Exact Mass: 896.4194

Exact Mass Matches: 896.4194

Found 67 metabolites which its exact mass value is equals to given mass value 896.4194, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Lyciumin B

3,6,9,12-Tetrahydroxy-2-{[1-hydroxy-2-({hydroxy[1-(5-hydroxy-3,4-dihydro-2H-pyrrole-2-carbonyl)pyrrolidin-2-yl]methylidene}amino)-3-(1H-indol-3-yl)propylidene]amino}-11-(hydroxymethyl)-5-(propan-2-yl)-1,4,7,10,13-pentaazatricyclo[14.6.1.0¹⁷,²²]tricosa-3,6,9,12,16(23),17,19,21-octaene-14-carboxylate

C44H52N10O11 (896.3817)


Isolated from Lycium chinense (Chinese boxthorn). Lyciumin B is found in tea, coffee and coffee products, and herbs and spices. Lyciumin B is found in coffee and coffee products. Lyciumin B is isolated from Lycium chinense (Chinese boxthorn). Lyciumin B is a cyclic peptide. Lyciumin B is a natural product found in Lycium chinense with data available.

   

PGP(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

[(2S)-3-({[(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C46H74O13P2 (896.4604)


PGP(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidylglycerolphosphate or glycerophospholipid (PGP or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the docosahexaenoic acid moiety is derived from fish oils. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of Phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PGPs have a net charge of -1 at physiological pH and are found in high concentration in mitochondrial membranes and as components of pulmonary surfactant. PGP also serves as a precursor for the synthesis of cardiolipin. PGP is synthesized from CDP-diacylglycerol and glycerol-3-phosphate. PGP(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidylglycerolphosphate or glycerophospholipid (PGP or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the docosahexaenoic acid moiety is derived from fish oils. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of Phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases.

   

PGP(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

[(2S)-3-({[(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C46H74O13P2 (896.4604)


PGP(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidylglycerolphosphate or glycerophospholipid (PGP or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the docosahexaenoic acid moiety is derived from fish oils. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of Phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PGPs have a net charge of -1 at physiological pH and are found in high concentration in mitochondrial membranes and as components of pulmonary surfactant. PGP also serves as a precursor for the synthesis of cardiolipin. PGP is synthesized from CDP-diacylglycerol and glycerol-3-phosphate. PGP(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidylglycerolphosphate or glycerophospholipid (PGP or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the docosahexaenoic acid moiety is derived from fish oils. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of Phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases.

   

PGP(16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

[(2S)-3-({[(2R)-3-(hexadecanoyloxy)-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H74O16P2 (896.4452)


PGP(16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/16:0)

[(2S)-3-({[(2R)-2-(hexadecanoyloxy)-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H74O16P2 (896.4452)


PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/16:0), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(16:1(9Z)/PGE2)

PGP(16:1(9Z)/PGE2)

C42H74O16P2 (896.4452)


PGP(16:1(9Z)/PGE2) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:1(9Z)/PGE2), in particular, consists of one chain of one 9Z-hexadecenoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(PGE2/16:1(9Z))

[(2S)-3-({[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H74O16P2 (896.4452)


PGP(PGE2/16:1(9Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGE2/16:1(9Z)), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of 9Z-hexadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(16:1(9Z)/PGD2)

[(2S)-3-({[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H74O16P2 (896.4452)


PGP(16:1(9Z)/PGD2) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:1(9Z)/PGD2), in particular, consists of one chain of one 9Z-hexadecenoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(PGD2/16:1(9Z))

[(2S)-3-({[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H74O16P2 (896.4452)


PGP(PGD2/16:1(9Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGD2/16:1(9Z)), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of 9Z-hexadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(16:1(9Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

[(2S)-3-({[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H74O16P2 (896.4452)


PGP(16:1(9Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:1(9Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one 9Z-hexadecenoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/16:1(9Z))

[(2S)-3-({[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H74O16P2 (896.4452)


PGP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/16:1(9Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/16:1(9Z)), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of 9Z-hexadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,11Z)/5-iso PGF2VI)

[(2S)-3-({[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H74O16P2 (896.4452)


PGP(18:2(9Z,11Z)/5-iso PGF2VI) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,11Z)/5-iso PGF2VI), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(5-iso PGF2VI/18:2(9Z,11Z))

[(2S)-3-({[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H74O16P2 (896.4452)


PGP(5-iso PGF2VI/18:2(9Z,11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(5-iso PGF2VI/18:2(9Z,11Z)), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,12Z)/5-iso PGF2VI)

[(2S)-3-({[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H74O16P2 (896.4452)


PGP(18:2(9Z,12Z)/5-iso PGF2VI) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,12Z)/5-iso PGF2VI), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(5-iso PGF2VI/18:2(9Z,12Z))

[(2S)-3-({[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H74O16P2 (896.4452)


PGP(5-iso PGF2VI/18:2(9Z,12Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(5-iso PGF2VI/18:2(9Z,12Z)), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(14-methylpentadecanoyl)oxy]-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C42H74O16P2 (896.4452)


PGP(i-16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 14-methylpentadecanoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-16:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(14-methylpentadecanoyl)oxy]-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C42H74O16P2 (896.4452)


PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-16:0), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

Sublanceoside D1

Sublanceoside D1

C45H68O18 (896.4405)


   

Cleistetroside 4

Cleistetroside 4

C42H72O20 (896.4617)


   
   

Maoecrystal M

Maoecrystal M

C48H64O16 (896.4194)


A natural product found in Isodon eriocalyx.

   

3beta,23-dihydroxy-30-norolean-12,20(29)-dien-28-oic acid 3-O-alpha-L-arabinopyranosyl-(1->2)-[beta-D-glucopyranosyluronic acid (1->3)]-alpha-L-arabinopyranoside|fargoside C

3beta,23-dihydroxy-30-norolean-12,20(29)-dien-28-oic acid 3-O-alpha-L-arabinopyranosyl-(1->2)-[beta-D-glucopyranosyluronic acid (1->3)]-alpha-L-arabinopyranoside|fargoside C

C45H68O18 (896.4405)


   

(23S)-spirosta-5,25(27)-diene-1beta,3beta,23-triol-1-O-{O-(4-O-acetyl-alpha-L-rhamnopyranosyl)-(1-->2)-O-[beta-D-xylopyranosyl-(1-->3)]-alpha-L-arabinopyranoside}

(23S)-spirosta-5,25(27)-diene-1beta,3beta,23-triol-1-O-{O-(4-O-acetyl-alpha-L-rhamnopyranosyl)-(1-->2)-O-[beta-D-xylopyranosyl-(1-->3)]-alpha-L-arabinopyranoside}

C45H68O18 (896.4405)


   

Me glycoside,hexabenzyl-3-O-beta-D-Mannopyranosyl-D-mannose

Me glycoside,hexabenzyl-3-O-beta-D-Mannopyranosyl-D-mannose

C55H60O11 (896.4135)


   

Lyciumin B

11-(hydroxymethyl)-2-[3-(1H-indol-3-yl)-2-({1-[(5-oxopyrrolidin-2-yl)carbonyl]pyrrolidin-2-yl}formamido)propanamido]-3,6,9,12-tetraoxo-5-(propan-2-yl)-1,4,7,10,13-pentaazatricyclo[14.6.1.0^{17,22}]tricosa-16(23),17,19,21-tetraene-14-carboxylic acid

C44H52N10O11 (896.3817)


   

LPIM2 16:0

2-O-(alpha-D-Manp)-6-O-(alpha-D-Manp)-(1-hexadecanoyl-sn-glycero-3-phospho-1-myo-inositol)

C37H69O22P (896.4018)


   

4-N-naphthalen-1-yl-1-N,1-N-bis[4-(N-naphthalen-1-ylanilino)phenyl]-4-N-phenylbenzene-1,4-diamine

4-N-naphthalen-1-yl-1-N,1-N-bis[4-(N-naphthalen-1-ylanilino)phenyl]-4-N-phenylbenzene-1,4-diamine

C66H48N4 (896.3879)


   
   

4,4,4-Tris[2-naphthyl(phenyl)amino]triphenylamine

4,4,4-Tris[2-naphthyl(phenyl)amino]triphenylamine

C66H48N4 (896.3879)


   

Furaprevir

Furaprevir

C47H56N6O10S (896.3778)


C471 - Enzyme Inhibitor > C783 - Protease Inhibitor

   

PGP(16:1(9Z)/PGE2)

PGP(16:1(9Z)/PGE2)

C42H74O16P2 (896.4452)


   

PGP(PGE2/16:1(9Z))

PGP(PGE2/16:1(9Z))

C42H74O16P2 (896.4452)


   

PGP(16:1(9Z)/PGD2)

PGP(16:1(9Z)/PGD2)

C42H74O16P2 (896.4452)


   

PGP(PGD2/16:1(9Z))

PGP(PGD2/16:1(9Z))

C42H74O16P2 (896.4452)


   

PGP(18:2(9Z,11Z)/5-iso PGF2VI)

PGP(18:2(9Z,11Z)/5-iso PGF2VI)

C42H74O16P2 (896.4452)


   

PGP(5-iso PGF2VI/18:2(9Z,11Z))

PGP(5-iso PGF2VI/18:2(9Z,11Z))

C42H74O16P2 (896.4452)


   

PGP(18:2(9Z,12Z)/5-iso PGF2VI)

PGP(18:2(9Z,12Z)/5-iso PGF2VI)

C42H74O16P2 (896.4452)


   

PGP(5-iso PGF2VI/18:2(9Z,12Z))

PGP(5-iso PGF2VI/18:2(9Z,12Z))

C42H74O16P2 (896.4452)


   

PGP(16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PGP(16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C42H74O16P2 (896.4452)


   

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/16:0)

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/16:0)

C42H74O16P2 (896.4452)


   

PGP(16:1(9Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

PGP(16:1(9Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C42H74O16P2 (896.4452)


   

PGP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/16:1(9Z))

PGP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/16:1(9Z))

C42H74O16P2 (896.4452)


   

PGP(i-16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PGP(i-16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C42H74O16P2 (896.4452)


   

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-16:0)

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-16:0)

C42H74O16P2 (896.4452)


   
   
   

PGP(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

PGP(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

C46H74O13P2 (896.4604)


   

PGP(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

PGP(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

C46H74O13P2 (896.4604)


   

2-O-(alpha-D-Manp)-6-O-(alpha-D-Manp)-(1-hexadecanoyl-sn-glycero-3-phospho-1-myo-inositol)

2-O-(alpha-D-Manp)-6-O-(alpha-D-Manp)-(1-hexadecanoyl-sn-glycero-3-phospho-1-myo-inositol)

C37H69O22P (896.4018)


   

Deltorphin 2 (TFA)

Deltorphin 2 (TFA)

C40H55F3N8O12 (896.3891)


Deltorphin 2 TFA is a selective peptide agonist for the δ opioid receptor[1].

   

Deltorphin 2 (TFA)

Deltorphin 2 (TFA)

C40H55F3N8O12 (896.3891)


Deltorphin 2 TFA is a selective peptide agonist for the δ opioid receptor[1].

   

4,5-dihydroxy-6-({5-hydroxy-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]-2-{7',9',13'-trimethyl-5-methylidene-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-3,16'-dioloxy}oxan-3-yl}oxy)-2-methyloxan-3-yl acetate

4,5-dihydroxy-6-({5-hydroxy-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]-2-{7',9',13'-trimethyl-5-methylidene-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-3,16'-dioloxy}oxan-3-yl}oxy)-2-methyloxan-3-yl acetate

C45H68O18 (896.4405)


   

(1s,1''s,2s,2''s,5s,5''s,8r,8''r,9s,9''s,11s,11''s,12r,12''r,18r,18''r)-13,13''-bis(acetyloxy)-12''-[(acetyloxy)methyl]-9,9'',18,18''-tetrahydroxy-12,12''-dimethyl-7,7''-dioxodispiro[17-oxapentacyclo[7.6.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecane-6,2'-cyclobutane-1',6''-[17]oxapentacyclo[7.6.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecan]-12-ylmethyl acetate

(1s,1''s,2s,2''s,5s,5''s,8r,8''r,9s,9''s,11s,11''s,12r,12''r,18r,18''r)-13,13''-bis(acetyloxy)-12''-[(acetyloxy)methyl]-9,9'',18,18''-tetrahydroxy-12,12''-dimethyl-7,7''-dioxodispiro[17-oxapentacyclo[7.6.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecane-6,2'-cyclobutane-1',6''-[17]oxapentacyclo[7.6.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecan]-12-ylmethyl acetate

C48H64O16 (896.4194)


   

(2s,3r,4s,5r,6s)-4,5-dihydroxy-6-{[(2s,3r,4s,5s)-5-hydroxy-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-2-[(1's,2s,2's,3s,4's,7's,8'r,9's,12's,13'r,14'r,16'r)-7',9',13'-trimethyl-5-methylidene-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-3,16'-dioloxy]oxan-3-yl]oxy}-2-methyloxan-3-yl acetate

(2s,3r,4s,5r,6s)-4,5-dihydroxy-6-{[(2s,3r,4s,5s)-5-hydroxy-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-2-[(1's,2s,2's,3s,4's,7's,8'r,9's,12's,13'r,14'r,16'r)-7',9',13'-trimethyl-5-methylidene-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-3,16'-dioloxy]oxan-3-yl]oxy}-2-methyloxan-3-yl acetate

C45H68O18 (896.4405)


   

(2s,3s,4s,5r,6s)-4-{[(2s,3r,4r,5s,6s)-3,5-bis(acetyloxy)-6-methyl-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-6-{[(2s,3r,4s,5r,6r)-6-(dodecyloxy)-4,5-dihydroxy-2-methyloxan-3-yl]oxy}-5-hydroxy-2-methyloxan-3-yl acetate

(2s,3s,4s,5r,6s)-4-{[(2s,3r,4r,5s,6s)-3,5-bis(acetyloxy)-6-methyl-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-6-{[(2s,3r,4s,5r,6r)-6-(dodecyloxy)-4,5-dihydroxy-2-methyloxan-3-yl]oxy}-5-hydroxy-2-methyloxan-3-yl acetate

C42H72O20 (896.4617)


   

3,6,9,12-tetrahydroxy-2-{[1-hydroxy-2-({hydroxy[1-(5-hydroxy-3,4-dihydro-2h-pyrrole-2-carbonyl)pyrrolidin-2-yl]methylidene}amino)-3-(1h-indol-3-yl)propylidene]amino}-11-(hydroxymethyl)-5-isopropyl-1,4,7,10,13-pentaazatricyclo[14.6.1.0¹⁷,²²]tricosa-3,6,9,12,16(23),17,19,21-octaene-14-carboxylic acid

3,6,9,12-tetrahydroxy-2-{[1-hydroxy-2-({hydroxy[1-(5-hydroxy-3,4-dihydro-2h-pyrrole-2-carbonyl)pyrrolidin-2-yl]methylidene}amino)-3-(1h-indol-3-yl)propylidene]amino}-11-(hydroxymethyl)-5-isopropyl-1,4,7,10,13-pentaazatricyclo[14.6.1.0¹⁷,²²]tricosa-3,6,9,12,16(23),17,19,21-octaene-14-carboxylic acid

C44H52N10O11 (896.3817)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4s,5r,6s)-6-{[(3s,4r,4ar,6ar,6bs,8as,12as,14ar,14br)-8a-carboxy-4-(hydroxymethyl)-4,6a,6b,14b-tetramethyl-11-methylidene-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-4-hydroxy-5-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4s,5r,6s)-6-{[(3s,4r,4ar,6ar,6bs,8as,12as,14ar,14br)-8a-carboxy-4-(hydroxymethyl)-4,6a,6b,14b-tetramethyl-11-methylidene-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-4-hydroxy-5-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C45H68O18 (896.4405)


   

(2s,3s,4s,5r,6r)-6-{[(2s,3r,4s,5s)-2-{[(3s,4r,4ar,6ar,6bs,8as,12as,14ar,14br)-8a-carboxy-4-(hydroxymethyl)-4,6a,6b,14b-tetramethyl-11-methylidene-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-hydroxy-3-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-4-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(2s,3r,4s,5s)-2-{[(3s,4r,4ar,6ar,6bs,8as,12as,14ar,14br)-8a-carboxy-4-(hydroxymethyl)-4,6a,6b,14b-tetramethyl-11-methylidene-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-hydroxy-3-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-4-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C45H68O18 (896.4405)


   

(2s)-2-({[(7s,15r,18s,21s,31s,35s)-31-{[(2s)-2-amino-1-hydroxypropylidene]amino}-20,26,32-trihydroxy-17-oxo-18-(sec-butyl)-14,16,19,28,33-pentaazaoctacyclo[19.8.4.2⁷,¹⁶.1²,⁶.1²³,²⁷.0³,²⁸.0⁷,¹⁵.0⁸,¹³]heptatriaconta-1(29),2(37),3,5,8,10,12,19,23,25,27(34),32-dodecaen-35-yl](hydroxy)methylidene}amino)-3-(4-hydroxyphenyl)propanoic acid

(2s)-2-({[(7s,15r,18s,21s,31s,35s)-31-{[(2s)-2-amino-1-hydroxypropylidene]amino}-20,26,32-trihydroxy-17-oxo-18-(sec-butyl)-14,16,19,28,33-pentaazaoctacyclo[19.8.4.2⁷,¹⁶.1²,⁶.1²³,²⁷.0³,²⁸.0⁷,¹⁵.0⁸,¹³]heptatriaconta-1(29),2(37),3,5,8,10,12,19,23,25,27(34),32-dodecaen-35-yl](hydroxy)methylidene}amino)-3-(4-hydroxyphenyl)propanoic acid

C49H52N8O9 (896.3857)


   

4-{[3,5-bis(acetyloxy)-6-methyl-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-6-{[6-(dodecyloxy)-4,5-dihydroxy-2-methyloxan-3-yl]oxy}-5-hydroxy-2-methyloxan-3-yl acetate

4-{[3,5-bis(acetyloxy)-6-methyl-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-6-{[6-(dodecyloxy)-4,5-dihydroxy-2-methyloxan-3-yl]oxy}-5-hydroxy-2-methyloxan-3-yl acetate

C42H72O20 (896.4617)


   

3-[(3s,6r,9r,12r,15r,16s)-12-benzyl-15-{[(3-heptyloxiran-2-yl)(hydroxy)methylidene]amino}-5,8,11,14-tetrahydroxy-6-[(5-hydroxy-1h-indol-3-yl)methyl]-3-(4-hydroxyphenyl)-16-methyl-2-oxo-1-oxa-4,7,10,13-tetraazacyclohexadeca-4,7,10,13-tetraen-9-yl]propanoic acid

3-[(3s,6r,9r,12r,15r,16s)-12-benzyl-15-{[(3-heptyloxiran-2-yl)(hydroxy)methylidene]amino}-5,8,11,14-tetrahydroxy-6-[(5-hydroxy-1h-indol-3-yl)methyl]-3-(4-hydroxyphenyl)-16-methyl-2-oxo-1-oxa-4,7,10,13-tetraazacyclohexadeca-4,7,10,13-tetraen-9-yl]propanoic acid

C47H56N6O12 (896.3956)


   

(2r,4as,4br,6r,7r,10ar)-6-hydroxy-7-{[(2s,4s,5s,6r)-4-hydroxy-5-{[(2s,4s,5s,6r)-4-hydroxy-5-{[(2s,4r,5s,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-4b-methyl-2-(2-methylfuran-3-yl)-2,3,4,4a,5,6,7,8,10,10a-decahydrophenanthren-1-one

(2r,4as,4br,6r,7r,10ar)-6-hydroxy-7-{[(2s,4s,5s,6r)-4-hydroxy-5-{[(2s,4s,5s,6r)-4-hydroxy-5-{[(2s,4r,5s,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-4b-methyl-2-(2-methylfuran-3-yl)-2,3,4,4a,5,6,7,8,10,10a-decahydrophenanthren-1-one

C45H68O18 (896.4405)


   

(2s,3s,4s,5r,6s)-4-{[(2s,3r,4r,5s,6s)-3,5-bis(acetyloxy)-6-methyl-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-6-{[(2s,3r,4r,5r,6r)-6-(dodecyloxy)-4,5-dihydroxy-2-methyloxan-3-yl]oxy}-5-hydroxy-2-methyloxan-3-yl acetate

(2s,3s,4s,5r,6s)-4-{[(2s,3r,4r,5s,6s)-3,5-bis(acetyloxy)-6-methyl-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-6-{[(2s,3r,4r,5r,6r)-6-(dodecyloxy)-4,5-dihydroxy-2-methyloxan-3-yl]oxy}-5-hydroxy-2-methyloxan-3-yl acetate

C42H72O20 (896.4617)


   

13,13''-bis(acetyloxy)-12''-[(acetyloxy)methyl]-9,9'',10,10''-tetrahydroxy-12,12''-dimethyl-7,7''-dioxodispiro[17-oxapentacyclo[7.6.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecane-6,2'-cyclobutane-1',6''-[17]oxapentacyclo[7.6.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecan]-12-ylmethyl acetate

13,13''-bis(acetyloxy)-12''-[(acetyloxy)methyl]-9,9'',10,10''-tetrahydroxy-12,12''-dimethyl-7,7''-dioxodispiro[17-oxapentacyclo[7.6.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecane-6,2'-cyclobutane-1',6''-[17]oxapentacyclo[7.6.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecan]-12-ylmethyl acetate

C48H64O16 (896.4194)


   

6-hydroxy-7-{[4-hydroxy-5-({4-hydroxy-5-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)-6-methyloxan-2-yl]oxy}-4b-methyl-2-(2-methylfuran-3-yl)-2,3,4,4a,5,6,7,8,10,10a-decahydrophenanthren-1-one

6-hydroxy-7-{[4-hydroxy-5-({4-hydroxy-5-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)-6-methyloxan-2-yl]oxy}-4b-methyl-2-(2-methylfuran-3-yl)-2,3,4,4a,5,6,7,8,10,10a-decahydrophenanthren-1-one

C45H68O18 (896.4405)


   

3-(12-benzyl-15-{[(3-heptyloxiran-2-yl)(hydroxy)methylidene]amino}-5,8,11,14-tetrahydroxy-6-[(5-hydroxy-1h-indol-3-yl)methyl]-3-(4-hydroxyphenyl)-16-methyl-2-oxo-1-oxa-4,7,10,13-tetraazacyclohexadeca-4,7,10,13-tetraen-9-yl)propanoic acid

3-(12-benzyl-15-{[(3-heptyloxiran-2-yl)(hydroxy)methylidene]amino}-5,8,11,14-tetrahydroxy-6-[(5-hydroxy-1h-indol-3-yl)methyl]-3-(4-hydroxyphenyl)-16-methyl-2-oxo-1-oxa-4,7,10,13-tetraazacyclohexadeca-4,7,10,13-tetraen-9-yl)propanoic acid

C47H56N6O12 (896.3956)