Exact Mass: 896.3956016000001
Exact Mass Matches: 896.3956016000001
Found 99 metabolites which its exact mass value is equals to given mass value 896.3956016000001
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Lyciumin B
C44H52N10O11 (896.3816842000001)
Isolated from Lycium chinense (Chinese boxthorn). Lyciumin B is found in tea, coffee and coffee products, and herbs and spices. Lyciumin B is found in coffee and coffee products. Lyciumin B is isolated from Lycium chinense (Chinese boxthorn). Lyciumin B is a cyclic peptide. Lyciumin B is a natural product found in Lycium chinense with data available.
PGP(16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
PGP(16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/16:0)
PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/16:0), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(16:1(9Z)/PGE2)
PGP(16:1(9Z)/PGE2) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:1(9Z)/PGE2), in particular, consists of one chain of one 9Z-hexadecenoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(PGE2/16:1(9Z))
PGP(PGE2/16:1(9Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGE2/16:1(9Z)), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of 9Z-hexadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(16:1(9Z)/PGD2)
PGP(16:1(9Z)/PGD2) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:1(9Z)/PGD2), in particular, consists of one chain of one 9Z-hexadecenoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(PGD2/16:1(9Z))
PGP(PGD2/16:1(9Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGD2/16:1(9Z)), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of 9Z-hexadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(16:1(9Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))
PGP(16:1(9Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:1(9Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one 9Z-hexadecenoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/16:1(9Z))
PGP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/16:1(9Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/16:1(9Z)), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of 9Z-hexadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(18:2(9Z,11Z)/5-iso PGF2VI)
PGP(18:2(9Z,11Z)/5-iso PGF2VI) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,11Z)/5-iso PGF2VI), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(5-iso PGF2VI/18:2(9Z,11Z))
PGP(5-iso PGF2VI/18:2(9Z,11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(5-iso PGF2VI/18:2(9Z,11Z)), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(18:2(9Z,12Z)/5-iso PGF2VI)
PGP(18:2(9Z,12Z)/5-iso PGF2VI) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,12Z)/5-iso PGF2VI), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(5-iso PGF2VI/18:2(9Z,12Z))
PGP(5-iso PGF2VI/18:2(9Z,12Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(5-iso PGF2VI/18:2(9Z,12Z)), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(i-16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
PGP(i-16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 14-methylpentadecanoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-16:0)
PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-16:0), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
3beta,23-dihydroxy-30-norolean-12,20(29)-dien-28-oic acid 3-O-alpha-L-arabinopyranosyl-(1->2)-[beta-D-glucopyranosyluronic acid (1->3)]-alpha-L-arabinopyranoside|fargoside C
(23S)-spirosta-5,25(27)-diene-1beta,3beta,23-triol-1-O-{O-(4-O-acetyl-alpha-L-rhamnopyranosyl)-(1-->2)-O-[beta-D-xylopyranosyl-(1-->3)]-alpha-L-arabinopyranoside}
Me glycoside,hexabenzyl-3-O-beta-D-Mannopyranosyl-D-mannose
alpha-Fuc-(1->2)-beta-Gal-(1->4)-beta-GlcNAc-(1->6)3)>-GalNAcol|alpha-Fuc-(1->2)-beta-Gal-(1->4)-beta-GlcNAc-(1->6)[beta-Gal-(1->3)]-GalNAcol
12-(2,3-dihydroxy-2-methylpropyl)-22,23-dihydroxy-6-(1-hydroxyethyl)-3-(hydroxymethyl)-18-methyl-15-[(2-methylsulfonyl-1H-indol-3-yl)methyl]-9-propan-2-yl-1,4,7,10,13,16,19-heptazabicyclo[19.3.0]tetracosane-2,5,8,11,14,17,20-heptone
beta-Gal-(1->4)-beta-GlcNAc-(1->6)2)-beta-Gal-(1->3)>-GalNAcol|beta-Gal-(1->4)-beta-GlcNAc-(1->6)[alpha-Fuc-(1->2)-beta-Gal-(1->3)]-GalNAcol
Lyciumin B
C44H52N10O11 (896.3816842000001)
LPIM2 16:0
4-N-naphthalen-1-yl-1-N,1-N-bis[4-(N-naphthalen-1-ylanilino)phenyl]-4-N-phenylbenzene-1,4-diamine
Furaprevir
C47H56N6O10S (896.3778436000001)
C471 - Enzyme Inhibitor > C783 - Protease Inhibitor
3-[(1R,2S,3S,4Z,7S,11S,17R,18R,19R)-8,13,17-tris(2-carboxyethyl)-2,7,12,18-tetrakis(carboxymethyl)-1,2,7,11,17-pentamethyl-3,10,15,18,19,21-hexahydrocorrin-3-yl]propanoic acid
3-[(1R,2S,3S,4Z,7S,17R,18R,19R)-8,13,17-tris(2-carboxyethyl)-2,7,12,18-tetrakis(carboxymethyl)-1,2,7,11,17-pentamethyl-3,10,18,19,21,24-hexahydrocorrin-3-yl]propanoic acid
3-[(1R,2S,3S,4Z,7S,11S,17R,18R,19R)-8,13,17-tris(2-carboxyethyl)-2,7,12,18-tetrakis(carboxymethyl)-1,2,7,11,17-pentamethyl-3,10,18,19,21,24-hexahydrocorrin-3-yl]propanoic acid
N-[(2R,3R,4R,5S,6R)-2-[(2S,3R,4S,5R)-2-Acetamido-1,4,5,6-tetrahydroxyhexan-3-yl]oxy-4-hydroxy-5-[(2S,3R,4S,5R,6R)-4-hydroxy-6-(hydroxymethyl)-5-[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-[(2S,3S,4R,5S,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-6-(hydroxymethyl)oxan-3-yl]acetamide
N-[(2R,3R,4R,5S,6R)-2-[(2R,3R,4R,5R,6S)-6-[(2R,3R,4S,5S,6R)-2-[(2S,3R,4S,5R)-2-Acetamido-1,4,5,6-tetrahydroxyhexan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)-3-[(2S,3S,4R,5S,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-4-yl]oxy-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]acetamide
N-[(2S,3R,4R,5S,6R)-2-[(2S,3R,4S,5S,6R)-2-[(2R,3S,4R,5R,6S)-5-Acetamido-2-(hydroxymethyl)-6-[(2S,3R,4S,5R)-1,2,4,5,6-pentahydroxyhexan-3-yl]oxy-4-[(2S,3S,4R,5S,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-3-yl]oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]acetamide
N-[(2R,3R,4R,5S,6R)-2-[(2R,3S,4R,5S)-5-Acetamido-2,3,6-trihydroxy-4-[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhexoxy]-5-[(2S,3R,4S,5R,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3S,4R,5S,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-4-hydroxy-6-(hydroxymethyl)oxan-3-yl]acetamide
N-[(2R,3R,4R,5S,6R)-2-[(2R,3S,4R,5S)-5-Acetamido-2,3,6-trihydroxy-4-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhexoxy]-6-(hydroxymethyl)-5-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4-[(2S,3S,4R,5S,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-3-yl]acetamide
N-[(2S,3R,4R,5S,6R)-2-[(2R,3R,4S,5S,6R)-2-[(2S,3R,4S,5R)-2-Acetamido-1,4,5,6-tetrahydroxyhexan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)-3-[(2S,3S,4R,5S,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-4-yl]oxy-4-hydroxy-6-(hydroxymethyl)-5-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-3-yl]acetamide
N-[(2S,3R,4R,5S,6R)-2-[(2R,3S,4R,5S)-5-Acetamido-2,4,6-trihydroxy-1-[(2R,3S,4R,5S,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyhexan-3-yl]oxy-5-[(2S,3S,4S,5R,6R)-3,5-dihydroxy-6-(hydroxymethyl)-4-[(2R,3S,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-4-hydroxy-6-(hydroxymethyl)oxan-3-yl]acetamide
N-[(2S,3R,4R,5S,6R)-2-[(2R,3R,4S,5S,6R)-2-[(2S,3R,4S,5R)-2-Acetamido-1,4,5,6-tetrahydroxyhexan-3-yl]oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-6-(hydroxymethyl)-5-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4-[(2S,3S,4R,5S,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-3-yl]acetamide
N-[(2S,3R,4R,5S,6R)-2-[(2R,3R,4R,5S)-5-Acetamido-1-[(2R,3R,4S,5R,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3S,4R,5S,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-2,4,6-trihydroxyhexan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)-4-[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-3-yl]acetamide
N-[(2R,3R,4R,5S,6R)-2-[(2S,3R,4S,5R)-2-Acetamido-6-[(2R,3R,4S,5R,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3S,4R,5S,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-1,4,5-trihydroxyhexan-3-yl]oxy-4-hydroxy-6-(hydroxymethyl)-5-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-3-yl]acetamide
N-[(2R,3R,4R,5S,6R)-2-[(2S,3R,4S,5R)-2-acetamido-1,4,5,6-tetrahydroxyhexan-3-yl]oxy-5-hydroxy-4-[(2R,3R,4S,5S,6R)-5-hydroxy-6-(hydroxymethyl)-4-[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-[(2S,3S,4R,5S,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-6-(hydroxymethyl)oxan-3-yl]acetamide
N-[(2R,3R,4R,5S,6R)-2-[(2R,3S,4R,5S)-5-Acetamido-2,3,6-trihydroxy-4-[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhexoxy]-4-[(2R,3R,4S,5R,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3S,4R,5S,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-3-yl]acetamide
N-[(2S,3R,4R,5S,6R)-2-[(2R,3S,4R,5S)-5-Acetamido-2,4,6-trihydroxy-1-[(2R,3S,4R,5S,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyhexan-3-yl]oxy-4-hydroxy-6-(hydroxymethyl)-5-[(2S,3S,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2S,3S,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxyoxan-3-yl]acetamide
N-[(2S,3R,4R,5S,6R)-2-[(2R,3R,4R,5S)-5-Acetamido-1,2,6-trihydroxy-4-[(2S,3S,4R,5S,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyhexan-3-yl]oxy-4-hydroxy-6-(hydroxymethyl)-5-[(2S,3S,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2S,3S,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxyoxan-3-yl]acetamide
N-[(2R,3R,4R,5S,6R)-2-[(2R,3S,4R,5S)-5-Acetamido-4-[(2R,3R,4S,5R,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3S,4R,5S,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-2,3,6-trihydroxyhexoxy]-5-hydroxy-6-(hydroxymethyl)-4-[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-3-yl]acetamide
N-[(2R,3R,4R,5S,6R)-2-[(2R,3S,4R,5S)-5-Acetamido-2,3,6-trihydroxy-4-[(2R,3R,4S,5R,6R)-4-hydroxy-6-(hydroxymethyl)-5-[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-[(2S,3S,4R,5S,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxyhexoxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]acetamide
N-[(2S,3R,4R,5S,6R)-2-[(2R,3R,4S,5S,6R)-2-[(2S,3R,4S,5R)-2-Acetamido-1,4,5,6-tetrahydroxyhexan-3-yl]oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-6-(hydroxymethyl)-4-[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-5-[(2S,3S,4R,5S,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-3-yl]acetamide
N-[(2R,3R,4R,5S,6R)-2-[[(2R,3S,4S,5R,6R)-6-[(2S,3R,4S,5R)-2-Acetamido-1,4,5,6-tetrahydroxyhexan-3-yl]oxy-3,5-dihydroxy-4-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]methoxy]-5-hydroxy-6-(hydroxymethyl)-4-[(2S,3S,4R,5S,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-3-yl]acetamide
N-[(2R,3R,4R,5S,6R)-2-[(2R,3S,4R,5S)-5-Acetamido-4-[(2R,3R,4S,5R,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3S,4R,5S,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-2,3,6-trihydroxyhexoxy]-4-hydroxy-6-(hydroxymethyl)-5-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-3-yl]acetamide
N-[(2R,3R,4R,5S,6R)-2-[(2R,3S,4R,5S)-5-Acetamido-2,3,6-trihydroxy-4-[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhexoxy]-6-(hydroxymethyl)-4-[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-5-[(2S,3S,4R,5S,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-3-yl]acetamide
N-[(2R,3R,4R,5S,6R)-2-[(2R,3S,4R,5S)-5-Acetamido-2,3,6-trihydroxy-4-[(2R,3R,4S,5S,6R)-5-hydroxy-6-(hydroxymethyl)-4-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-[(2S,3S,4R,5S,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxyhexoxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]acetamide
N-[(2S,3R,4R,5S,6R)-2-[(2S,3R,4S,5S,6R)-2-[(2R,3R,4R,5S)-5-Acetamido-1,2,4,6-tetrahydroxyhexan-3-yl]oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-4-[(2R,3R,4S,5R,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3S,4R,5S,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-3-yl]acetamide
N-[(2S,3R,4R,5S,6R)-2-[(2R,3R,4S,5S,6R)-2-[(2S,3R,4S,5R)-2-Acetamido-1,4,5,6-tetrahydroxyhexan-3-yl]oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-5-[(2S,3R,4S,5R,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3S,4R,5S,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-4-hydroxy-6-(hydroxymethyl)oxan-3-yl]acetamide
N-[(2R,3R,4R,5S,6R)-2-[(2S,3R,4S,5R)-2-Acetamido-1,4,5,6-tetrahydroxyhexan-3-yl]oxy-4-hydroxy-5-[(2S,3R,4S,5S,6R)-5-hydroxy-6-(hydroxymethyl)-4-[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-[(2S,3S,4R,5S,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-6-(hydroxymethyl)oxan-3-yl]acetamide
2-O-(alpha-D-Manp)-6-O-(alpha-D-Manp)-(1-hexadecanoyl-sn-glycero-3-phospho-1-myo-inositol)
Deltorphin 2 (TFA)
C40H55F3N8O12 (896.3891345999999)
Deltorphin 2 TFA is a selective peptide agonist for the δ opioid receptor[1].
Deltorphin 2 (TFA)
C40H55F3N8O12 (896.3891345999999)
Deltorphin 2 TFA is a selective peptide agonist for the δ opioid receptor[1].
4,5-dihydroxy-6-({5-hydroxy-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]-2-{7',9',13'-trimethyl-5-methylidene-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-3,16'-dioloxy}oxan-3-yl}oxy)-2-methyloxan-3-yl acetate
(1s,1''s,2s,2''s,5s,5''s,8r,8''r,9s,9''s,11s,11''s,12r,12''r,18r,18''r)-13,13''-bis(acetyloxy)-12''-[(acetyloxy)methyl]-9,9'',18,18''-tetrahydroxy-12,12''-dimethyl-7,7''-dioxodispiro[17-oxapentacyclo[7.6.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecane-6,2'-cyclobutane-1',6''-[17]oxapentacyclo[7.6.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecan]-12-ylmethyl acetate
(2s,3r,4s,5r,6s)-4,5-dihydroxy-6-{[(2s,3r,4s,5s)-5-hydroxy-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-2-[(1's,2s,2's,3s,4's,7's,8'r,9's,12's,13'r,14'r,16'r)-7',9',13'-trimethyl-5-methylidene-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-3,16'-dioloxy]oxan-3-yl]oxy}-2-methyloxan-3-yl acetate
azecin 1
{"Ingredient_id": "HBIN017441","Ingredient_name": "azecin 1","Alias": "NA","Ingredient_formula": "C43H60O20","Ingredient_Smile": "CC1C(C(C(C(O1)OCC2C(C(C(C(O2)OC3C(=O)OC(C4(C35C(=C)C(CC4OC(=O)C)C6(C(O5)CC(C(C6CC(=O)OC)(C)C)OC(=O)C)C)C)C7=COC=C7)O)O)O)O)O)O","Ingredient_weight": "896.92","OB_score": "NA","CAS_id": "182565-73-7","SymMap_id": "NA","TCMID_id": "2054","TCMSP_id": "NA","TCM_ID_id": "6457","PubChem_id": "NA","DrugBank_id": "NA"}
3,6,9,12-tetrahydroxy-2-{[1-hydroxy-2-({hydroxy[1-(5-hydroxy-3,4-dihydro-2h-pyrrole-2-carbonyl)pyrrolidin-2-yl]methylidene}amino)-3-(1h-indol-3-yl)propylidene]amino}-11-(hydroxymethyl)-5-isopropyl-1,4,7,10,13-pentaazatricyclo[14.6.1.0¹⁷,²²]tricosa-3,6,9,12,16(23),17,19,21-octaene-14-carboxylic acid
C44H52N10O11 (896.3816842000001)
(2s,3s,4s,5r,6r)-6-{[(3s,4s,5r,6s)-6-{[(3s,4r,4ar,6ar,6bs,8as,12as,14ar,14br)-8a-carboxy-4-(hydroxymethyl)-4,6a,6b,14b-tetramethyl-11-methylidene-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-4-hydroxy-5-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid
9-[2,3-dihydroxy-2-(hydroxymethyl)propyl]-1,4,7,10,13,16,22,23-octahydroxy-15-(1-hydroxyethyl)-18-(hydroxymethyl)-12-isopropyl-6-[(2-methanesulfinyl-1h-indol-3-yl)methyl]-3-methyl-3h,6h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosan-19-one
(2s,3s,4s,5r,6r)-6-{[(2s,3r,4s,5s)-2-{[(3s,4r,4ar,6ar,6bs,8as,12as,14ar,14br)-8a-carboxy-4-(hydroxymethyl)-4,6a,6b,14b-tetramethyl-11-methylidene-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-hydroxy-3-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-4-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid
(2s)-2-({[(7s,15r,18s,21s,31s,35s)-31-{[(2s)-2-amino-1-hydroxypropylidene]amino}-20,26,32-trihydroxy-17-oxo-18-(sec-butyl)-14,16,19,28,33-pentaazaoctacyclo[19.8.4.2⁷,¹⁶.1²,⁶.1²³,²⁷.0³,²⁸.0⁷,¹⁵.0⁸,¹³]heptatriaconta-1(29),2(37),3,5,8,10,12,19,23,25,27(34),32-dodecaen-35-yl](hydroxy)methylidene}amino)-3-(4-hydroxyphenyl)propanoic acid
C49H52N8O9 (896.3857062000001)
9-(2,3-dihydroxy-2-methylpropyl)-1,4,7,10,13,16,22,23-octahydroxy-15-(1-hydroxyethyl)-18-(hydroxymethyl)-12-isopropyl-6-[(2-methanesulfonyl-1h-indol-3-yl)methyl]-3-methyl-3h,6h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosan-19-one
3-[(3s,6r,9r,12r,15r,16s)-12-benzyl-15-{[(3-heptyloxiran-2-yl)(hydroxy)methylidene]amino}-5,8,11,14-tetrahydroxy-6-[(5-hydroxy-1h-indol-3-yl)methyl]-3-(4-hydroxyphenyl)-16-methyl-2-oxo-1-oxa-4,7,10,13-tetraazacyclohexadeca-4,7,10,13-tetraen-9-yl]propanoic acid
C47H56N6O12 (896.3956016000001)
(2r,4as,4br,6r,7r,10ar)-6-hydroxy-7-{[(2s,4s,5s,6r)-4-hydroxy-5-{[(2s,4s,5s,6r)-4-hydroxy-5-{[(2s,4r,5s,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-4b-methyl-2-(2-methylfuran-3-yl)-2,3,4,4a,5,6,7,8,10,10a-decahydrophenanthren-1-one
(3s,6s,9s,12s,15r,18r,22r,23s,23as)-9-[(2r)-2,3-dihydroxy-2-methylpropyl]-1,4,7,10,13,16,22,23-octahydroxy-15-[(1s)-1-hydroxyethyl]-18-(hydroxymethyl)-12-isopropyl-6-[(2-methanesulfonyl-1h-indol-3-yl)methyl]-3-methyl-3h,6h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosan-19-one
13,13''-bis(acetyloxy)-12''-[(acetyloxy)methyl]-9,9'',10,10''-tetrahydroxy-12,12''-dimethyl-7,7''-dioxodispiro[17-oxapentacyclo[7.6.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecane-6,2'-cyclobutane-1',6''-[17]oxapentacyclo[7.6.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecan]-12-ylmethyl acetate
6-hydroxy-7-{[4-hydroxy-5-({4-hydroxy-5-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)-6-methyloxan-2-yl]oxy}-4b-methyl-2-(2-methylfuran-3-yl)-2,3,4,4a,5,6,7,8,10,10a-decahydrophenanthren-1-one
3-(12-benzyl-15-{[(3-heptyloxiran-2-yl)(hydroxy)methylidene]amino}-5,8,11,14-tetrahydroxy-6-[(5-hydroxy-1h-indol-3-yl)methyl]-3-(4-hydroxyphenyl)-16-methyl-2-oxo-1-oxa-4,7,10,13-tetraazacyclohexadeca-4,7,10,13-tetraen-9-yl)propanoic acid
C47H56N6O12 (896.3956016000001)