,10,34-trien-1-yl]oxy}-3-hydroxy-3-methyl-5-oxopentanoic acid

C51H94O12 (898.6745)


   

[(1s,4s,5s,6s,7s,9r,10r,11r,13s,15r)-4-[(2,3-dimethylbutanoyl)oxy]-13-(dodecanoyloxy)-5,6-dihydroxy-3,12,12,15-tetramethyl-16-oxo-8-oxapentacyclo[8.5.1.0¹,⁵.0⁷,⁹.0¹¹,¹³]hexadec-2-en-7-yl]methyl hexadecanoate

[(1s,4s,5s,6s,7s,9r,10r,11r,13s,15r)-4-[(2,3-dimethylbutanoyl)oxy]-13-(dodecanoyloxy)-5,6-dihydroxy-3,12,12,15-tetramethyl-16-oxo-8-oxapentacyclo[8.5.1.0¹,⁵.0⁷,⁹.0¹¹,¹³]hexadec-2-en-7-yl]methyl hexadecanoate

C54H90O10 (898.6534)


   

{4-[(2,3-dimethylbutanoyl)oxy]-13-(dodecanoyloxy)-5,6-dihydroxy-3,12,12,15-tetramethyl-16-oxo-8-oxapentacyclo[8.5.1.0¹,⁵.0⁷,⁹.0¹¹,¹³]hexadec-2-en-7-yl}methyl hexadecanoate

{4-[(2,3-dimethylbutanoyl)oxy]-13-(dodecanoyloxy)-5,6-dihydroxy-3,12,12,15-tetramethyl-16-oxo-8-oxapentacyclo[8.5.1.0¹,⁵.0⁷,⁹.0¹¹,¹³]hexadec-2-en-7-yl}methyl hexadecanoate

C54H90O10 (898.6534)


   

[(1s,4s,5s,6s,7s,9r,10r,11r,13s,15r)-4-{[(2r)-2,3-dimethylbutanoyl]oxy}-13-(dodecanoyloxy)-5,6-dihydroxy-3,12,12,15-tetramethyl-16-oxo-8-oxapentacyclo[8.5.1.0¹,⁵.0⁷,⁹.0¹¹,¹³]hexadec-2-en-7-yl]methyl hexadecanoate

[(1s,4s,5s,6s,7s,9r,10r,11r,13s,15r)-4-{[(2r)-2,3-dimethylbutanoyl]oxy}-13-(dodecanoyloxy)-5,6-dihydroxy-3,12,12,15-tetramethyl-16-oxo-8-oxapentacyclo[8.5.1.0¹,⁵.0⁷,⁹.0¹¹,¹³]hexadec-2-en-7-yl]methyl hexadecanoate

C54H90O10 (898.6534)


   

(23e,27e,31e)-1-(3,3-dimethyloxiran-2-yl)-3,7,11,15,19,23,27,31-octamethyl-33-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}tritriaconta-23,27,31-triene-3,7,11,15,19-pentol

(23e,27e,31e)-1-(3,3-dimethyloxiran-2-yl)-3,7,11,15,19,23,27,31-octamethyl-33-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}tritriaconta-23,27,31-triene-3,7,11,15,19-pentol

C51H94O12 (898.6745)


   

5-[(2,3,15,19,23,27,31-heptahydroxy-3,7,11,15,19,23,27,31,35-nonamethylhexatriaconta-6,10,34-trien-1-yl)oxy]-3-hydroxy-3-methyl-5-oxopentanoic acid

5-[(2,3,15,19,23,27,31-heptahydroxy-3,7,11,15,19,23,27,31,35-nonamethylhexatriaconta-6,10,34-trien-1-yl)oxy]-3-hydroxy-3-methyl-5-oxopentanoic acid

C51H94O12 (898.6745)


   

5-{[(2r,6e,10e)-2,3,15,19,23,27,31-heptahydroxy-3,7,11,15,19,23,27,31,35-nonamethylhexatriaconta-6,10,34-trien-1-yl]oxy}-3-hydroxy-3-methyl-5-oxopentanoic acid

5-{[(2r,6e,10e)-2,3,15,19,23,27,31-heptahydroxy-3,7,11,15,19,23,27,31,35-nonamethylhexatriaconta-6,10,34-trien-1-yl]oxy}-3-hydroxy-3-methyl-5-oxopentanoic acid

C51H94O12 (898.6745)


   

{5-[(2,3-dimethylbutanoyl)oxy]-13-(dodecanoyloxy)-6,7-dihydroxy-3,12,12,15-tetramethyl-16-oxo-4-oxapentacyclo[8.5.1.0¹,⁶.0³,⁵.0¹¹,¹³]hexadec-8-en-8-yl}methyl hexadecanoate

{5-[(2,3-dimethylbutanoyl)oxy]-13-(dodecanoyloxy)-6,7-dihydroxy-3,12,12,15-tetramethyl-16-oxo-4-oxapentacyclo[8.5.1.0¹,⁶.0³,⁵.0¹¹,¹³]hexadec-8-en-8-yl}methyl hexadecanoate

C54H90O10 (898.6534)