Exact Mass: 892.5676639999999
Exact Mass Matches: 892.5676639999999
Found 388 metabolites which its exact mass value is equals to given mass value 892.5676639999999
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Oscillaxanthin
Chlorophyll a
Chlorophyll a is found in common wheat. Chlorophyll a is used in food processing as an appearance control agent for colours.Chlorophyll is a chlorin pigment, which is structurally similar to and produced through the same metabolic pathway as other porphyrin pigments such as heme. At the center of the chlorin ring is a magnesium ion. For the structures depicted in this article, some of the ligands attached to the Mg2+ center are omitted for clarity. The chlorin ring can have several different side chains, usually including a long phytol chain. There are a few different forms that occur naturally, but the most widely distributed form in terrestrial plants is chlorophyll a. The general structure of chlorophyll a was elucidated by Hans Fischer in 1940, and by 1960, when most of the stereochemistry of chlorophyll a was known, Robert Burns Woodward published a total synthesis of the molecule as then known. In 1967, the last remaining stereochemical elucidation was completed by Ian Fleming, and in 1990 Woodward and co-authors published an updated synthesis. Chlorophyll is a green pigment found in most plants, algae, and cyanobacteria. Its name is derived from the Greek (chloros "green") and (phyllon "leaf"). Chlorophyll absorbs light most strongly in the blue and red but poorly in the green portions of the electromagnetic spectrum, hence the green colour of chlorophyll-containing tissues such as plant leaves. Chlorophyll itself is bound to proteins and can transfer the absorbed energy in the required direction. Protochlorophyllide, differently, mostly occur in the free form and under light conditions act as photosensitizer, forming highly toxic free radicals. Hence plants need an efficient mechanism of regulating the amount of chlorophyll precursor. In angiosperms, this is done at the step of aminolevulinic acid (ALA), one of the intermediate compounds in the biosynthesis pathway. Plants that are fed by ALA accumulate high and toxic levels of protochlorophyllide, so do the mutants with the damaged regulatory system. Chlorosis is a condition in which leaves produce insufficient chlorophyll, turning them yellow. Chlorosis can be caused by a nutrient deficiency including iron - called iron chlorosis, or in a shortage of magnesium or nitrogen. Soil pH sometimes play a role in nutrient-caused chlorosis, many plants are adapted to grow in soils with specific pHs and their ability to absorb nutrients from the soil can be dependent on the soil pH. Chlorosis can also be caused by pathogens including viruses, bacteria and fungal infections or sap sucking insects It is used in food processing as an appearance control agent for colours
Zeaxanthin diglucoside
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
PG(a-21:0/PGF1alpha)
PG(a-21:0/PGF1alpha) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-21:0/PGF1alpha), in particular, consists of one chain of one 18-methyleicosanoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(PGF1alpha/a-21:0)
PG(PGF1alpha/a-21:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGF1alpha/a-21:0), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of 18-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(i-20:0/6 keto-PGF1alpha)
C46H85O14P (892.5676639999999)
PG(i-20:0/6 keto-PGF1alpha) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/6 keto-PGF1alpha), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(6 keto-PGF1alpha/i-20:0)
C46H85O14P (892.5676639999999)
PG(6 keto-PGF1alpha/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(6 keto-PGF1alpha/i-20:0), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(i-20:0/TXB2)
C46H85O14P (892.5676639999999)
PG(i-20:0/TXB2) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/TXB2), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(TXB2/i-20:0)
C46H85O14P (892.5676639999999)
PG(TXB2/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(TXB2/i-20:0), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(i-21:0/PGF1alpha)
PG(i-21:0/PGF1alpha) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-21:0/PGF1alpha), in particular, consists of one chain of one 19-methyleicosanoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(PGF1alpha/i-21:0)
PG(PGF1alpha/i-21:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGF1alpha/i-21:0), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of 19-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PI(16:0/20:3(8Z,11Z,14Z)-2OH(5,6))
PI(16:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(16:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of hexadecanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
PI(20:3(8Z,11Z,14Z)-2OH(5,6)/16:0)
PI(20:3(8Z,11Z,14Z)-2OH(5,6)/16:0) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:3(8Z,11Z,14Z)-2OH(5,6)/16:0), in particular, consists of one chain of 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
PI(18:2(9Z,12Z)/18:1(12Z)-2OH(9,10))
PI(18:2(9Z,12Z)/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:2(9Z,12Z)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of 9Z,12Z-octadecadienoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
PI(18:1(12Z)-2OH(9,10)/18:2(9Z,12Z))
PI(18:1(12Z)-2OH(9,10)/18:2(9Z,12Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:1(12Z)-2OH(9,10)/18:2(9Z,12Z)), in particular, consists of one chain of 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
(2S)-1-O-palmitoyl-2-O-palmitoyl-3-O-[alpha-D-galactopyranosyl-(1->6)-beta-D-galactopyranosyl]glycerol
cyclo(-Pro-Pro-Tyr-Val-Pro-Leu-Ile-Ile)|hymenistatin|hymenistatin 1
Zeaxanthin diglucoside/ Zeaxanthin β-D-diglucoside
Oscillol 2,2-dirhamnoside
Oscillol 2,2-difucoside
[2-Hexadecanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] hexadecanoate
Zeaxanthin diglucoside/Zeaxanthin beta-D-diglucoside
(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-[(1R)-3,5,5-trimethyl-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-[(4R)-2,6,6-trimethyl-4-[(2S,3S,4R,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycyclohexen-1-yl]octadeca-1,3,5,7,9,11,13,15,17-nonaenyl]cyclohex-3-en-1-yl]oxyoxane-3,4,5-triol
1,2-dipalmitoyl-3-O-(alpha-D-glucopyranosyl(1->2)-O-alpha-D-glucopyranosyl)-sn-glycerol
6-O-beta-D-Glucopyranosyl-[(2S)-2,3-di(palmitoyloxy)propyl]-beta-D-glucopyranoside
2-[[(2R)-2-[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy-3-[(Z)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-3-[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy-2-[(Z)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-2-[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy-3-[(Z)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-3-[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy-2-[(Z)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-3-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-2-[(Z)-7-[(1S,5R)-5-[(E,3S)-3-hydroxyoct-1-enyl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(Z)-7-[(1S,5R)-5-[(E,3S)-3-hydroxyoct-1-enyl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-2-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-3-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-2-[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-3-[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-2-[(5Z,8Z)-10-[3-[(Z)-oct-2-enyl]oxiran-2-yl]deca-5,8-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-3-[(5Z,8Z)-10-[3-[(Z)-oct-2-enyl]oxiran-2-yl]deca-5,8-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-2-[(Z)-7-[3-[(2Z,5Z)-undeca-2,5-dienyl]oxiran-2-yl]hept-5-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-3-[(Z)-7-[3-[(2Z,5Z)-undeca-2,5-dienyl]oxiran-2-yl]hept-5-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-2-[4-[3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trienyl]oxiran-2-yl]butanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-3-[4-[3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trienyl]oxiran-2-yl]butanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-2-[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-3-[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-2-[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-3-[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-2-[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-3-[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-2-[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-3-[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-2-[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-3-[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-2-[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-3-[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-2-[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-3-[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-2-[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-3-[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-2-[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-3-[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-2-[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-3-[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C50H87NO10P+ (892.6067271999999)
zeaxanthin bis(beta-D-glucoside)
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
3-[beta-D-glucosyl-(1->6)-beta-D-galactosyl]-1,2-dipalmitoyl-sn-glycerol
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octadecanoyloxypropan-2-yl] (Z)-icos-11-enoate
(3R,4S,5S,6R)-2-[(3S,4E,6E,8E,10E,12E,14E,16E,18E,20E,22E,24E,26E,28E,30S)-2,31-dihydroxy-2,6,10,14,19,23,27,31-octamethyl-30-[(3R,4S,5S,6R)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxydotriaconta-4,6,8,10,12,14,16,18,20,22,24,26,28-tridecaen-3-yl]oxy-6-methyloxane-3,4,5-triol
[1-dodecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-hexacos-15-enoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[1-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate
[1-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
[1-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
[1-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate
[1-[(9Z,12Z)-hexadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate
[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate
[1-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tetradec-9-enoate
[1-Heptanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] pentacosanoate
[1-Octanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] tetracosanoate
[1-Pentanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] heptacosanoate
[1-Hexanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] hexacosanoate
[1-Nonanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] tricosanoate
[1-Tetradecanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] octadecanoate
[1-Decanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] docosanoate
[1-[3,4,5-Trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] henicosanoate
[1-Dodecanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] icosanoate
[1-Tridecanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] nonadecanoate
[1-Pentadecanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] heptadecanoate
6-[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
[3,4,5-trihydroxy-6-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[6-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[3,4,5-trihydroxy-6-[3-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[6-[3-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[6-[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[6-[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
6-[2,3-bis[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy]propoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
[6-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[6-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-octadec-9-enoyl]oxypropan-2-yl] (9Z,11E)-13-hydroperoxyoctadeca-9,11-dienoate
[1-hexadecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (5Z,8Z,14E)-11,12-dihydroxyicosa-5,8,14-trienoate
[3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-2-[(Z)-tridec-9-enoyl]oxypropyl] pentacosanoate
[2-[(Z)-heptadec-9-enoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] henicosanoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (Z)-tetracos-13-enoate
[1-heptadecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-henicos-11-enoate
[2-[(Z)-hexadec-9-enoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] docosanoate
[3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-2-[(Z)-octadec-9-enoyl]oxypropyl] icosanoate
[3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] tricosanoate
[3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] tetracosanoate
[3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-2-[(Z)-nonadec-9-enoyl]oxypropyl] nonadecanoate
[1-hexadecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-docos-13-enoate
[3-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate
[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate
[3-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
[1-[[3-dodecanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate
[1-dodecanoyloxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[1-[[3-dodecanoyloxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate
[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[3-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (9Z,12Z)-hexadeca-9,12-dienoate
[1-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] tricosanoate
[(2S,3S,6S)-6-[(2S)-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-octadec-13-enoyl]oxypropan-2-yl] icosanoate
[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] henicosanoate
[(2S,3S,6S)-6-[(2S)-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S,3S,6S)-6-[(2S)-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(E)-octadec-4-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S,3S,6S)-6-[(2S)-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S,3S,6S)-6-[(2S)-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] docosanoate
[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (11E,14E)-heptadeca-11,14-dienoate
[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (8E,11E,14E)-heptadeca-8,11,14-trienoate
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] tetracosanoate
[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-octadec-6-enoyl]oxypropan-2-yl] icosanoate
[(2S,3S,6S)-6-[(2S)-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(E)-octadec-13-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2R)-1-dodecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-hexacos-5-enoate
[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-octadec-11-enoyl]oxypropan-2-yl] icosanoate
[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(E)-octadec-4-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] docosanoate
[(2S)-2-dodecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-hexacos-5-enoate
[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(E)-octadec-7-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-octadec-9-enoyl]oxypropan-2-yl] icosanoate
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tetradecanoyloxypropyl] (E)-tetracos-15-enoate
[(2S,3S,6S)-6-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(18E,21E)-tetracosa-18,21-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-octadec-17-enoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S)-2-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] octadecanoate
[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-octadecanoyloxypropan-2-yl] (E)-icos-11-enoate
[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-octadec-6-enoyl]oxypropyl] icosanoate
[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(E)-octadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S)-2-tridecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] nonadecanoate
[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-octadec-9-enoyl]oxypropyl] icosanoate
[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] tricosanoate
[(2S)-1-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] octadecanoate
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] tetracosanoate
[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-octadec-4-enoyl]oxypropan-2-yl] icosanoate
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S,3S,6S)-6-[(2S)-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-octadec-11-enoyl]oxypropyl] icosanoate
[(2S)-1-pentadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] heptadecanoate
[(2S,3S,6S)-6-[(2S)-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S)-1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] docosanoate
[(2S,3S,6S)-6-[(2S)-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] docosanoate
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S,3S,6S)-6-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(15E,18E,21E)-tetracosa-15,18,21-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-octadec-17-enoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-octadecanoyloxypropan-2-yl] (E)-icos-13-enoate
[(2S,3S,6S)-6-[(2S)-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S)-1-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] henicosanoate
[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-octadec-4-enoyl]oxypropyl] icosanoate
[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] nonadecanoate
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E)-icosa-5,8-dienoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S)-1-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] icosanoate
[(2S,3S,6S)-6-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S)-2-hexadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-docos-13-enoate
[(2S,3S,6S)-6-[(2S)-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (E)-tetracos-15-enoate
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S)-2-hexadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] hexadecanoate
[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-octadecanoyloxypropyl] (E)-icos-11-enoate
[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-octadecanoyloxypropyl] (E)-icos-13-enoate
[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(E)-octadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S)-2-pentadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] heptadecanoate
[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(E)-octadec-6-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2R)-1-hexadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-docos-13-enoate
[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-octadec-17-enoyloxypropan-2-yl] icosanoate
[(2R)-2-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] icosanoate
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-octadec-17-enoyloxypropyl] icosanoate
[(2S,3S,6S)-6-[(2S)-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] henicosanoate
[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-octadec-7-enoyl]oxypropyl] icosanoate
[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(E)-octadec-6-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(E)-octadec-7-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2R)-2-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] docosanoate
[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-octadec-7-enoyl]oxypropan-2-yl] icosanoate
[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] docosanoate
[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(E)-octadec-13-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2R)-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-2-undecanoyloxypropyl] henicosanoate
[(2S,3S,6S)-6-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C49H80O12S (892.5370200000001)
[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-octadec-13-enoyl]oxypropyl] icosanoate
(3S,4R,5R,6S)-2-[(3R,4E,6E,8E,10E,12E,14E,16E,18E,20E,22E,24E,26E,28E,30R)-2,31-dihydroxy-2,6,10,14,19,23,27,31-octamethyl-30-[(3R,4S,5S,6R)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxydotriaconta-4,6,8,10,12,14,16,18,20,22,24,26,28-tridecaen-3-yl]oxy-6-methyloxane-3,4,5-triol
1-eicosanoyl-2-(9Z-octadecenoyl)-glycero-3-phospho-(1-myo-inositol)
1-(9Z-heptadecenoyl)-2-heneicosanoyl-glycero-3-phospho-(1-myo-inositol)
1-hexadecanoyl-2-(11Z-docosenoyl)-glycero-3-phospho-(1-myo-inositol)
phosphatidylserine 44:5(1-)
C50H87NO10P (892.6067271999999)
A 3-sn-phosphatidyl-L-serine(1-) in which the acyl groups at C-1 and C-2 contain 44 carbons in total and 5 double bonds.
SQDG(40:7)
C49H80O12S (892.5370200000001)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
DGDG(32:0)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
MGDG(45:10)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
(3r,4s,5s,6r)-2-{[(3s,4e,6e,8e,10e,12e,14e,16e,18e,20e,22e,24e,26e,28e,30s)-2,31-dihydroxy-2,6,10,14,19,23,27,31-octamethyl-30-{[(3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}dotriaconta-4,6,8,10,12,14,16,18,20,22,24,26,28-tridecaen-3-yl]oxy}-6-methyloxane-3,4,5-triol
(2s,3s,4s,5s,6r)-2-{[(3s,4e,6e,8e,10e,12e,14e,16e,18e,20e,22e,24e,26e,28e,30s)-2,31-dihydroxy-2,6,10,14,19,23,27,31-octamethyl-30-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}dotriaconta-4,6,8,10,12,14,16,18,20,22,24,26,28-tridecaen-3-yl]oxy}-6-methyloxane-3,4,5-triol
(2r,3s,4s,5r)-2-(hydroxymethyl)-6-{[(1r)-3,5,5-trimethyl-4-[(1e,3e,5e,7e,9e,11e,13e,15e,17e)-3,7,12,16-tetramethyl-18-[(4r)-2,6,6-trimethyl-4-{[(3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}cyclohex-1-en-1-yl]octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-3-en-1-yl]oxy}oxane-3,4,5-triol
8,11,20,23,26-pentahydroxy-10-[(4-hydroxyphenyl)methyl]-13-isopropyl-22,28-bis(2-methylpropyl)-25-(sec-butyl)-3,9,12,15,21,24,27,30-octaazatetracyclo[28.3.0.0³,⁷.0¹⁵,¹⁹]tritriaconta-8,11,20,23,26-pentaene-2,14,29-trione
(2s)-1-(hexadecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propan-2-yl hexadecanoate
(1s,7s,10s,13s,19s,22s,25s,28s)-25-[(2s)-butan-2-yl]-8,11,20,23,26-pentahydroxy-10-[(4-hydroxyphenyl)methyl]-13-isopropyl-22,28-bis(2-methylpropyl)-3,9,12,15,21,24,27,30-octaazatetracyclo[28.3.0.0³,⁷.0¹⁵,¹⁹]tritriaconta-8,11,20,23,26-pentaene-2,14,29-trione
1-o-β-d-galactosyl(6→1)-α-d-galactosyl-2,3-o-dihexadecanoyl-glycerol
{"Ingredient_id": "HBIN002847","Ingredient_name": "1-o-\u03b2-d-galactosyl(6\u21921)-\u03b1-d-galactosyl-2,3-o-dihexadecanoyl-glycerol","Alias": "NA","Ingredient_formula": "C47H88O15","Ingredient_Smile": "CCCCCCCCCCCCCCCC(=O)OCC(COC1C(C(C(C(O1)COC2C(C(C(C(O2)CO)O)O)O)O)O)O)OC(=O)CCCCCCCCCCCCCCC","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "8076","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
(2r)-3-{[(2s,3s,4s,5r,6r)-3,5-dihydroxy-6-{[(12-methyltetradecanoyl)oxy]methyl}-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2-hydroxypropyl 14-methylhexadecanoate
(2r)-3-{[(2s,3s,4s,5r,6r)-3,5-dihydroxy-6-({[(12r)-12-methyltetradecanoyl]oxy}methyl)-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2-hydroxypropyl (14s)-14-methylhexadecanoate
(2r,3r,4r,5r,6s)-2-{[(3s,4e,6e,8e,10e,12e,14e,16e,18e,20e,22e,24e,26e,28e,30s)-2,31-dihydroxy-2,6,10,14,19,23,27,31-octamethyl-30-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}dotriaconta-4,6,8,10,12,14,16,18,20,22,24,26,28-tridecaen-3-yl]oxy}-6-methyloxane-3,4,5-triol
(2r,3s,4s,5r,6r)-2-(hydroxymethyl)-6-{[(1s)-3,5,5-trimethyl-4-[(1e,3e,5e,7e,9e,11e,13e,15e,17e)-3,7,12,16-tetramethyl-18-[(4s)-2,6,6-trimethyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}cyclohex-1-en-1-yl]octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-3-en-1-yl]oxy}oxane-3,4,5-triol
8,11,20,23,26-pentahydroxy-10-[(4-hydroxyphenyl)methyl]-13-isopropyl-22-(2-methylpropyl)-25,28-bis(sec-butyl)-3,9,12,15,21,24,27,30-octaazatetracyclo[28.3.0.0³,⁷.0¹⁵,¹⁹]tritriaconta-8,11,20,23,26-pentaene-2,14,29-trione
5,30-dihydroxy-15,28-diisopropyl-13,24,27-trimethyl-3-(1-phenylpropan-2-yl)-12-(sec-butyl)-16,25-dioxa-1,4,10,13,22,29-hexaazatetracyclo[29.3.0.0⁶,¹⁰.0¹⁸,²²]tetratriaconta-4,29-diene-2,11,14,17,23,26-hexone
C48H72N6O10 (892.5309652000001)
3-[(3,5-dihydroxy-6-{[(12-methyltetradecanoyl)oxy]methyl}-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-2-hydroxypropyl 14-methylhexadecanoate
(6s,12r,15r,18s,31s)-12-[(2r)-butan-2-yl]-5,30-dihydroxy-15,28-diisopropyl-13,24,27-trimethyl-3-(1-phenylpropan-2-yl)-16,25-dioxa-1,4,10,13,22,29-hexaazatetracyclo[29.3.0.0⁶,¹⁰.0¹⁸,²²]tetratriaconta-4,29-diene-2,11,14,17,23,26-hexone
C48H72N6O10 (892.5309652000001)
(2s,3s,4r,5r,6s)-2-{[(3s,4e,6e,8e,10e,12e,14e,16e,18e,20e,22e,24e,26e,28e,30s)-2,31-dihydroxy-2,6,10,14,19,23,27,31-octamethyl-30-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}dotriaconta-4,6,8,10,12,14,16,18,20,22,24,26,28-tridecaen-3-yl]oxy}-6-methyloxane-3,4,5-triol
2-({2,31-dihydroxy-2,6,10,14,19,23,27,31-octamethyl-30-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]dotriaconta-4,6,8,10,12,14,16,18,20,22,24,26,28-tridecaen-3-yl}oxy)-6-methyloxane-3,4,5-triol
1-(hexadecanoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propan-2-yl hexadecanoate
(3r,6s,12r,15r,18s,24r,27s,28s,31s)-12-[(2r)-butan-2-yl]-5,30-dihydroxy-15,28-diisopropyl-13,24,27-trimethyl-3-[(2r)-1-phenylpropan-2-yl]-16,25-dioxa-1,4,10,13,22,29-hexaazatetracyclo[29.3.0.0⁶,¹⁰.0¹⁸,²²]tetratriaconta-4,29-diene-2,11,14,17,23,26-hexone
C48H72N6O10 (892.5309652000001)