Exact Mass: 890.4727230000001

Exact Mass Matches: 890.4727230000001

Found 443 metabolites which its exact mass value is equals to given mass value 890.4727230000001, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

magnesium;methyl (3R,21S,22S)-11,16-bis(ethenyl)-12,17,21,26-tetramethyl-4-oxo-22-[3-oxo-3-[(E,7R,11R)-3,7,11,15-tetramethylhexadec-2-enoxy]propyl]-23,25-diaza-7,24-diazanidahexacyclo[18.2.1.15,8.110,13.115,18.02,6]hexacosa-1,5,8(26),9,11,13(25),14,16,18,20(23)-decaene-3-carboxylate

magnesium;methyl (3R,21S,22S)-11,16-bis(ethenyl)-12,17,21,26-tetramethyl-4-oxo-22-[3-oxo-3-[(E,7R,11R)-3,7,11,15-tetramethylhexadec-2-enoxy]propyl]-23,25-diaza-7,24-diazanidahexacyclo[18.2.1.15,8.110,13.115,18.02,6]hexacosa-1,5,8(26),9,11,13(25),14,16,18,20(23)-decaene-3-carboxylate

C55H70MgN4O5 (890.519643)


   
   

avermectin B2a

Antibiotic C 076B2a

C48H74O15 (890.5027454)


   

1,2-Dipalmitoyl-sn-glycero-3-phospho-(1'D-myo-inositol-3'-phosphate)

{[3-({[2,3-bis(hexadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C41H80O16P2 (890.4921340000001)


   

1,2-Dihexadecanoyl-sn-glycero-3-phospho-(1D-myo-inositol-4-phosphate)

{[4-({[2,3-bis(hexadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2,3,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C41H80O16P2 (890.4921340000001)


   

PG(22:5(4Z,7Z,10Z,13Z,16Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphinic acid

C48H75O13P (890.494503)


PG(22:5(4Z,7Z,10Z,13Z,16Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:5(4Z,7Z,10Z,13Z,16Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/22:5(4Z,7Z,10Z,13Z,16Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphinic acid

C48H75O13P (890.494503)


PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/22:5(4Z,7Z,10Z,13Z,16Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:5(7Z,10Z,13Z,16Z,19Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphinic acid

C48H75O13P (890.494503)


PG(22:5(7Z,10Z,13Z,16Z,19Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:5(7Z,10Z,13Z,16Z,19Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/22:5(7Z,10Z,13Z,16Z,19Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphinic acid

C48H75O13P (890.494503)


PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/22:5(7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/PGE2)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-2-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}propoxy]phosphinic acid

C48H75O13P (890.494503)


PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/PGE2) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/PGE2), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGE2/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}propoxy]phosphinic acid

C48H75O13P (890.494503)


PG(PGE2/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGE2/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/PGD2)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-2-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}propoxy]phosphinic acid

C48H75O13P (890.494503)


PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/PGD2) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/PGD2), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGD2/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}propoxy]phosphinic acid

C48H75O13P (890.494503)


PG(PGD2/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGD2/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphinic acid

C48H75O13P (890.494503)


PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphinic acid

C48H75O13P (890.494503)


PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PGP(16:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

[(2S)-3-({[(2R)-3-(hexadecanoyloxy)-2-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(16:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/16:0)

[(2S)-3-({[(2R)-2-(hexadecanoyloxy)-3-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/16:0), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(16:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

[(2S)-3-({[(2R)-3-(hexadecanoyloxy)-2-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(16:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/16:0)

PGP(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/16:0)

C44H76O14P2 (890.4710056)


PGP(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/16:0), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(16:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

[(2S)-3-({[(2R)-3-(hexadecanoyloxy)-2-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(16:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/16:0)

[(2S)-3-({[(2R)-2-(hexadecanoyloxy)-3-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/16:0), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(16:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

[(2S)-3-({[(2R)-3-(hexadecanoyloxy)-2-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(16:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/16:0)

[(2S)-3-({[(2R)-2-(hexadecanoyloxy)-3-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/16:0), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(16:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

[(2S)-3-({[(2R)-3-(hexadecanoyloxy)-2-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(16:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/16:0)

[(2S)-3-({[(2R)-2-(hexadecanoyloxy)-3-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/16:0), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:1(11Z)/20:4(6E,8Z,11Z,14Z)+=O(5))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(11Z)-octadec-11-enoyloxy]-2-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:1(11Z)/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(11Z)/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of one 11Z-octadecenoyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(6E,8Z,11Z,14Z)+=O(5)/18:1(11Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(11Z)-octadec-11-enoyloxy]-3-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:4(6E,8Z,11Z,14Z)+=O(5)/18:1(11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(6E,8Z,11Z,14Z)+=O(5)/18:1(11Z)), in particular, consists of one chain of one 5-oxo-eicosatetraenoyl at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:1(11Z)/20:4(5Z,8Z,11Z,13E)+=O(15))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(11Z)-octadec-11-enoyloxy]-2-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:1(11Z)/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(11Z)/20:4(5Z,8Z,11Z,13E)+=O(15)), in particular, consists of one chain of one 11Z-octadecenoyl at the C-1 position and one chain of 15-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(5Z,8Z,11Z,13E)+=O(15)/18:1(11Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(11Z)-octadec-11-enoyloxy]-3-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:4(5Z,8Z,11Z,13E)+=O(15)/18:1(11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(5Z,8Z,11Z,13E)+=O(15)/18:1(11Z)), in particular, consists of one chain of one 15-oxo-eicosatetraenoyl at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:1(11Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-3-[(11Z)-octadec-11-enoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:1(11Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(11Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)), in particular, consists of one chain of one 11Z-octadecenoyl at the C-1 position and one chain of 18-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/18:1(11Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-2-[(11Z)-octadec-11-enoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/18:1(11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/18:1(11Z)), in particular, consists of one chain of one 18-hydroxyleicosapentaenoyl at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:1(11Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-3-[(11Z)-octadec-11-enoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:1(11Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(11Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)), in particular, consists of one chain of one 11Z-octadecenoyl at the C-1 position and one chain of 15-hydroxyleicosapentaenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/18:1(11Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-2-[(11Z)-octadec-11-enoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/18:1(11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/18:1(11Z)), in particular, consists of one chain of one 15-hydroxyleicosapentaenyl at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:1(11Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-3-[(11Z)-octadec-11-enoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:1(11Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(11Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)), in particular, consists of one chain of one 11Z-octadecenoyl at the C-1 position and one chain of 12-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/18:1(11Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-2-[(11Z)-octadec-11-enoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/18:1(11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/18:1(11Z)), in particular, consists of one chain of one 12-hydroxyleicosapentaenoyl at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:1(11Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-3-[(11Z)-octadec-11-enoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:1(11Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(11Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)), in particular, consists of one chain of one 11Z-octadecenoyl at the C-1 position and one chain of 5-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/18:1(11Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-2-[(11Z)-octadec-11-enoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/18:1(11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/18:1(11Z)), in particular, consists of one chain of one 5-hydroxyleicosapentaenoyl at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:1(9Z)/20:4(6E,8Z,11Z,14Z)+=O(5))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(9Z)-octadec-9-enoyloxy]-2-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:1(9Z)/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(9Z)/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of one 9Z-octadecenoyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(6E,8Z,11Z,14Z)+=O(5)/18:1(9Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(9Z)-octadec-9-enoyloxy]-3-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:4(6E,8Z,11Z,14Z)+=O(5)/18:1(9Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(6E,8Z,11Z,14Z)+=O(5)/18:1(9Z)), in particular, consists of one chain of one 5-oxo-eicosatetraenoyl at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:1(9Z)/20:4(5Z,8Z,11Z,13E)+=O(15))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(9Z)-octadec-9-enoyloxy]-2-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:1(9Z)/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(9Z)/20:4(5Z,8Z,11Z,13E)+=O(15)), in particular, consists of one chain of one 9Z-octadecenoyl at the C-1 position and one chain of 15-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(5Z,8Z,11Z,13E)+=O(15)/18:1(9Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(9Z)-octadec-9-enoyloxy]-3-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:4(5Z,8Z,11Z,13E)+=O(15)/18:1(9Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(5Z,8Z,11Z,13E)+=O(15)/18:1(9Z)), in particular, consists of one chain of one 15-oxo-eicosatetraenoyl at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/18:1(9Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/18:1(9Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/18:1(9Z)), in particular, consists of one chain of one 18-hydroxyleicosapentaenoyl at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-3-[(9Z)-octadec-9-enoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)), in particular, consists of one chain of one 9Z-octadecenoyl at the C-1 position and one chain of 15-hydroxyleicosapentaenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/18:1(9Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/18:1(9Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/18:1(9Z)), in particular, consists of one chain of one 15-hydroxyleicosapentaenyl at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:1(9Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

PGP(18:1(9Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C44H76O14P2 (890.4710056)


PGP(18:1(9Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(9Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)), in particular, consists of one chain of one 9Z-octadecenoyl at the C-1 position and one chain of 12-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/18:1(9Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/18:1(9Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/18:1(9Z)), in particular, consists of one chain of one 12-hydroxyleicosapentaenoyl at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:1(9Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-3-[(9Z)-octadec-9-enoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:1(9Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(9Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)), in particular, consists of one chain of one 9Z-octadecenoyl at the C-1 position and one chain of 5-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/18:1(9Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/18:1(9Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/18:1(9Z)), in particular, consists of one chain of one 5-hydroxyleicosapentaenoyl at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,11Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(9Z,11Z)-octadeca-9,11-dienoyloxy]-2-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:2(9Z,11Z)/20:3(5Z,8Z,11Z)-O(14R,15S)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,11Z)/20:3(5Z,8Z,11Z)-O(14R,15S)), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of 14,15-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(5Z,8Z,11Z)-O(14R,15S)/18:2(9Z,11Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(9Z,11Z)-octadeca-9,11-dienoyloxy]-3-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:3(5Z,8Z,11Z)-O(14R,15S)/18:2(9Z,11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(5Z,8Z,11Z)-O(14R,15S)/18:2(9Z,11Z)), in particular, consists of one chain of one 14,15-epoxyeicosatrienoyl at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,11Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}-3-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:2(9Z,11Z)/20:3(5Z,8Z,14Z)-O(11S,12R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,11Z)/20:3(5Z,8Z,14Z)-O(11S,12R)), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of 11,12-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(5Z,8Z,14Z)-O(11S,12R)/18:2(9Z,11Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}-2-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:3(5Z,8Z,14Z)-O(11S,12R)/18:2(9Z,11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(5Z,8Z,14Z)-O(11S,12R)/18:2(9Z,11Z)), in particular, consists of one chain of one 11,12-epoxyeicosatrienoyl at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,11Z)/20:3(5Z,11Z,14Z)-O(8,9))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(9Z,11Z)-octadeca-9,11-dienoyloxy]-2-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:2(9Z,11Z)/20:3(5Z,11Z,14Z)-O(8,9)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,11Z)/20:3(5Z,11Z,14Z)-O(8,9)), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of 8,9--epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(5Z,11Z,14Z)-O(8,9)/18:2(9Z,11Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(9Z,11Z)-octadeca-9,11-dienoyloxy]-3-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:3(5Z,11Z,14Z)-O(8,9)/18:2(9Z,11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(5Z,11Z,14Z)-O(8,9)/18:2(9Z,11Z)), in particular, consists of one chain of one 8,9--epoxyeicosatrienoyl at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,11Z)/20:3(8Z,11Z,14Z)-O(5,6))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(9Z,11Z)-octadeca-9,11-dienoyloxy]-2-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:2(9Z,11Z)/20:3(8Z,11Z,14Z)-O(5,6)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,11Z)/20:3(8Z,11Z,14Z)-O(5,6)), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of 5,6-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(8Z,11Z,14Z)-O(5,6)/18:2(9Z,11Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(9Z,11Z)-octadeca-9,11-dienoyloxy]-3-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:3(8Z,11Z,14Z)-O(5,6)/18:2(9Z,11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(8Z,11Z,14Z)-O(5,6)/18:2(9Z,11Z)), in particular, consists of one chain of one 5,6-epoxyeicosatrienoyl at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,11Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:2(9Z,11Z)/20:4(5Z,8Z,11Z,14Z)-OH(20)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,11Z)/20:4(5Z,8Z,11Z,14Z)-OH(20)), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of 20-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(5Z,8Z,11Z,14Z)-OH(20)/18:2(9Z,11Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:4(5Z,8Z,11Z,14Z)-OH(20)/18:2(9Z,11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(5Z,8Z,11Z,14Z)-OH(20)/18:2(9Z,11Z)), in particular, consists of one chain of one 20-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,11Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-3-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:2(9Z,11Z)/20:4(6E,8Z,11Z,14Z)-OH(5S)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,11Z)/20:4(6E,8Z,11Z,14Z)-OH(5S)), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of 5-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(6E,8Z,11Z,14Z)-OH(5S)/18:2(9Z,11Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-2-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:4(6E,8Z,11Z,14Z)-OH(5S)/18:2(9Z,11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(6E,8Z,11Z,14Z)-OH(5S)/18:2(9Z,11Z)), in particular, consists of one chain of one 5-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,11Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:2(9Z,11Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,11Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S)), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of 19-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(5Z,8Z,11Z,14Z)-OH(19S)/18:2(9Z,11Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:4(5Z,8Z,11Z,14Z)-OH(19S)/18:2(9Z,11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(5Z,8Z,11Z,14Z)-OH(19S)/18:2(9Z,11Z)), in particular, consists of one chain of one 19-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,11Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:2(9Z,11Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,11Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R)), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of 18-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(5Z,8Z,11Z,14Z)-OH(18R)/18:2(9Z,11Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:4(5Z,8Z,11Z,14Z)-OH(18R)/18:2(9Z,11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(5Z,8Z,11Z,14Z)-OH(18R)/18:2(9Z,11Z)), in particular, consists of one chain of one 18-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,11Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:2(9Z,11Z)/20:4(5Z,8Z,11Z,14Z)-OH(17)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,11Z)/20:4(5Z,8Z,11Z,14Z)-OH(17)), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of 17-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(5Z,8Z,11Z,14Z)-OH(17)/18:2(9Z,11Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:4(5Z,8Z,11Z,14Z)-OH(17)/18:2(9Z,11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(5Z,8Z,11Z,14Z)-OH(17)/18:2(9Z,11Z)), in particular, consists of one chain of one 17-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,11Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:2(9Z,11Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,11Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R)), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of 16-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(5Z,8Z,11Z,14Z)-OH(16R)/18:2(9Z,11Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:4(5Z,8Z,11Z,14Z)-OH(16R)/18:2(9Z,11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(5Z,8Z,11Z,14Z)-OH(16R)/18:2(9Z,11Z)), in particular, consists of one chain of one 16-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,11Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-3-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:2(9Z,11Z)/20:4(5Z,8Z,11Z,13E)-OH(15S)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,11Z)/20:4(5Z,8Z,11Z,13E)-OH(15S)), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of 15-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(5Z,8Z,11Z,13E)-OH(15S)/18:2(9Z,11Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-2-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:4(5Z,8Z,11Z,13E)-OH(15S)/18:2(9Z,11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(5Z,8Z,11Z,13E)-OH(15S)/18:2(9Z,11Z)), in particular, consists of one chain of one 15-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,11Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-3-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:2(9Z,11Z)/20:4(5Z,8Z,10E,14Z)-OH(12S)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,11Z)/20:4(5Z,8Z,10E,14Z)-OH(12S)), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of 12-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(5Z,8Z,10E,14Z)-OH(12S)/18:2(9Z,11Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-2-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:4(5Z,8Z,10E,14Z)-OH(12S)/18:2(9Z,11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(5Z,8Z,10E,14Z)-OH(12S)/18:2(9Z,11Z)), in particular, consists of one chain of one 12-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,11Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-3-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:2(9Z,11Z)/20:4(5E,8Z,12Z,14Z)-OH(11R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,11Z)/20:4(5E,8Z,12Z,14Z)-OH(11R)), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of 11-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(5E,8Z,12Z,14Z)-OH(11R)/18:2(9Z,11Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-2-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:4(5E,8Z,12Z,14Z)-OH(11R)/18:2(9Z,11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(5E,8Z,12Z,14Z)-OH(11R)/18:2(9Z,11Z)), in particular, consists of one chain of one 11-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,11Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-3-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:2(9Z,11Z)/20:4(5Z,7E,11Z,14Z)-OH(9)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,11Z)/20:4(5Z,7E,11Z,14Z)-OH(9)), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of 9-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(5Z,7E,11Z,14Z)-OH(9)/18:2(9Z,11Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-2-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:4(5Z,7E,11Z,14Z)-OH(9)/18:2(9Z,11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(5Z,7E,11Z,14Z)-OH(9)/18:2(9Z,11Z)), in particular, consists of one chain of one 9-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,12Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]-2-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:2(9Z,12Z)/20:3(5Z,8Z,11Z)-O(14R,15S)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,12Z)/20:3(5Z,8Z,11Z)-O(14R,15S)), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of 14,15-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(5Z,8Z,11Z)-O(14R,15S)/18:2(9Z,12Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]-3-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:3(5Z,8Z,11Z)-O(14R,15S)/18:2(9Z,12Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(5Z,8Z,11Z)-O(14R,15S)/18:2(9Z,12Z)), in particular, consists of one chain of one 14,15-epoxyeicosatrienoyl at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,12Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:2(9Z,12Z)/20:3(5Z,8Z,14Z)-O(11S,12R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,12Z)/20:3(5Z,8Z,14Z)-O(11S,12R)), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of 11,12-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(5Z,8Z,14Z)-O(11S,12R)/18:2(9Z,12Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:3(5Z,8Z,14Z)-O(11S,12R)/18:2(9Z,12Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(5Z,8Z,14Z)-O(11S,12R)/18:2(9Z,12Z)), in particular, consists of one chain of one 11,12-epoxyeicosatrienoyl at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,12Z)/20:3(5Z,11Z,14Z)-O(8,9))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]-2-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:2(9Z,12Z)/20:3(5Z,11Z,14Z)-O(8,9)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,12Z)/20:3(5Z,11Z,14Z)-O(8,9)), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of 8,9--epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(5Z,11Z,14Z)-O(8,9)/18:2(9Z,12Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]-3-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:3(5Z,11Z,14Z)-O(8,9)/18:2(9Z,12Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(5Z,11Z,14Z)-O(8,9)/18:2(9Z,12Z)), in particular, consists of one chain of one 8,9--epoxyeicosatrienoyl at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,12Z)/20:3(8Z,11Z,14Z)-O(5,6))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]-2-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:2(9Z,12Z)/20:3(8Z,11Z,14Z)-O(5,6)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,12Z)/20:3(8Z,11Z,14Z)-O(5,6)), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of 5,6-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(8Z,11Z,14Z)-O(5,6)/18:2(9Z,12Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]-3-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:3(8Z,11Z,14Z)-O(5,6)/18:2(9Z,12Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(8Z,11Z,14Z)-O(5,6)/18:2(9Z,12Z)), in particular, consists of one chain of one 5,6-epoxyeicosatrienoyl at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)-OH(20)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)-OH(20)), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of 20-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(5Z,8Z,11Z,14Z)-OH(20)/18:2(9Z,12Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:4(5Z,8Z,11Z,14Z)-OH(20)/18:2(9Z,12Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(5Z,8Z,11Z,14Z)-OH(20)/18:2(9Z,12Z)), in particular, consists of one chain of one 20-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,12Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:2(9Z,12Z)/20:4(6E,8Z,11Z,14Z)-OH(5S)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,12Z)/20:4(6E,8Z,11Z,14Z)-OH(5S)), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of 5-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(6E,8Z,11Z,14Z)-OH(5S)/18:2(9Z,12Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:4(6E,8Z,11Z,14Z)-OH(5S)/18:2(9Z,12Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(6E,8Z,11Z,14Z)-OH(5S)/18:2(9Z,12Z)), in particular, consists of one chain of one 5-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S)), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of 19-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(5Z,8Z,11Z,14Z)-OH(19S)/18:2(9Z,12Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:4(5Z,8Z,11Z,14Z)-OH(19S)/18:2(9Z,12Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(5Z,8Z,11Z,14Z)-OH(19S)/18:2(9Z,12Z)), in particular, consists of one chain of one 19-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R)), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of 18-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(5Z,8Z,11Z,14Z)-OH(18R)/18:2(9Z,12Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:4(5Z,8Z,11Z,14Z)-OH(18R)/18:2(9Z,12Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(5Z,8Z,11Z,14Z)-OH(18R)/18:2(9Z,12Z)), in particular, consists of one chain of one 18-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)-OH(17)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)-OH(17)), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of 17-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(5Z,8Z,11Z,14Z)-OH(17)/18:2(9Z,12Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:4(5Z,8Z,11Z,14Z)-OH(17)/18:2(9Z,12Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(5Z,8Z,11Z,14Z)-OH(17)/18:2(9Z,12Z)), in particular, consists of one chain of one 17-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R)), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of 16-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(5Z,8Z,11Z,14Z)-OH(16R)/18:2(9Z,12Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:4(5Z,8Z,11Z,14Z)-OH(16R)/18:2(9Z,12Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(5Z,8Z,11Z,14Z)-OH(16R)/18:2(9Z,12Z)), in particular, consists of one chain of one 16-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,13E)-OH(15S)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,13E)-OH(15S)), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of 15-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(5Z,8Z,11Z,13E)-OH(15S)/18:2(9Z,12Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:4(5Z,8Z,11Z,13E)-OH(15S)/18:2(9Z,12Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(5Z,8Z,11Z,13E)-OH(15S)/18:2(9Z,12Z)), in particular, consists of one chain of one 15-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,12Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:2(9Z,12Z)/20:4(5Z,8Z,10E,14Z)-OH(12S)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,12Z)/20:4(5Z,8Z,10E,14Z)-OH(12S)), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of 12-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(5Z,8Z,10E,14Z)-OH(12S)/18:2(9Z,12Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:4(5Z,8Z,10E,14Z)-OH(12S)/18:2(9Z,12Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(5Z,8Z,10E,14Z)-OH(12S)/18:2(9Z,12Z)), in particular, consists of one chain of one 12-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,12Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:2(9Z,12Z)/20:4(5E,8Z,12Z,14Z)-OH(11R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,12Z)/20:4(5E,8Z,12Z,14Z)-OH(11R)), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of 11-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(5E,8Z,12Z,14Z)-OH(11R)/18:2(9Z,12Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:4(5E,8Z,12Z,14Z)-OH(11R)/18:2(9Z,12Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(5E,8Z,12Z,14Z)-OH(11R)/18:2(9Z,12Z)), in particular, consists of one chain of one 11-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,12Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:2(9Z,12Z)/20:4(5Z,7E,11Z,14Z)-OH(9)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,12Z)/20:4(5Z,7E,11Z,14Z)-OH(9)), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of 9-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(5Z,7E,11Z,14Z)-OH(9)/18:2(9Z,12Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:4(5Z,7E,11Z,14Z)-OH(9)/18:2(9Z,12Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(5Z,7E,11Z,14Z)-OH(9)/18:2(9Z,12Z)), in particular, consists of one chain of one 9-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:3(6Z,9Z,12Z)/20:3(6,8,11)-OH(5))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:3(6Z,9Z,12Z)/20:3(6,8,11)-OH(5)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:3(6Z,9Z,12Z)/20:3(6,8,11)-OH(5)), in particular, consists of one chain of one 6Z,9Z,12Z-octadecatrienoyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(6,8,11)-OH(5)/18:3(6Z,9Z,12Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:3(6,8,11)-OH(5)/18:3(6Z,9Z,12Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(6,8,11)-OH(5)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of one 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of 6Z,9Z,12Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:3(9Z,12Z,15Z)/20:3(6,8,11)-OH(5))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:3(9Z,12Z,15Z)/20:3(6,8,11)-OH(5)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:3(9Z,12Z,15Z)/20:3(6,8,11)-OH(5)), in particular, consists of one chain of one 9Z,12Z,15Z-octadecatrienoyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(6,8,11)-OH(5)/18:3(9Z,12Z,15Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:3(6,8,11)-OH(5)/18:3(9Z,12Z,15Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(6,8,11)-OH(5)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of one 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of 9Z,12Z,15Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(5Z,8Z,11Z)/18:2(10E,12Z)+=O(9))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:3(5Z,8Z,11Z)/18:2(10E,12Z)+=O(9)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(5Z,8Z,11Z)/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one 5Z,8Z,11Z-eicosatrienoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(10E,12Z)+=O(9)/20:3(5Z,8Z,11Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:2(10E,12Z)+=O(9)/20:3(5Z,8Z,11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(10E,12Z)+=O(9)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of 5Z,8Z,11Z-eicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(5Z,8Z,11Z)/18:2(9Z,11E)+=O(13))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:3(5Z,8Z,11Z)/18:2(9Z,11E)+=O(13)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(5Z,8Z,11Z)/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one 5Z,8Z,11Z-eicosatrienoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,11E)+=O(13)/20:3(5Z,8Z,11Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:2(9Z,11E)+=O(13)/20:3(5Z,8Z,11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,11E)+=O(13)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of 5Z,8Z,11Z-eicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(5Z,8Z,11Z)/18:3(10,12,15)-OH(9))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:3(5Z,8Z,11Z)/18:3(10,12,15)-OH(9)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(5Z,8Z,11Z)/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one 5Z,8Z,11Z-eicosatrienoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:3(10,12,15)-OH(9)/20:3(5Z,8Z,11Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:3(10,12,15)-OH(9)/20:3(5Z,8Z,11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:3(10,12,15)-OH(9)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of 5Z,8Z,11Z-eicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:3(9,11,15)-OH(13)/20:3(5Z,8Z,11Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:3(9,11,15)-OH(13)/20:3(5Z,8Z,11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:3(9,11,15)-OH(13)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of one 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of 5Z,8Z,11Z-eicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(8Z,11Z,14Z)/18:2(10E,12Z)+=O(9))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:3(8Z,11Z,14Z)/18:2(10E,12Z)+=O(9)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(8Z,11Z,14Z)/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one 8Z,11Z,14Z-eicosatrienoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(10E,12Z)+=O(9)/20:3(8Z,11Z,14Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:2(10E,12Z)+=O(9)/20:3(8Z,11Z,14Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(10E,12Z)+=O(9)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of 8Z,11Z,14Z-eicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(8Z,11Z,14Z)/18:2(9Z,11E)+=O(13))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:3(8Z,11Z,14Z)/18:2(9Z,11E)+=O(13)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(8Z,11Z,14Z)/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one 8Z,11Z,14Z-eicosatrienoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,11E)+=O(13)/20:3(8Z,11Z,14Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:2(9Z,11E)+=O(13)/20:3(8Z,11Z,14Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,11E)+=O(13)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of 8Z,11Z,14Z-eicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(8Z,11Z,14Z)/18:3(10,12,15)-OH(9))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:3(8Z,11Z,14Z)/18:3(10,12,15)-OH(9)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(8Z,11Z,14Z)/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one 8Z,11Z,14Z-eicosatrienoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:3(10,12,15)-OH(9)/20:3(8Z,11Z,14Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:3(10,12,15)-OH(9)/20:3(8Z,11Z,14Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:3(10,12,15)-OH(9)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of 8Z,11Z,14Z-eicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(8Z,11Z,14Z)/18:3(9,11,15)-OH(13))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:3(8Z,11Z,14Z)/18:3(9,11,15)-OH(13)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(8Z,11Z,14Z)/18:3(9,11,15)-OH(13)), in particular, consists of one chain of one 8Z,11Z,14Z-eicosatrienoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:3(9,11,15)-OH(13)/20:3(8Z,11Z,14Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:3(9,11,15)-OH(13)/20:3(8Z,11Z,14Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:3(9,11,15)-OH(13)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of one 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of 8Z,11Z,14Z-eicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(5Z,8Z,11Z,14Z)/18:1(12Z)-O(9S,10R))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:4(5Z,8Z,11Z,14Z)/18:1(12Z)-O(9S,10R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(5Z,8Z,11Z,14Z)/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:1(12Z)-O(9S,10R)/20:4(5Z,8Z,11Z,14Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:1(12Z)-O(9S,10R)/20:4(5Z,8Z,11Z,14Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(12Z)-O(9S,10R)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(5Z,8Z,11Z,14Z)/18:1(9Z)-O(12,13))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:4(5Z,8Z,11Z,14Z)/18:1(9Z)-O(12,13)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(5Z,8Z,11Z,14Z)/18:1(9Z)-O(12,13)), in particular, consists of one chain of one 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:1(9Z)-O(12,13)/20:4(5Z,8Z,11Z,14Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:1(9Z)-O(12,13)/20:4(5Z,8Z,11Z,14Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(9Z)-O(12,13)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(8Z,11Z,14Z,17Z)/18:1(12Z)-O(9S,10R))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:4(8Z,11Z,14Z,17Z)/18:1(12Z)-O(9S,10R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(8Z,11Z,14Z,17Z)/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:1(12Z)-O(9S,10R)/20:4(8Z,11Z,14Z,17Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:1(12Z)-O(9S,10R)/20:4(8Z,11Z,14Z,17Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(12Z)-O(9S,10R)/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(8Z,11Z,14Z,17Z)/18:1(9Z)-O(12,13))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(20:4(8Z,11Z,14Z,17Z)/18:1(9Z)-O(12,13)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(8Z,11Z,14Z,17Z)/18:1(9Z)-O(12,13)), in particular, consists of one chain of one 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:1(9Z)-O(12,13)/20:4(8Z,11Z,14Z,17Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(18:1(9Z)-O(12,13)/20:4(8Z,11Z,14Z,17Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(9Z)-O(12,13)/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-16:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-3-[(14-methylpentadecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(i-16:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-16:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one 14-methylpentadecanoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-16:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-2-[(14-methylpentadecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-16:0), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-16:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-3-[(14-methylpentadecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(i-16:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-16:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one 14-methylpentadecanoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-16:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-2-[(14-methylpentadecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-16:0), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-16:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-3-[(14-methylpentadecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(i-16:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-16:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one 14-methylpentadecanoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-16:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-2-[(14-methylpentadecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-16:0), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-16:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-3-[(14-methylpentadecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(i-16:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-16:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one 14-methylpentadecanoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-16:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-2-[(14-methylpentadecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-16:0), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-16:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(14-methylpentadecanoyl)oxy]-2-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(i-16:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-16:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one 14-methylpentadecanoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-16:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(14-methylpentadecanoyl)oxy]-3-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H76O14P2 (890.4710056)


PGP(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-16:0), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PI(16:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

[(2R)-2-{[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-3-(hexadecanoyloxy)propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C45H79O15P (890.5156314)


PI(16:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(16:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of hexadecanoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/16:0)

[(2R)-3-{[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-2-(hexadecanoyloxy)propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C45H79O15P (890.5156314)


PI(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/16:0) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/16:0), in particular, consists of one chain of Leukotriene B4 at the C-1 position and one chain of hexadecanoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(16:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

[(2R)-2-{[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-3-(hexadecanoyloxy)propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C45H79O15P (890.5156314)


PI(16:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(16:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of hexadecanoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/16:0)

[(2R)-3-{[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-2-(hexadecanoyloxy)propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C45H79O15P (890.5156314)


PI(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/16:0) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/16:0), in particular, consists of one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(16:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

[(2R)-2-{[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-3-(hexadecanoyloxy)propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C45H79O15P (890.5156314)


PI(16:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(16:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of hexadecanoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/16:0)

[(2R)-3-{[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-2-(hexadecanoyloxy)propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C45H79O15P (890.5156314)


PI(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/16:0) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/16:0), in particular, consists of one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(16:1(9Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-[(9Z)-hexadec-9-enoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C45H79O15P (890.5156314)


PI(16:1(9Z)/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(16:1(9Z)/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of 9Z-hexadecenoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(20:3(8Z,11Z,14Z)-2OH(5,6)/16:1(9Z))

[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-[(9Z)-hexadec-9-enoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C45H79O15P (890.5156314)


PI(20:3(8Z,11Z,14Z)-2OH(5,6)/16:1(9Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(20:3(8Z,11Z,14Z)-2OH(5,6)/16:1(9Z)), in particular, consists of one chain of 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 9Z-hexadecenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(18:3(6Z,9Z,12Z)/18:1(12Z)-2OH(9,10))

[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C45H79O15P (890.5156314)


PI(18:3(6Z,9Z,12Z)/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:3(6Z,9Z,12Z)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of 6Z,9Z,12Z-octadecatrienoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(18:1(12Z)-2OH(9,10)/18:3(6Z,9Z,12Z))

[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C45H79O15P (890.5156314)


PI(18:1(12Z)-2OH(9,10)/18:3(6Z,9Z,12Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:1(12Z)-2OH(9,10)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 6Z,9Z,12Z-octadecatrienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(18:3(9Z,12Z,15Z)/18:1(12Z)-2OH(9,10))

[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C45H79O15P (890.5156314)


PI(18:3(9Z,12Z,15Z)/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:3(9Z,12Z,15Z)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of 9Z,12Z,15Z-octadecatrienoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(18:1(12Z)-2OH(9,10)/18:3(9Z,12Z,15Z))

[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C45H79O15P (890.5156314)


PI(18:1(12Z)-2OH(9,10)/18:3(9Z,12Z,15Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:1(12Z)-2OH(9,10)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 9Z,12Z,15Z-octadecatrienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PS(14:0/LTE4)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-{[(2R)-1-({[(2S)-2-amino-2-carboxyethoxy](hydroxy)phosphoryl}oxy)-3-(tetradecanoyloxy)propan-2-yl]oxy}-3-oxopropyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C43H75N2O13PS (890.4727230000001)


PS(14:0/LTE4) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(14:0/LTE4), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of Leukotriene E4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(LTE4/14:0)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-[(2R)-3-({[(2S)-2-amino-2-carboxyethoxy](hydroxy)phosphoryl}oxy)-2-(tetradecanoyloxy)propoxy]-3-oxopropyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C43H75N2O13PS (890.4727230000001)


PS(LTE4/14:0) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(LTE4/14:0), in particular, consists of one chain of one Leukotriene E4 at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   
   

Curassavioside A1

Curassavioside A1

C47H70O16 (890.466362)


   
   
   

brachystemin E|cyclo(Pro-Leu-Ile-Gly-Pro-Ile-Trp-Asn)

brachystemin E|cyclo(Pro-Leu-Ile-Gly-Pro-Ile-Trp-Asn)

C45H66N10O9 (890.5013986000001)


   

26-O-beta-D-glucopyranosylfurostane-3beta,26-diol-3-O-beta-D-xylopyranosyl(1->4)-beta-D-glucopyranoside

26-O-beta-D-glucopyranosylfurostane-3beta,26-diol-3-O-beta-D-xylopyranosyl(1->4)-beta-D-glucopyranoside

C44H74O18 (890.4874904000001)


   

(6S,13S)-13-beta-D-fucopyranosyloxy-6-2)-4)-alpha-L-rhamnopyranosyloxy>>-cleroda-3,14-diene|(6S,13S)-13-beta-D-fucopyranosyloxy-6-{beta-D-quinovopyranosyl-(1[*]2)-[beta-D-fucopyranosyl-(1[*]4)-alpha-L-rhamnopyranosyloxy]}-cleroda-3,14-diene

(6S,13S)-13-beta-D-fucopyranosyloxy-6-2)-4)-alpha-L-rhamnopyranosyloxy>>-cleroda-3,14-diene|(6S,13S)-13-beta-D-fucopyranosyloxy-6-{beta-D-quinovopyranosyl-(1[*]2)-[beta-D-fucopyranosyl-(1[*]4)-alpha-L-rhamnopyranosyloxy]}-cleroda-3,14-diene

C44H74O18 (890.4874904000001)


   
   

26-O-beta-D-glucopyransoyl-(25S)-5beta-furostane-3beta,22xi,26-triol 3-O-[beta-D-xylopyranosyl (1->6)]-beta-D-glucopyranside

26-O-beta-D-glucopyransoyl-(25S)-5beta-furostane-3beta,22xi,26-triol 3-O-[beta-D-xylopyranosyl (1->6)]-beta-D-glucopyranside

C44H74O18 (890.4874904000001)


   
   

1,2-Dipalmitoyl phosphatidylinositol 5-phosphate

1,2-Dipalmitoyl phosphatidylinositol 5-phosphate

C41H80O16P2 (890.4921340000001)


   

1,2-Dipalmitoyl phosphatidylinositol 4-phosphate ammonium salt

1,2-Dipalmitoyl phosphatidylinositol 4-phosphate ammonium salt

C41H80O16P2 (890.4921340000001)


   

tetrahydrogeranylgeranyl chlorophyll a

tetrahydrogeranylgeranyl chlorophyll a

C55H70MgN4O5 (890.519643)


   

dipalmitoyl phosphatidylinositol 3-phosphate

dipalmitoyl phosphatidylinositol 3-phosphate

C41H80O16P2 (890.4921340000001)


   

PtdIns-(3)-P1 (1,2-dipalmitoyl)

1-(1,2-dihexadecanoylphosphatidyl)inositol-3-phosphate, diammonium salt

C41H80O16P2 (890.4921340000001)


   

PtdIns-(4)-P1 (1,2-dipalmitoyl)

1-(1,2-dihexadecanoylphosphatidyl)inositol-4-phosphate, diammonium salt

C41H80O16P2 (890.4921340000001)


   

PtdIns-(5)-P1 (1,2-dipalmitoyl)

1-(1,2-dihexadecanoylphosphatidyl)inositol-5-phosphate, diammonium salt

C41H80O16P2 (890.4921340000001)


   

CHLOROPHYLL A, DIVINYL-(SH)

CHLOROPHYLL A, DIVINYL-(SH)

C55H70MgN4O5 (890.519643)


   

[(2R)-2-hexadecanoyloxy-3-[hydroxy-[(1S,2R,3S,4S,5R,6R)-2,3,4,6-tetrahydroxy-5-phosphonooxycyclohexyl]oxyphosphoryl]oxypropyl] hexadecanoate

[(2R)-2-hexadecanoyloxy-3-[hydroxy-[(1S,2R,3S,4S,5R,6R)-2,3,4,6-tetrahydroxy-5-phosphonooxycyclohexyl]oxyphosphoryl]oxypropyl] hexadecanoate

C41H80O16P2 (890.4921340000001)


   

1,2-dipalmitoyl-sn-glycero-3-phospho-(1D-myo-inositol-5-phosphate)

1,2-dipalmitoyl-sn-glycero-3-phospho-(1D-myo-inositol-5-phosphate)

C41H80O16P2 (890.4921340000001)


A 1-phosphatidyl-1D-myo-inositol 5-phosphate in which both phosphatidyl acyl groups are specified as palmitoyl (hexadecanoyl).

   

1,2-Dihexadecanoyl-sn-glycero-3-phospho-(1D-myo-inositol-4-phosphate)

1,2-Dihexadecanoyl-sn-glycero-3-phospho-(1D-myo-inositol-4-phosphate)

C41H80O16P2 (890.4921340000001)


A 1-phosphatidyl-1D-myo-inositol 4-phosphate in which the phosphatidyl acyl groups at positions 1 and 2 are both specified as hexadecanoyl (palmitoyl).

   
   

3-O-[[(S)-2,3-Bis(palmitoyloxy)propoxy]phosphonyl]-L-myo-inositol 6-phosphoric acid

3-O-[[(S)-2,3-Bis(palmitoyloxy)propoxy]phosphonyl]-L-myo-inositol 6-phosphoric acid

C41H80O16P2 (890.4921340000001)


   

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/PGE2)

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/PGE2)

C48H75O13P (890.494503)


   

PG(PGE2/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

PG(PGE2/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

C48H75O13P (890.494503)


   

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/PGD2)

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/PGD2)

C48H75O13P (890.494503)


   

PG(PGD2/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

PG(PGD2/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

C48H75O13P (890.494503)


   

PGP(16:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

PGP(16:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

C44H76O14P2 (890.4710056)


   

PGP(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/16:0)

PGP(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/16:0)

C44H76O14P2 (890.4710056)


   

PGP(16:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

PGP(16:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

C44H76O14P2 (890.4710056)


   

PGP(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/16:0)

PGP(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/16:0)

C44H76O14P2 (890.4710056)


   

PGP(18:1(11Z)/20:4(6E,8Z,11Z,14Z)+=O(5))

PGP(18:1(11Z)/20:4(6E,8Z,11Z,14Z)+=O(5))

C44H76O14P2 (890.4710056)


   

PGP(20:4(6E,8Z,11Z,14Z)+=O(5)/18:1(11Z))

PGP(20:4(6E,8Z,11Z,14Z)+=O(5)/18:1(11Z))

C44H76O14P2 (890.4710056)


   

PGP(18:1(11Z)/20:4(5Z,8Z,11Z,13E)+=O(15))

PGP(18:1(11Z)/20:4(5Z,8Z,11Z,13E)+=O(15))

C44H76O14P2 (890.4710056)


   

PGP(20:4(5Z,8Z,11Z,13E)+=O(15)/18:1(11Z))

PGP(20:4(5Z,8Z,11Z,13E)+=O(15)/18:1(11Z))

C44H76O14P2 (890.4710056)


   

PGP(18:1(9Z)/20:4(6E,8Z,11Z,14Z)+=O(5))

PGP(18:1(9Z)/20:4(6E,8Z,11Z,14Z)+=O(5))

C44H76O14P2 (890.4710056)


   

PGP(20:4(6E,8Z,11Z,14Z)+=O(5)/18:1(9Z))

PGP(20:4(6E,8Z,11Z,14Z)+=O(5)/18:1(9Z))

C44H76O14P2 (890.4710056)


   

PGP(18:1(9Z)/20:4(5Z,8Z,11Z,13E)+=O(15))

PGP(18:1(9Z)/20:4(5Z,8Z,11Z,13E)+=O(15))

C44H76O14P2 (890.4710056)


   

PGP(20:4(5Z,8Z,11Z,13E)+=O(15)/18:1(9Z))

PGP(20:4(5Z,8Z,11Z,13E)+=O(15)/18:1(9Z))

C44H76O14P2 (890.4710056)


   

PGP(18:1(9Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

PGP(18:1(9Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C44H76O14P2 (890.4710056)


   

PGP(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/18:1(9Z))

PGP(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/18:1(9Z))

C44H76O14P2 (890.4710056)


   

PGP(18:2(9Z,11Z)/20:3(5Z,11Z,14Z)-O(8,9))

PGP(18:2(9Z,11Z)/20:3(5Z,11Z,14Z)-O(8,9))

C44H76O14P2 (890.4710056)


   

PGP(20:3(5Z,11Z,14Z)-O(8,9)/18:2(9Z,11Z))

PGP(20:3(5Z,11Z,14Z)-O(8,9)/18:2(9Z,11Z))

C44H76O14P2 (890.4710056)


   

PGP(18:2(9Z,11Z)/20:3(8Z,11Z,14Z)-O(5,6))

PGP(18:2(9Z,11Z)/20:3(8Z,11Z,14Z)-O(5,6))

C44H76O14P2 (890.4710056)


   

PGP(20:3(8Z,11Z,14Z)-O(5,6)/18:2(9Z,11Z))

PGP(20:3(8Z,11Z,14Z)-O(5,6)/18:2(9Z,11Z))

C44H76O14P2 (890.4710056)


   

PGP(18:2(9Z,11Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

PGP(18:2(9Z,11Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

C44H76O14P2 (890.4710056)


   

PGP(20:4(6E,8Z,11Z,14Z)-OH(5S)/18:2(9Z,11Z))

PGP(20:4(6E,8Z,11Z,14Z)-OH(5S)/18:2(9Z,11Z))

C44H76O14P2 (890.4710056)


   

PGP(18:2(9Z,11Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

PGP(18:2(9Z,11Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

C44H76O14P2 (890.4710056)


   

PGP(20:4(5Z,7E,11Z,14Z)-OH(9)/18:2(9Z,11Z))

PGP(20:4(5Z,7E,11Z,14Z)-OH(9)/18:2(9Z,11Z))

C44H76O14P2 (890.4710056)


   

PGP(18:2(9Z,12Z)/20:3(5Z,11Z,14Z)-O(8,9))

PGP(18:2(9Z,12Z)/20:3(5Z,11Z,14Z)-O(8,9))

C44H76O14P2 (890.4710056)


   

PGP(20:3(5Z,11Z,14Z)-O(8,9)/18:2(9Z,12Z))

PGP(20:3(5Z,11Z,14Z)-O(8,9)/18:2(9Z,12Z))

C44H76O14P2 (890.4710056)


   

PGP(18:2(9Z,12Z)/20:3(8Z,11Z,14Z)-O(5,6))

PGP(18:2(9Z,12Z)/20:3(8Z,11Z,14Z)-O(5,6))

C44H76O14P2 (890.4710056)


   

PGP(20:3(8Z,11Z,14Z)-O(5,6)/18:2(9Z,12Z))

PGP(20:3(8Z,11Z,14Z)-O(5,6)/18:2(9Z,12Z))

C44H76O14P2 (890.4710056)


   

PGP(18:2(9Z,12Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

PGP(18:2(9Z,12Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

C44H76O14P2 (890.4710056)


   

PGP(20:4(6E,8Z,11Z,14Z)-OH(5S)/18:2(9Z,12Z))

PGP(20:4(6E,8Z,11Z,14Z)-OH(5S)/18:2(9Z,12Z))

C44H76O14P2 (890.4710056)


   

PGP(18:2(9Z,12Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

PGP(18:2(9Z,12Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

C44H76O14P2 (890.4710056)


   

PGP(20:4(5Z,7E,11Z,14Z)-OH(9)/18:2(9Z,12Z))

PGP(20:4(5Z,7E,11Z,14Z)-OH(9)/18:2(9Z,12Z))

C44H76O14P2 (890.4710056)


   

PGP(18:3(6Z,9Z,12Z)/20:3(6,8,11)-OH(5))

PGP(18:3(6Z,9Z,12Z)/20:3(6,8,11)-OH(5))

C44H76O14P2 (890.4710056)


   

PGP(20:3(6,8,11)-OH(5)/18:3(6Z,9Z,12Z))

PGP(20:3(6,8,11)-OH(5)/18:3(6Z,9Z,12Z))

C44H76O14P2 (890.4710056)


   

PGP(20:3(5Z,8Z,11Z)/18:2(10E,12Z)+=O(9))

PGP(20:3(5Z,8Z,11Z)/18:2(10E,12Z)+=O(9))

C44H76O14P2 (890.4710056)


   

PGP(18:2(10E,12Z)+=O(9)/20:3(5Z,8Z,11Z))

PGP(18:2(10E,12Z)+=O(9)/20:3(5Z,8Z,11Z))

C44H76O14P2 (890.4710056)


   

PGP(20:3(5Z,8Z,11Z)/18:2(9Z,11E)+=O(13))

PGP(20:3(5Z,8Z,11Z)/18:2(9Z,11E)+=O(13))

C44H76O14P2 (890.4710056)


   

PGP(18:2(9Z,11E)+=O(13)/20:3(5Z,8Z,11Z))

PGP(18:2(9Z,11E)+=O(13)/20:3(5Z,8Z,11Z))

C44H76O14P2 (890.4710056)


   

PGP(20:3(8Z,11Z,14Z)/18:2(10E,12Z)+=O(9))

PGP(20:3(8Z,11Z,14Z)/18:2(10E,12Z)+=O(9))

C44H76O14P2 (890.4710056)


   

PGP(18:2(10E,12Z)+=O(9)/20:3(8Z,11Z,14Z))

PGP(18:2(10E,12Z)+=O(9)/20:3(8Z,11Z,14Z))

C44H76O14P2 (890.4710056)


   

PGP(20:3(8Z,11Z,14Z)/18:2(9Z,11E)+=O(13))

PGP(20:3(8Z,11Z,14Z)/18:2(9Z,11E)+=O(13))

C44H76O14P2 (890.4710056)


   

PGP(18:2(9Z,11E)+=O(13)/20:3(8Z,11Z,14Z))

PGP(18:2(9Z,11E)+=O(13)/20:3(8Z,11Z,14Z))

C44H76O14P2 (890.4710056)


   

PGP(16:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

PGP(16:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

C44H76O14P2 (890.4710056)


   

PGP(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/16:0)

PGP(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/16:0)

C44H76O14P2 (890.4710056)


   

PGP(16:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

PGP(16:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

C44H76O14P2 (890.4710056)


   

PGP(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/16:0)

PGP(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/16:0)

C44H76O14P2 (890.4710056)


   

PGP(16:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

PGP(16:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

C44H76O14P2 (890.4710056)


   

PGP(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/16:0)

PGP(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/16:0)

C44H76O14P2 (890.4710056)


   

PGP(18:1(11Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

PGP(18:1(11Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C44H76O14P2 (890.4710056)


   

PGP(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/18:1(11Z))

PGP(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/18:1(11Z))

C44H76O14P2 (890.4710056)


   

PGP(18:1(11Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

PGP(18:1(11Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C44H76O14P2 (890.4710056)


   

PGP(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/18:1(11Z))

PGP(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/18:1(11Z))

C44H76O14P2 (890.4710056)


   

PGP(18:1(11Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

PGP(18:1(11Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C44H76O14P2 (890.4710056)


   

PGP(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/18:1(11Z))

PGP(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/18:1(11Z))

C44H76O14P2 (890.4710056)


   

PGP(18:1(11Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

PGP(18:1(11Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C44H76O14P2 (890.4710056)


   

PGP(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/18:1(11Z))

PGP(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/18:1(11Z))

C44H76O14P2 (890.4710056)


   

PGP(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/18:1(9Z))

PGP(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/18:1(9Z))

C44H76O14P2 (890.4710056)


   

PGP(18:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

PGP(18:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C44H76O14P2 (890.4710056)


   

PGP(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/18:1(9Z))

PGP(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/18:1(9Z))

C44H76O14P2 (890.4710056)


   

PGP(18:1(9Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

PGP(18:1(9Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C44H76O14P2 (890.4710056)


   

PGP(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/18:1(9Z))

PGP(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/18:1(9Z))

C44H76O14P2 (890.4710056)


   

PGP(18:2(9Z,11Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

PGP(18:2(9Z,11Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

C44H76O14P2 (890.4710056)


   

PGP(20:3(5Z,8Z,11Z)-O(14R,15S)/18:2(9Z,11Z))

PGP(20:3(5Z,8Z,11Z)-O(14R,15S)/18:2(9Z,11Z))

C44H76O14P2 (890.4710056)


   

PGP(18:2(9Z,11Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

PGP(18:2(9Z,11Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

C44H76O14P2 (890.4710056)


   

PGP(20:3(5Z,8Z,14Z)-O(11S,12R)/18:2(9Z,11Z))

PGP(20:3(5Z,8Z,14Z)-O(11S,12R)/18:2(9Z,11Z))

C44H76O14P2 (890.4710056)


   

PGP(18:2(9Z,11Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

PGP(18:2(9Z,11Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

C44H76O14P2 (890.4710056)


   

PGP(20:4(5Z,8Z,11Z,14Z)-OH(20)/18:2(9Z,11Z))

PGP(20:4(5Z,8Z,11Z,14Z)-OH(20)/18:2(9Z,11Z))

C44H76O14P2 (890.4710056)


   

PGP(18:2(9Z,11Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

PGP(18:2(9Z,11Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C44H76O14P2 (890.4710056)


   

PGP(20:4(5Z,8Z,11Z,14Z)-OH(19S)/18:2(9Z,11Z))

PGP(20:4(5Z,8Z,11Z,14Z)-OH(19S)/18:2(9Z,11Z))

C44H76O14P2 (890.4710056)


   

PGP(18:2(9Z,11Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

PGP(18:2(9Z,11Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C44H76O14P2 (890.4710056)


   

PGP(20:4(5Z,8Z,11Z,14Z)-OH(18R)/18:2(9Z,11Z))

PGP(20:4(5Z,8Z,11Z,14Z)-OH(18R)/18:2(9Z,11Z))

C44H76O14P2 (890.4710056)


   

PGP(18:2(9Z,11Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

PGP(18:2(9Z,11Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

C44H76O14P2 (890.4710056)


   

PGP(20:4(5Z,8Z,11Z,14Z)-OH(17)/18:2(9Z,11Z))

PGP(20:4(5Z,8Z,11Z,14Z)-OH(17)/18:2(9Z,11Z))

C44H76O14P2 (890.4710056)


   

PGP(18:2(9Z,11Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

PGP(18:2(9Z,11Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C44H76O14P2 (890.4710056)


   

PGP(20:4(5Z,8Z,11Z,14Z)-OH(16R)/18:2(9Z,11Z))

PGP(20:4(5Z,8Z,11Z,14Z)-OH(16R)/18:2(9Z,11Z))

C44H76O14P2 (890.4710056)


   

PGP(18:2(9Z,11Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

PGP(18:2(9Z,11Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

C44H76O14P2 (890.4710056)


   

PGP(20:4(5Z,8Z,11Z,13E)-OH(15S)/18:2(9Z,11Z))

PGP(20:4(5Z,8Z,11Z,13E)-OH(15S)/18:2(9Z,11Z))

C44H76O14P2 (890.4710056)


   

PGP(18:2(9Z,11Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

PGP(18:2(9Z,11Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

C44H76O14P2 (890.4710056)


   

PGP(20:4(5Z,8Z,10E,14Z)-OH(12S)/18:2(9Z,11Z))

PGP(20:4(5Z,8Z,10E,14Z)-OH(12S)/18:2(9Z,11Z))

C44H76O14P2 (890.4710056)


   

PGP(18:2(9Z,11Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

PGP(18:2(9Z,11Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

C44H76O14P2 (890.4710056)


   

PGP(20:4(5E,8Z,12Z,14Z)-OH(11R)/18:2(9Z,11Z))

PGP(20:4(5E,8Z,12Z,14Z)-OH(11R)/18:2(9Z,11Z))

C44H76O14P2 (890.4710056)


   

PGP(18:2(9Z,12Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

PGP(18:2(9Z,12Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

C44H76O14P2 (890.4710056)


   

PGP(20:3(5Z,8Z,11Z)-O(14R,15S)/18:2(9Z,12Z))

PGP(20:3(5Z,8Z,11Z)-O(14R,15S)/18:2(9Z,12Z))

C44H76O14P2 (890.4710056)


   

PGP(18:2(9Z,12Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

PGP(18:2(9Z,12Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

C44H76O14P2 (890.4710056)


   

PGP(20:3(5Z,8Z,14Z)-O(11S,12R)/18:2(9Z,12Z))

PGP(20:3(5Z,8Z,14Z)-O(11S,12R)/18:2(9Z,12Z))

C44H76O14P2 (890.4710056)


   

PGP(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

PGP(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

C44H76O14P2 (890.4710056)


   

PGP(20:4(5Z,8Z,11Z,14Z)-OH(20)/18:2(9Z,12Z))

PGP(20:4(5Z,8Z,11Z,14Z)-OH(20)/18:2(9Z,12Z))

C44H76O14P2 (890.4710056)


   

PGP(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

PGP(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C44H76O14P2 (890.4710056)


   

PGP(20:4(5Z,8Z,11Z,14Z)-OH(19S)/18:2(9Z,12Z))

PGP(20:4(5Z,8Z,11Z,14Z)-OH(19S)/18:2(9Z,12Z))

C44H76O14P2 (890.4710056)


   

PGP(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

PGP(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C44H76O14P2 (890.4710056)


   

PGP(20:4(5Z,8Z,11Z,14Z)-OH(18R)/18:2(9Z,12Z))

PGP(20:4(5Z,8Z,11Z,14Z)-OH(18R)/18:2(9Z,12Z))

C44H76O14P2 (890.4710056)


   

PGP(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

PGP(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

C44H76O14P2 (890.4710056)


   

PGP(20:4(5Z,8Z,11Z,14Z)-OH(17)/18:2(9Z,12Z))

PGP(20:4(5Z,8Z,11Z,14Z)-OH(17)/18:2(9Z,12Z))

C44H76O14P2 (890.4710056)


   

PGP(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

PGP(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C44H76O14P2 (890.4710056)


   

PGP(20:4(5Z,8Z,11Z,14Z)-OH(16R)/18:2(9Z,12Z))

PGP(20:4(5Z,8Z,11Z,14Z)-OH(16R)/18:2(9Z,12Z))

C44H76O14P2 (890.4710056)


   

PGP(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

PGP(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

C44H76O14P2 (890.4710056)


   

PGP(20:4(5Z,8Z,11Z,13E)-OH(15S)/18:2(9Z,12Z))

PGP(20:4(5Z,8Z,11Z,13E)-OH(15S)/18:2(9Z,12Z))

C44H76O14P2 (890.4710056)


   

PGP(18:2(9Z,12Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

PGP(18:2(9Z,12Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

C44H76O14P2 (890.4710056)


   

PGP(20:4(5Z,8Z,10E,14Z)-OH(12S)/18:2(9Z,12Z))

PGP(20:4(5Z,8Z,10E,14Z)-OH(12S)/18:2(9Z,12Z))

C44H76O14P2 (890.4710056)


   

PGP(18:2(9Z,12Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

PGP(18:2(9Z,12Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

C44H76O14P2 (890.4710056)


   

PGP(20:4(5E,8Z,12Z,14Z)-OH(11R)/18:2(9Z,12Z))

PGP(20:4(5E,8Z,12Z,14Z)-OH(11R)/18:2(9Z,12Z))

C44H76O14P2 (890.4710056)


   

PGP(18:3(9Z,12Z,15Z)/20:3(6,8,11)-OH(5))

PGP(18:3(9Z,12Z,15Z)/20:3(6,8,11)-OH(5))

C44H76O14P2 (890.4710056)


   

PGP(20:3(6,8,11)-OH(5)/18:3(9Z,12Z,15Z))

PGP(20:3(6,8,11)-OH(5)/18:3(9Z,12Z,15Z))

C44H76O14P2 (890.4710056)


   

PGP(20:3(5Z,8Z,11Z)/18:3(10,12,15)-OH(9))

PGP(20:3(5Z,8Z,11Z)/18:3(10,12,15)-OH(9))

C44H76O14P2 (890.4710056)


   

PGP(18:3(10,12,15)-OH(9)/20:3(5Z,8Z,11Z))

PGP(18:3(10,12,15)-OH(9)/20:3(5Z,8Z,11Z))

C44H76O14P2 (890.4710056)


   

PGP(18:3(9,11,15)-OH(13)/20:3(5Z,8Z,11Z))

PGP(18:3(9,11,15)-OH(13)/20:3(5Z,8Z,11Z))

C44H76O14P2 (890.4710056)


   

PGP(20:3(8Z,11Z,14Z)/18:3(10,12,15)-OH(9))

PGP(20:3(8Z,11Z,14Z)/18:3(10,12,15)-OH(9))

C44H76O14P2 (890.4710056)


   

PGP(18:3(10,12,15)-OH(9)/20:3(8Z,11Z,14Z))

PGP(18:3(10,12,15)-OH(9)/20:3(8Z,11Z,14Z))

C44H76O14P2 (890.4710056)


   

PGP(20:3(8Z,11Z,14Z)/18:3(9,11,15)-OH(13))

PGP(20:3(8Z,11Z,14Z)/18:3(9,11,15)-OH(13))

C44H76O14P2 (890.4710056)


   

PGP(18:3(9,11,15)-OH(13)/20:3(8Z,11Z,14Z))

PGP(18:3(9,11,15)-OH(13)/20:3(8Z,11Z,14Z))

C44H76O14P2 (890.4710056)


   

PGP(20:4(5Z,8Z,11Z,14Z)/18:1(12Z)-O(9S,10R))

PGP(20:4(5Z,8Z,11Z,14Z)/18:1(12Z)-O(9S,10R))

C44H76O14P2 (890.4710056)


   

PGP(18:1(12Z)-O(9S,10R)/20:4(5Z,8Z,11Z,14Z))

PGP(18:1(12Z)-O(9S,10R)/20:4(5Z,8Z,11Z,14Z))

C44H76O14P2 (890.4710056)


   

PGP(20:4(5Z,8Z,11Z,14Z)/18:1(9Z)-O(12,13))

PGP(20:4(5Z,8Z,11Z,14Z)/18:1(9Z)-O(12,13))

C44H76O14P2 (890.4710056)


   

PGP(18:1(9Z)-O(12,13)/20:4(5Z,8Z,11Z,14Z))

PGP(18:1(9Z)-O(12,13)/20:4(5Z,8Z,11Z,14Z))

C44H76O14P2 (890.4710056)


   

PGP(20:4(8Z,11Z,14Z,17Z)/18:1(12Z)-O(9S,10R))

PGP(20:4(8Z,11Z,14Z,17Z)/18:1(12Z)-O(9S,10R))

C44H76O14P2 (890.4710056)


   

PGP(18:1(12Z)-O(9S,10R)/20:4(8Z,11Z,14Z,17Z))

PGP(18:1(12Z)-O(9S,10R)/20:4(8Z,11Z,14Z,17Z))

C44H76O14P2 (890.4710056)


   

PGP(20:4(8Z,11Z,14Z,17Z)/18:1(9Z)-O(12,13))

PGP(20:4(8Z,11Z,14Z,17Z)/18:1(9Z)-O(12,13))

C44H76O14P2 (890.4710056)


   

PGP(18:1(9Z)-O(12,13)/20:4(8Z,11Z,14Z,17Z))

PGP(18:1(9Z)-O(12,13)/20:4(8Z,11Z,14Z,17Z))

C44H76O14P2 (890.4710056)


   

PGP(i-16:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

PGP(i-16:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

C44H76O14P2 (890.4710056)


   

PGP(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-16:0)

PGP(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-16:0)

C44H76O14P2 (890.4710056)


   

PGP(i-16:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

PGP(i-16:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

C44H76O14P2 (890.4710056)


   

PGP(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-16:0)

PGP(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-16:0)

C44H76O14P2 (890.4710056)


   

PGP(i-16:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

PGP(i-16:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

C44H76O14P2 (890.4710056)


   

PGP(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-16:0)

PGP(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-16:0)

C44H76O14P2 (890.4710056)


   

PGP(i-16:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

PGP(i-16:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

C44H76O14P2 (890.4710056)


   

PGP(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-16:0)

PGP(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-16:0)

C44H76O14P2 (890.4710056)


   

PGP(i-16:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

PGP(i-16:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

C44H76O14P2 (890.4710056)


   

PGP(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-16:0)

PGP(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-16:0)

C44H76O14P2 (890.4710056)


   

PG(22:5(4Z,7Z,10Z,13Z,16Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PG(22:5(4Z,7Z,10Z,13Z,16Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C48H75O13P (890.494503)


   

PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/22:5(4Z,7Z,10Z,13Z,16Z))

PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/22:5(4Z,7Z,10Z,13Z,16Z))

C48H75O13P (890.494503)


   

PG(22:5(7Z,10Z,13Z,16Z,19Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PG(22:5(7Z,10Z,13Z,16Z,19Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C48H75O13P (890.494503)


   

PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/22:5(7Z,10Z,13Z,16Z,19Z))

PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/22:5(7Z,10Z,13Z,16Z,19Z))

C48H75O13P (890.494503)


   

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C48H75O13P (890.494503)


   

PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

C48H75O13P (890.494503)


   

PI(16:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

PI(16:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

C45H79O15P (890.5156314)


   

PI(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/16:0)

PI(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/16:0)

C45H79O15P (890.5156314)


   

PI(16:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

PI(16:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

C45H79O15P (890.5156314)


   

PI(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/16:0)

PI(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/16:0)

C45H79O15P (890.5156314)


   

PI(16:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

PI(16:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

C45H79O15P (890.5156314)


   

PI(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/16:0)

PI(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/16:0)

C45H79O15P (890.5156314)


   

PI(16:1(9Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

PI(16:1(9Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

C45H79O15P (890.5156314)


   

PI(20:3(8Z,11Z,14Z)-2OH(5,6)/16:1(9Z))

PI(20:3(8Z,11Z,14Z)-2OH(5,6)/16:1(9Z))

C45H79O15P (890.5156314)


   

PI(18:3(6Z,9Z,12Z)/18:1(12Z)-2OH(9,10))

PI(18:3(6Z,9Z,12Z)/18:1(12Z)-2OH(9,10))

C45H79O15P (890.5156314)


   

PI(18:1(12Z)-2OH(9,10)/18:3(6Z,9Z,12Z))

PI(18:1(12Z)-2OH(9,10)/18:3(6Z,9Z,12Z))

C45H79O15P (890.5156314)


   

PI(18:3(9Z,12Z,15Z)/18:1(12Z)-2OH(9,10))

PI(18:3(9Z,12Z,15Z)/18:1(12Z)-2OH(9,10))

C45H79O15P (890.5156314)


   

PI(18:1(12Z)-2OH(9,10)/18:3(9Z,12Z,15Z))

PI(18:1(12Z)-2OH(9,10)/18:3(9Z,12Z,15Z))

C45H79O15P (890.5156314)


   

1,2-dipalmitoylglycero-3-phospho-(1-D-myo-inositol-3-phosphate)

1,2-dipalmitoylglycero-3-phospho-(1-D-myo-inositol-3-phosphate)

C41H80O16P2 (890.4921340000001)


   
   
   
   
   
   
   
   
   
   
   
   
   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (7E,9E,11Z,13E,15E,17Z)-icosa-7,9,11,13,15,17-hexaenoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (7E,9E,11Z,13E,15E,17Z)-icosa-7,9,11,13,15,17-hexaenoate

C43H72O15P2 (890.4346222)


   

[3-[[3-[[3-[(4E,7Z)-hexadeca-4,7-dienoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (7E,9Z,11Z,13E,15E)-octadeca-7,9,11,13,15-pentaenoate

[3-[[3-[[3-[(4E,7Z)-hexadeca-4,7-dienoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (7E,9Z,11Z,13E,15E)-octadeca-7,9,11,13,15-pentaenoate

C43H72O15P2 (890.4346222)


   

[3-[[3-[[3-[(7Z,9Z,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (11E,13E,15E)-octadeca-11,13,15-trienoate

[3-[[3-[[3-[(7Z,9Z,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (11E,13E,15E)-octadeca-11,13,15-trienoate

C43H72O15P2 (890.4346222)


   

[3-[[3-[[3-[(5E,7Z,9Z,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (10E,12E)-octadeca-10,12-dienoate

[3-[[3-[[3-[(5E,7Z,9Z,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (10E,12E)-octadeca-10,12-dienoate

C43H72O15P2 (890.4346222)


   

[3-[[3-[[3-[(9Z,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (9Z,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[3-[[3-[[3-[(9Z,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (9Z,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C43H72O15P2 (890.4346222)


   
   
   

[6-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[6-[2,3-bis[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy]propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2,3-bis[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy]propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[6-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[6-[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[6-[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[3,4,5-trihydroxy-6-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[6-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (8E,11E,14E)-heptadeca-8,11,14-trienoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (8E,11E,14E)-heptadeca-8,11,14-trienoate

C48H74O15 (890.5027454)


   

[(2S,3S,6S)-6-[(2S)-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[(2S,3S,6S)-6-[(2S)-2,3-bis[[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy]propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2,3-bis[[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy]propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoate

C48H75O13P (890.494503)


   

[(2S,3S,6S)-6-[(2S)-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoate

C48H75O13P (890.494503)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[(2S,3S,6S)-6-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[(2S,3S,6S)-6-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoate

C48H75O13P (890.494503)


   

[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[(2S,3S,6S)-6-[(2S)-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   
   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   
   

[(2S,3S,6S)-6-[(2S)-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[(2S,3S,6S)-6-[(2S)-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[(2S,3S,6S)-6-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[(2S,3S,6S)-6-[(2S)-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[(2S,3S,6S)-6-[(2S)-2,3-bis[[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy]propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2,3-bis[[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy]propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[(2S,3S,6S)-6-[(2S)-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[(2S,3S,6S)-6-[(2S)-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[(2S,3S,6S)-6-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(15E,18E,21E)-tetracosa-15,18,21-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(15E,18E,21E)-tetracosa-15,18,21-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C49H78O12S (890.5213708)


   

1,2-Dipalmitoyl-sn-glycero-3-phospho-(1D-myo-inositol-3-phosphate)

1,2-Dipalmitoyl-sn-glycero-3-phospho-(1D-myo-inositol-3-phosphate)

C41H80O16P2 (890.4921340000001)


A 1-phosphatidyl-1D-myo-inositol 3-phosphate in which both phosphatidyl acyl groups are specified as palmitoyl (hexadecanoyl).

   

SQDG(40:8)

SQDG(18:0_22:8)

C49H78O12S (890.5213708)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

PIP(32:0)

PIP(18:0_14:0)

C41H80O16P2 (890.4921340000001)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

(2s)-3-{[(1r,2s,6z,8s,9s,10s,12r,16s)-9-{[(2s,3r,4s)-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy}-3-ethyl-2-hydroxy-2-({[(2r,3r,4r,5r,6r)-5-hydroxy-3,4-dimethoxy-6-methyloxan-2-yl]oxy}methyl)-8,10,12-trimethyl-5,13-dioxo-4,17-dioxabicyclo[14.1.0]heptadec-6-en-15-yl]sulfanyl}-2-[(1-hydroxyethylidene)amino]propanoic acid

(2s)-3-{[(1r,2s,6z,8s,9s,10s,12r,16s)-9-{[(2s,3r,4s)-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy}-3-ethyl-2-hydroxy-2-({[(2r,3r,4r,5r,6r)-5-hydroxy-3,4-dimethoxy-6-methyloxan-2-yl]oxy}methyl)-8,10,12-trimethyl-5,13-dioxo-4,17-dioxabicyclo[14.1.0]heptadec-6-en-15-yl]sulfanyl}-2-[(1-hydroxyethylidene)amino]propanoic acid

C42H70N2O16S (890.4445820000001)


   

2-{[6-hydroxy-7,9,13-trimethyl-6-(3-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl)-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan-16-yl]oxy}-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxane-3,4,5-triol

2-{[6-hydroxy-7,9,13-trimethyl-6-(3-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl)-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan-16-yl]oxy}-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxane-3,4,5-triol

C44H74O18 (890.4874904000001)


   

26-o-β-d-glucopyranosylfurostane-3β,26-diol-3-o-β-d-xylopyranosyl(1→4)-β-d-glucopyra-noside

NA

C44H74O18 (890.4874904000001)


{"Ingredient_id": "HBIN004981","Ingredient_name": "26-o-\u03b2-d-glucopyranosylfurostane-3\u03b2,26-diol-3-o-\u03b2-d-xylopyranosyl(1\u21924)-\u03b2-d-glucopyra-noside","Alias": "NA","Ingredient_formula": "C44H74O18","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "8631","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

(2s,3r,4s,5r,6r)-2-{[(2s,3r,4r,5r,6r)-6-{[(1s,3r,4s,4ar,8ar)-3,4,8,8a-tetramethyl-4-[(3s)-3-methyl-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}pent-4-en-1-yl]-1,2,3,4a,5,6-hexahydronaphthalen-1-yl]oxy}-4-hydroxy-2-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4s,5r,6r)-2-{[(2s,3r,4r,5r,6r)-6-{[(1s,3r,4s,4ar,8ar)-3,4,8,8a-tetramethyl-4-[(3s)-3-methyl-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}pent-4-en-1-yl]-1,2,3,4a,5,6-hexahydronaphthalen-1-yl]oxy}-4-hydroxy-2-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C44H74O18 (890.4874904000001)


   

(1r,2r,4as,6as,6br,8ar,9s,10r,11r,12ar,12br,14bs)-9-[({2-[(2s,3r,4s)-3-ethenyl-5-(methoxycarbonyl)-2-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4-dihydro-2h-pyran-4-yl]acetyl}oxy)methyl]-1,10,11-trihydroxy-1,2,6a,6b,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(1r,2r,4as,6as,6br,8ar,9s,10r,11r,12ar,12br,14bs)-9-[({2-[(2s,3r,4s)-3-ethenyl-5-(methoxycarbonyl)-2-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4-dihydro-2h-pyran-4-yl]acetyl}oxy)methyl]-1,10,11-trihydroxy-1,2,6a,6b,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C47H70O16 (890.466362)


   

4,21',24'-trihydroxy-12'-({5-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-4-methoxy-6-methyloxan-2-yl}oxy)-5,11',13',22'-tetramethyl-6-(sec-butyl)-3',7',19'-trioxaspiro[oxane-2,6'-tetracyclo[15.6.1.1⁴,⁸.0²⁰,²⁴]pentacosane]-10',14',16',22'-tetraen-2'-one

4,21',24'-trihydroxy-12'-({5-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-4-methoxy-6-methyloxan-2-yl}oxy)-5,11',13',22'-tetramethyl-6-(sec-butyl)-3',7',19'-trioxaspiro[oxane-2,6'-tetracyclo[15.6.1.1⁴,⁸.0²⁰,²⁴]pentacosane]-10',14',16',22'-tetraen-2'-one

C48H74O15 (890.5027454)


   

(1s,3ar,3bs,7s,9ar,9br,11r,11ar)-1,3a,3b-trihydroxy-7-{[(2r,4s,5s,6r)-4-hydroxy-5-{[(2s,4s,5s,6r)-4-hydroxy-5-{[(2s,4r,5r,6r)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-1-[(1s)-1-hydroxyethyl]-9a,11a-dimethyl-2h,3h,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-11-yl benzoate

(1s,3ar,3bs,7s,9ar,9br,11r,11ar)-1,3a,3b-trihydroxy-7-{[(2r,4s,5s,6r)-4-hydroxy-5-{[(2s,4s,5s,6r)-4-hydroxy-5-{[(2s,4r,5r,6r)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-1-[(1s)-1-hydroxyethyl]-9a,11a-dimethyl-2h,3h,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-11-yl benzoate

C47H70O16 (890.466362)


   

(2r,3r,4s,5s,6r)-2-{[(1r,2s,4s,6s,7s,8r,9s,12s,13s,16s,18r)-6-hydroxy-7,9,13-trimethyl-6-[(3r)-3-methyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan-16-yl]oxy}-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1r,2s,4s,6s,7s,8r,9s,12s,13s,16s,18r)-6-hydroxy-7,9,13-trimethyl-6-[(3r)-3-methyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan-16-yl]oxy}-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C44H74O18 (890.4874904000001)


   

(1'r,2r,4s,4's,5s,6r,8'r,10'e,12's,13's,14'e,16'e,20'r,21'r,24's)-6-[(2s)-butan-2-yl]-4,21',24'-trihydroxy-12'-{[(2r,4s,5s,6s)-5-{[(2s,4s,5s,6s)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-5,11',13',22'-tetramethyl-3',7',19'-trioxaspiro[oxane-2,6'-tetracyclo[15.6.1.1⁴,⁸.0²⁰,²⁴]pentacosane]-10',14',16',22'-tetraen-2'-one

(1'r,2r,4s,4's,5s,6r,8'r,10'e,12's,13's,14'e,16'e,20'r,21'r,24's)-6-[(2s)-butan-2-yl]-4,21',24'-trihydroxy-12'-{[(2r,4s,5s,6s)-5-{[(2s,4s,5s,6s)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-5,11',13',22'-tetramethyl-3',7',19'-trioxaspiro[oxane-2,6'-tetracyclo[15.6.1.1⁴,⁸.0²⁰,²⁴]pentacosane]-10',14',16',22'-tetraen-2'-one

C48H74O15 (890.5027454)


   

2-[(3s,6s,9s,12s,21s,24s,27s)-9,21-bis[(2s)-butan-2-yl]-5,8,11,20,23,26-hexahydroxy-6-(1h-indol-3-ylmethyl)-24-(2-methylpropyl)-2,17-dioxo-1,4,7,10,16,19,22,25-octaazatricyclo[25.3.0.0¹²,¹⁶]triaconta-4,7,10,19,22,25-hexaen-3-yl]ethanimidic acid

2-[(3s,6s,9s,12s,21s,24s,27s)-9,21-bis[(2s)-butan-2-yl]-5,8,11,20,23,26-hexahydroxy-6-(1h-indol-3-ylmethyl)-24-(2-methylpropyl)-2,17-dioxo-1,4,7,10,16,19,22,25-octaazatricyclo[25.3.0.0¹²,¹⁶]triaconta-4,7,10,19,22,25-hexaen-3-yl]ethanimidic acid

C45H66N10O9 (890.5013986000001)


   

1,3a,3b-trihydroxy-7-{[4-hydroxy-5-({4-hydroxy-5-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)-6-methyloxan-2-yl]oxy}-1-(1-hydroxyethyl)-9a,11a-dimethyl-2h,3h,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-11-yl benzoate

1,3a,3b-trihydroxy-7-{[4-hydroxy-5-({4-hydroxy-5-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)-6-methyloxan-2-yl]oxy}-1-(1-hydroxyethyl)-9a,11a-dimethyl-2h,3h,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-11-yl benzoate

C47H70O16 (890.466362)


   

(3s,9s,12r,15s,19s,22s,25s,28s)-22-benzyl-17,24,27-trihydroxy-12,15,25-triisopropyl-9,13,18,18-tetramethyl-19-(pent-4-yn-1-yl)-10,20-dioxa-1,7,13,16,23,26-hexaazatricyclo[26.3.0.0³,⁷]hentriaconta-16,23,26-triene-2,8,11,14,21-pentone

(3s,9s,12r,15s,19s,22s,25s,28s)-22-benzyl-17,24,27-trihydroxy-12,15,25-triisopropyl-9,13,18,18-tetramethyl-19-(pent-4-yn-1-yl)-10,20-dioxa-1,7,13,16,23,26-hexaazatricyclo[26.3.0.0³,⁷]hentriaconta-16,23,26-triene-2,8,11,14,21-pentone

C48H70N6O10 (890.5153160000001)


   

(2s,3r,4s,5r,6r)-2-{[(2s,3r,4r,5r,6r)-6-{[(1s,3r,4s,4ar,8ar)-3,4,8,8a-tetramethyl-4-[(3s)-3-methyl-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}pent-4-en-1-yl]-1,2,3,4a,5,6-hexahydronaphthalen-1-yl]oxy}-4-hydroxy-2-methyl-5-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4s,5r,6r)-2-{[(2s,3r,4r,5r,6r)-6-{[(1s,3r,4s,4ar,8ar)-3,4,8,8a-tetramethyl-4-[(3s)-3-methyl-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}pent-4-en-1-yl]-1,2,3,4a,5,6-hexahydronaphthalen-1-yl]oxy}-4-hydroxy-2-methyl-5-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C44H74O18 (890.4874904000001)


   

(2s)-2-({[(3s,6r,9s,12s,15s)-3-benzyl-2,5,11,14-tetrahydroxy-6-(2-{2-[(hydroxymethylidene)amino]phenyl}-2-oxoethyl)-7-methyl-9-(2-methylpropyl)-8-oxo-12-(sec-butyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)-3-methylpentanoic acid

(2s)-2-({[(3s,6r,9s,12s,15s)-3-benzyl-2,5,11,14-tetrahydroxy-6-(2-{2-[(hydroxymethylidene)amino]phenyl}-2-oxoethyl)-7-methyl-9-(2-methylpropyl)-8-oxo-12-(sec-butyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)-3-methylpentanoic acid

C46H66N8O10 (890.4901656000001)


   

(1'r,2r,4s,4'r,5s,6r,8'r,10'e,12's,13's,14'e,16'e,20'r,21'r,24's)-6-[(2s)-butan-2-yl]-4,21',24'-trihydroxy-12'-{[(2r,4s,5s,6s)-5-{[(2s,4s,5s,6s)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-5,11',13',22'-tetramethyl-3',7',19'-trioxaspiro[oxane-2,6'-tetracyclo[15.6.1.1⁴,⁸.0²⁰,²⁴]pentacosane]-10',14',16',22'-tetraen-2'-one

(1'r,2r,4s,4'r,5s,6r,8'r,10'e,12's,13's,14'e,16'e,20'r,21'r,24's)-6-[(2s)-butan-2-yl]-4,21',24'-trihydroxy-12'-{[(2r,4s,5s,6s)-5-{[(2s,4s,5s,6s)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-5,11',13',22'-tetramethyl-3',7',19'-trioxaspiro[oxane-2,6'-tetracyclo[15.6.1.1⁴,⁸.0²⁰,²⁴]pentacosane]-10',14',16',22'-tetraen-2'-one

C48H74O15 (890.5027454)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4r,5r,6r)-6-{[(1r,2s,3as,3bs,7s,9ar,9bs,11as)-1-[(2s,3s,6s)-3,7-dihydroxy-6-methylheptan-2-yl]-9a,11a-dimethyl-2-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-1h,2h,3h,3ah,3bh,4h,5h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4r,5r,6r)-6-{[(1r,2s,3as,3bs,7s,9ar,9bs,11as)-1-[(2s,3s,6s)-3,7-dihydroxy-6-methylheptan-2-yl]-9a,11a-dimethyl-2-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-1h,2h,3h,3ah,3bh,4h,5h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C44H74O18 (890.4874904000001)


   

(2r,4s,5s,6r,10'e,12's,13's,14'e,16'e,21'r,24's)-4,21',24'-trihydroxy-12'-{[(2r,4s,5s,6s)-5-{[(2s,4s,5s,6s)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-5,11',13',22'-tetramethyl-6-(sec-butyl)-3',7',19'-trioxaspiro[oxane-2,6'-tetracyclo[15.6.1.1⁴,⁸.0²⁰,²⁴]pentacosane]-10',14',16',22'-tetraen-2'-one

(2r,4s,5s,6r,10'e,12's,13's,14'e,16'e,21'r,24's)-4,21',24'-trihydroxy-12'-{[(2r,4s,5s,6s)-5-{[(2s,4s,5s,6s)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-5,11',13',22'-tetramethyl-6-(sec-butyl)-3',7',19'-trioxaspiro[oxane-2,6'-tetracyclo[15.6.1.1⁴,⁸.0²⁰,²⁴]pentacosane]-10',14',16',22'-tetraen-2'-one

C48H74O15 (890.5027454)


   

22-benzyl-17,24,27-trihydroxy-12,15,25-triisopropyl-9,13,18,18-tetramethyl-19-(pent-4-yn-1-yl)-10,20-dioxa-1,7,13,16,23,26-hexaazatricyclo[26.3.0.0³,⁷]hentriaconta-16,23,26-triene-2,8,11,14,21-pentone

22-benzyl-17,24,27-trihydroxy-12,15,25-triisopropyl-9,13,18,18-tetramethyl-19-(pent-4-yn-1-yl)-10,20-dioxa-1,7,13,16,23,26-hexaazatricyclo[26.3.0.0³,⁷]hentriaconta-16,23,26-triene-2,8,11,14,21-pentone

C48H70N6O10 (890.5153160000001)


   

2-({6-[(3,4,8,8a-tetramethyl-4-{3-methyl-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]pent-4-en-1-yl}-1,2,3,4a,5,6-hexahydronaphthalen-1-yl)oxy]-4-hydroxy-2-methyl-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl}oxy)-6-methyloxane-3,4,5-triol

2-({6-[(3,4,8,8a-tetramethyl-4-{3-methyl-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]pent-4-en-1-yl}-1,2,3,4a,5,6-hexahydronaphthalen-1-yl)oxy]-4-hydroxy-2-methyl-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl}oxy)-6-methyloxane-3,4,5-triol

C44H74O18 (890.4874904000001)


   

3-chloro-n-[(2s,3s,4s,6r)-4-(dimethylamino)-6-{[(1r,3r,6r,7e,9r,11z,13s,16s,17r,18s,20s,21s,22s)-14-ethyl-17,18,27-trihydroxy-8,20,22-trimethyl-23,25-dioxo-3-propyl-26-oxapentacyclo[22.2.1.0¹,⁶.0¹³,²².0¹⁶,²¹]heptacosa-4,7,11,14,24(27)-pentaen-9-yl]oxy}-2-methyloxan-3-yl]-6-hydroxy-2-methylbenzenecarboximidic acid

3-chloro-n-[(2s,3s,4s,6r)-4-(dimethylamino)-6-{[(1r,3r,6r,7e,9r,11z,13s,16s,17r,18s,20s,21s,22s)-14-ethyl-17,18,27-trihydroxy-8,20,22-trimethyl-23,25-dioxo-3-propyl-26-oxapentacyclo[22.2.1.0¹,⁶.0¹³,²².0¹⁶,²¹]heptacosa-4,7,11,14,24(27)-pentaen-9-yl]oxy}-2-methyloxan-3-yl]-6-hydroxy-2-methylbenzenecarboximidic acid

C50H67ClN2O10 (890.4483992)


   

(2r,3r,4s,5s,6r)-2-{[(1r,2s,4s,6s,7s,8r,9s,12s,13s,16s,18r)-6-hydroxy-7,9,13-trimethyl-6-[(3s)-3-methyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan-16-yl]oxy}-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1r,2s,4s,6s,7s,8r,9s,12s,13s,16s,18r)-6-hydroxy-7,9,13-trimethyl-6-[(3s)-3-methyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan-16-yl]oxy}-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C44H74O18 (890.4874904000001)