Exact Mass: 897.5003165999999
Exact Mass Matches: 897.5003165999999
Found 114 metabolites which its exact mass value is equals to given mass value 897.5003165999999
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
CDP-DG(a-13:0/a-15:0)
CDP-DG(a-13:0/a-15:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(a-13:0/a-15:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position and one chain of anteisopentadecanoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).
CDP-DG(a-13:0/i-15:0)
CDP-DG(a-13:0/i-15:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(a-13:0/i-15:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position and one chain of isopentadecanoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).
CDP-DG(a-15:0/a-13:0)
CDP-DG(a-15:0/a-13:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(a-15:0/a-13:0), in particular, consists of one chain of anteisopentadecanoic acid at the C-1 position and one chain of anteisotridecanoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).
CDP-DG(a-15:0/i-13:0)
CDP-DG(a-15:0/i-13:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(a-15:0/i-13:0), in particular, consists of one chain of anteisopentadecanoic acid at the C-1 position and one chain of isotridecanoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).
CDP-DG(i-12:0/i-16:0)
CDP-DG(i-12:0/i-16:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(i-12:0/i-16:0), in particular, consists of one chain of isododecanoic acid at the C-1 position and one chain of isohexadecanoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).
CDP-DG(i-13:0/a-15:0)
CDP-DG(i-13:0/a-15:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(i-13:0/a-15:0), in particular, consists of one chain of isotridecanoic acid at the C-1 position and one chain of anteisopentadecanoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).
CDP-DG(i-13:0/i-15:0)
CDP-DG(i-13:0/i-15:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(i-13:0/i-15:0), in particular, consists of one chain of isotridecanoic acid at the C-1 position and one chain of isopentadecanoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).
CDP-DG(i-14:0/i-14:0)
CDP-DG(i-14:0/i-14:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(i-14:0/i-14:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position and one chain of isotetradecanoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).
CDP-DG(i-15:0/a-13:0)
CDP-DG(i-15:0/a-13:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(i-15:0/a-13:0), in particular, consists of one chain of isopentadecanoic acid at the C-1 position and one chain of anteisotridecanoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).
CDP-DG(i-15:0/i-13:0)
CDP-DG(i-15:0/i-13:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(i-15:0/i-13:0), in particular, consists of one chain of isopentadecanoic acid at the C-1 position and one chain of isotridecanoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).
CDP-DG(i-16:0/i-12:0)
CDP-DG(i-16:0/i-12:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(i-16:0/i-12:0), in particular, consists of one chain of isohexadecanoic acid at the C-1 position and one chain of isododecanoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).
Midecamycin acetate
C45H71NO17 (897.4721755999999)
PS(20:4(5Z,8Z,11Z,14Z)/6 keto-PGF1alpha)
C46H76NO14P (897.5003165999999)
PS(20:4(5Z,8Z,11Z,14Z)/6 keto-PGF1alpha) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:4(5Z,8Z,11Z,14Z)/6 keto-PGF1alpha), in particular, consists of one chain of one 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(6 keto-PGF1alpha/20:4(5Z,8Z,11Z,14Z))
C46H76NO14P (897.5003165999999)
PS(6 keto-PGF1alpha/20:4(5Z,8Z,11Z,14Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(6 keto-PGF1alpha/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(20:4(5Z,8Z,11Z,14Z)/TXB2)
C46H76NO14P (897.5003165999999)
PS(20:4(5Z,8Z,11Z,14Z)/TXB2) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:4(5Z,8Z,11Z,14Z)/TXB2), in particular, consists of one chain of one 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(TXB2/20:4(5Z,8Z,11Z,14Z))
C46H76NO14P (897.5003165999999)
PS(TXB2/20:4(5Z,8Z,11Z,14Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(TXB2/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(20:4(8Z,11Z,14Z,17Z)/6 keto-PGF1alpha)
C46H76NO14P (897.5003165999999)
PS(20:4(8Z,11Z,14Z,17Z)/6 keto-PGF1alpha) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:4(8Z,11Z,14Z,17Z)/6 keto-PGF1alpha), in particular, consists of one chain of one 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(6 keto-PGF1alpha/20:4(8Z,11Z,14Z,17Z))
C46H76NO14P (897.5003165999999)
PS(6 keto-PGF1alpha/20:4(8Z,11Z,14Z,17Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(6 keto-PGF1alpha/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(20:4(8Z,11Z,14Z,17Z)/TXB2)
C46H76NO14P (897.5003165999999)
PS(20:4(8Z,11Z,14Z,17Z)/TXB2) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:4(8Z,11Z,14Z,17Z)/TXB2), in particular, consists of one chain of one 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(TXB2/20:4(8Z,11Z,14Z,17Z))
C46H76NO14P (897.5003165999999)
PS(TXB2/20:4(8Z,11Z,14Z,17Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(TXB2/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(22:5(4Z,7Z,10Z,13Z,16Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))
C50H76NO11P (897.5155715999999)
PS(22:5(4Z,7Z,10Z,13Z,16Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:5(4Z,7Z,10Z,13Z,16Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:5(4Z,7Z,10Z,13Z,16Z))
C50H76NO11P (897.5155715999999)
PS(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:5(4Z,7Z,10Z,13Z,16Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(22:5(4Z,7Z,10Z,13Z,16Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))
C50H76NO11P (897.5155715999999)
PS(22:5(4Z,7Z,10Z,13Z,16Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:5(4Z,7Z,10Z,13Z,16Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:5(4Z,7Z,10Z,13Z,16Z))
C50H76NO11P (897.5155715999999)
PS(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:5(4Z,7Z,10Z,13Z,16Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(22:5(4Z,7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))
C50H76NO11P (897.5155715999999)
PS(22:5(4Z,7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:5(4Z,7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:5(4Z,7Z,10Z,13Z,16Z))
C50H76NO11P (897.5155715999999)
PS(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:5(4Z,7Z,10Z,13Z,16Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(22:5(4Z,7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))
C50H76NO11P (897.5155715999999)
PS(22:5(4Z,7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:5(4Z,7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:5(4Z,7Z,10Z,13Z,16Z))
C50H76NO11P (897.5155715999999)
PS(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:5(4Z,7Z,10Z,13Z,16Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(22:5(4Z,7Z,10Z,13Z,16Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))
C50H76NO11P (897.5155715999999)
PS(22:5(4Z,7Z,10Z,13Z,16Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:5(4Z,7Z,10Z,13Z,16Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:5(4Z,7Z,10Z,13Z,16Z))
C50H76NO11P (897.5155715999999)
PS(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:5(4Z,7Z,10Z,13Z,16Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(22:5(7Z,10Z,13Z,16Z,19Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))
C50H76NO11P (897.5155715999999)
PS(22:5(7Z,10Z,13Z,16Z,19Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:5(7Z,10Z,13Z,16Z,19Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:5(7Z,10Z,13Z,16Z,19Z))
C50H76NO11P (897.5155715999999)
PS(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:5(7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(22:5(7Z,10Z,13Z,16Z,19Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))
C50H76NO11P (897.5155715999999)
PS(22:5(7Z,10Z,13Z,16Z,19Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:5(7Z,10Z,13Z,16Z,19Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:5(7Z,10Z,13Z,16Z,19Z))
C50H76NO11P (897.5155715999999)
PS(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:5(7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(22:5(7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))
C50H76NO11P (897.5155715999999)
PS(22:5(7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:5(7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:5(7Z,10Z,13Z,16Z,19Z))
C50H76NO11P (897.5155715999999)
PS(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:5(7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(22:5(7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))
C50H76NO11P (897.5155715999999)
PS(22:5(7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:5(7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:5(7Z,10Z,13Z,16Z,19Z))
C50H76NO11P (897.5155715999999)
PS(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:5(7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(22:5(7Z,10Z,13Z,16Z,19Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))
C50H76NO11P (897.5155715999999)
PS(22:5(7Z,10Z,13Z,16Z,19Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:5(7Z,10Z,13Z,16Z,19Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:5(7Z,10Z,13Z,16Z,19Z))
C50H76NO11P (897.5155715999999)
PS(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:5(7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
Midecamycin acetate
C45H71NO17 (897.4721755999999)
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01F - Macrolides, lincosamides and streptogramins > J01FA - Macrolides D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007933 - Leucomycins
1,2-Ditetradecanoyl-sn-glycero-3-cytidine 5-diphosphate
A CDP-diacylglycerol in which the acyl groups at positions 1 and 2 are specified as tetradecanoyl.
PS(20:4(5Z,8Z,11Z,14Z)/6 keto-PGF1alpha)
C46H76NO14P (897.5003165999999)
PS(6 keto-PGF1alpha/20:4(5Z,8Z,11Z,14Z))
C46H76NO14P (897.5003165999999)
PS(20:4(8Z,11Z,14Z,17Z)/6 keto-PGF1alpha)
C46H76NO14P (897.5003165999999)
PS(6 keto-PGF1alpha/20:4(8Z,11Z,14Z,17Z))
C46H76NO14P (897.5003165999999)
PS(22:5(4Z,7Z,10Z,13Z,16Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))
C50H76NO11P (897.5155715999999)
PS(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:5(4Z,7Z,10Z,13Z,16Z))
C50H76NO11P (897.5155715999999)
PS(22:5(4Z,7Z,10Z,13Z,16Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))
C50H76NO11P (897.5155715999999)
PS(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:5(4Z,7Z,10Z,13Z,16Z))
C50H76NO11P (897.5155715999999)
PS(22:5(4Z,7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))
C50H76NO11P (897.5155715999999)
PS(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:5(4Z,7Z,10Z,13Z,16Z))
C50H76NO11P (897.5155715999999)
PS(22:5(4Z,7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))
C50H76NO11P (897.5155715999999)
PS(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:5(4Z,7Z,10Z,13Z,16Z))
C50H76NO11P (897.5155715999999)
PS(22:5(4Z,7Z,10Z,13Z,16Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))
C50H76NO11P (897.5155715999999)
PS(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:5(4Z,7Z,10Z,13Z,16Z))
C50H76NO11P (897.5155715999999)
PS(22:5(7Z,10Z,13Z,16Z,19Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))
C50H76NO11P (897.5155715999999)
PS(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:5(7Z,10Z,13Z,16Z,19Z))
C50H76NO11P (897.5155715999999)
PS(22:5(7Z,10Z,13Z,16Z,19Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))
C50H76NO11P (897.5155715999999)
PS(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:5(7Z,10Z,13Z,16Z,19Z))
C50H76NO11P (897.5155715999999)
PS(22:5(7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))
C50H76NO11P (897.5155715999999)
PS(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:5(7Z,10Z,13Z,16Z,19Z))
C50H76NO11P (897.5155715999999)
PS(22:5(7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))
C50H76NO11P (897.5155715999999)
PS(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:5(7Z,10Z,13Z,16Z,19Z))
C50H76NO11P (897.5155715999999)
PS(22:5(7Z,10Z,13Z,16Z,19Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))
C50H76NO11P (897.5155715999999)
PS(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:5(7Z,10Z,13Z,16Z,19Z))
C50H76NO11P (897.5155715999999)
[(11Z,13E)-10-acetyloxy-6-[5-(4-acetyloxy-4,6-dimethyl-5-propanoyloxyoxan-2-yl)oxy-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy-5-methoxy-9,16-dimethyl-2-oxo-7-(2-oxoethyl)-1-oxacyclohexadeca-11,13-dien-4-yl] propanoate
C45H71NO17 (897.4721755999999)
2-O-sulfonato-alpha-D-glucopyranosyl 2,3-di-O-hexadecanoyl-alpha-D-glucopyranoside
[(4R,5S,7R,9R,10R,11E,13E,16R)-10-acetyloxy-6-[(2S,3R,4R,5S,6R)-5-[(2S,4R,5S,6S)-4-acetyloxy-4,6-dimethyl-5-propanoyloxyoxan-2-yl]oxy-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy-5-methoxy-9,16-dimethyl-2-oxo-7-(2-oxoethyl)-1-oxacyclohexadeca-11,13-dien-4-yl] propanoate
C45H71NO17 (897.4721755999999)
N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydec-4-en-2-yl]pentadecanamide
C43H79NO18 (897.5296874000001)
N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxypentadec-4-en-2-yl]decanamide
C43H79NO18 (897.5296874000001)
N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyhexadec-4-en-2-yl]nonanamide
C43H79NO18 (897.5296874000001)
N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydocos-4-en-2-yl]propanamide
C43H79NO18 (897.5296874000001)
(Z)-N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydecan-2-yl]pentadec-9-enamide
C43H79NO18 (897.5296874000001)
(Z)-N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoctan-2-yl]heptadec-9-enamide
C43H79NO18 (897.5296874000001)
N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyicos-4-en-2-yl]pentanamide
C43H79NO18 (897.5296874000001)
(Z)-N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxynonan-2-yl]hexadec-9-enamide
C43H79NO18 (897.5296874000001)
N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyhenicos-4-en-2-yl]butanamide
C43H79NO18 (897.5296874000001)
N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytridec-4-en-2-yl]dodecanamide
C43H79NO18 (897.5296874000001)
N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytricos-4-en-2-yl]acetamide
C43H79NO18 (897.5296874000001)
N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxynon-4-en-2-yl]hexadecanamide
C43H79NO18 (897.5296874000001)
N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydodec-4-en-2-yl]tridecanamide
C43H79NO18 (897.5296874000001)
N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]heptadecanamide
C43H79NO18 (897.5296874000001)
N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyundec-4-en-2-yl]tetradecanamide
C43H79NO18 (897.5296874000001)
N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytetradec-4-en-2-yl]undecanamide
C43H79NO18 (897.5296874000001)
N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoctadec-4-en-2-yl]heptanamide
C43H79NO18 (897.5296874000001)
(Z)-N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyundecan-2-yl]tetradec-9-enamide
C43H79NO18 (897.5296874000001)
N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyheptadec-4-en-2-yl]octanamide
C43H79NO18 (897.5296874000001)
(Z)-N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydodecan-2-yl]tridec-9-enamide
C43H79NO18 (897.5296874000001)
N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxynonadec-4-en-2-yl]hexanamide
C43H79NO18 (897.5296874000001)
2,3-dipalmitoyl-2-sulfo-alpha,alpha-trehalose(1-)
An organosulfate oxoanion that is the conjugate base of 2,3-dipalmitoyl-2-sulfo-alpha,alpha-trehalose arising from deprotonation of the sulfate OH group; major species at pH 7.3.
BiotinylPE(31:3)
C46H80N3O10PS (897.5301750000001)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
2-({[5-(aminomethyl)-4-hydroxyoxolan-2-yl]oxy}[3-hydroxy-5-(4-hydroxy-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl)-6-({3-[(4-carboxy-3-methylbutanoyl)oxy]tetradecanoyl}oxy)-1,4-dimethyl-3-oxo-1,4-diazepane-5-carboxylic acid
C42H67N5O16 (897.4582581999999)
15-benzyl-5,8,17,20,23,26-hexahydroxy-3-(1-hydroxyethyl)-21-(1h-indol-3-ylmethyl)-6-isopropyl-24-(sec-butyl)-1,4,7,13,16,19,22,25-octaazatricyclo[25.3.0.0⁹,¹³]triaconta-4,7,16,19,22,25-hexaene-2,14-dione
(3s,6s,9s,15s,21s,24s,27s)-15-benzyl-24-[(2s)-butan-2-yl]-5,8,17,20,23,26-hexahydroxy-3-[(1r)-1-hydroxyethyl]-21-(1h-indol-3-ylmethyl)-6-isopropyl-1,4,7,13,16,19,22,25-octaazatricyclo[25.3.0.0⁹,¹³]triaconta-4,7,16,19,22,25-hexaene-2,14-dione
5-{[(1r,3as,5ar,7r,8r,9as,11s,11ar)-8-(acetyloxy)-1-[(2r,5r)-5,6-dihydroxy-6-methylheptan-2-yl]-11-hydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-n-[1-(acetyloxy)-3-methoxy-3-oxo-1-phenylpropan-2-yl]-3-hydroxy-3-methyl-5-oxopentanimidic acid
2-({[(2s,4s,5r)-5-(aminomethyl)-4-hydroxyoxolan-2-yl]oxy}[(2s,3s,5r)-3-hydroxy-5-(4-hydroxy-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl)-6-({3-[(4-carboxy-3-methylbutanoyl)oxy]tetradecanoyl}oxy)-1,4-dimethyl-3-oxo-1,4-diazepane-5-carboxylic acid
C42H67N5O16 (897.4582581999999)