Exact Mass: 889.1883656000001
Exact Mass Matches: 889.1883656000001
Found 25 metabolites which its exact mass value is equals to given mass value 889.1883656000001
,
within given mass tolerance error 0.0002 dalton. Try search metabolite list with more accurate mass tolerance error
4.0E-5 dalton.
2-trans,4-trans-Octadienoyl-CoA
C29H46N7O17P3S (889.1883656000001)
2-trans,4-trans-Octadienoyl-CoA is an intermediate within the mitochondrial metabolism pathway responsible for the beta-oxidation of unsaturated fatty acids with double bonds extending from odd-numbered carbon atoms. (PMID: 1495956) [HMDB] 2-trans,4-trans-Octadienoyl-CoA is an intermediate within the mitochondrial metabolism pathway responsible for the beta-oxidation of unsaturated fatty acids with double bonds extending from odd-numbered carbon atoms. (PMID: 1495956).
octa-2,6-dienoyl-CoA
C29H46N7O17P3S (889.1883656000001)
Octa-2,6-dienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is an octa-2_6-dienoic acid thioester of coenzyme A. Octa-2,6-dienoyl-coa is an acyl-CoA with 8 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Octa-2,6-dienoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Octa-2,6-dienoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, octa-2,6-dienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of octa-2,6-dienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts octa-2,6-dienoyl-CoA into octa-2_6-dienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, octa-2_6-dienoylcarnitine is converted back to octa-2,6-dienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of octa-2,6-dienoyl-CoA occurs in four steps. First, since octa-2,6-dienoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of octa-2,6-dienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol group to a ketone and ...
octa-3,6-dienoyl-CoA
C29H46N7O17P3S (889.1883656000001)
Octa-3,6-dienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is an octa-3_6-dienoic acid thioester of coenzyme A. Octa-3,6-dienoyl-coa is an acyl-CoA with 8 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Octa-3,6-dienoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Octa-3,6-dienoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, octa-3,6-dienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of octa-3,6-dienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts octa-3,6-dienoyl-CoA into octa-3_6-dienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, octa-3_6-dienoylcarnitine is converted back to octa-3,6-dienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of octa-3,6-dienoyl-CoA occurs in four steps. First, since octa-3,6-dienoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of octa-3,6-dienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol group to a ketone and ...
(4Z,6Z)-octa-4,6-dienoyl-CoA
C29H46N7O17P3S (889.1883656000001)
(4z,6z)-octa-4,6-dienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (4Z_6Z)-octa-4_6-dienoic acid thioester of coenzyme A. (4z,6z)-octa-4,6-dienoyl-coa is an acyl-CoA with 1 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (4z,6z)-octa-4,6-dienoyl-coa is therefore classified as a short chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (4z,6z)-octa-4,6-dienoyl-coa, being a short chain acyl-CoA is a substrate for short chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (4Z,6Z)-octa-4,6-dienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (4Z,6Z)-octa-4,6-dienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (4Z,6Z)-octa-4,6-dienoyl-CoA into (4Z_6Z)-octa-4_6-dienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (4Z_6Z)-octa-4_6-dienoylcarnitine is converted back to (4Z,6Z)-octa-4,6-dienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (4Z,6Z)-octa-4,6-dienoyl-CoA occurs in four steps. First, since (4Z,6Z)-octa-4,6-dienoyl-CoA is a short chain acyl-CoA it is the substrate for a short chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (4Z,6Z)-octa-4,6-dienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double b...
octa-2,5-dienoyl-CoA
C29H46N7O17P3S (889.1883656000001)
Octa-2,5-dienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is an octa-2_5-dienoic acid thioester of coenzyme A. Octa-2,5-dienoyl-coa is an acyl-CoA with 8 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Octa-2,5-dienoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Octa-2,5-dienoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, octa-2,5-dienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of octa-2,5-dienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts octa-2,5-dienoyl-CoA into octa-2_5-dienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, octa-2_5-dienoylcarnitine is converted back to octa-2,5-dienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of octa-2,5-dienoyl-CoA occurs in four steps. First, since octa-2,5-dienoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of octa-2,5-dienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol group to a ketone and ...
octa-2,4-dienoyl-CoA
C29H46N7O17P3S (889.1883656000001)
Octa-2,4-dienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is an octa-2_4-dienoic acid thioester of coenzyme A. Octa-2,4-dienoyl-coa is an acyl-CoA with 8 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Octa-2,4-dienoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Octa-2,4-dienoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, octa-2,4-dienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of octa-2,4-dienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts octa-2,4-dienoyl-CoA into octa-2_4-dienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, octa-2_4-dienoylcarnitine is converted back to octa-2,4-dienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of octa-2,4-dienoyl-CoA occurs in four steps. First, since octa-2,4-dienoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of octa-2,4-dienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol group to a ketone and ...
octa-3,5-dienoyl-CoA
C29H46N7O17P3S (889.1883656000001)
Octa-3,5-dienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is an octa-3_5-dienoic acid thioester of coenzyme A. Octa-3,5-dienoyl-coa is an acyl-CoA with 8 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Octa-3,5-dienoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Octa-3,5-dienoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, octa-3,5-dienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of octa-3,5-dienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts octa-3,5-dienoyl-CoA into octa-3_5-dienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, octa-3_5-dienoylcarnitine is converted back to octa-3,5-dienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of octa-3,5-dienoyl-CoA occurs in four steps. First, since octa-3,5-dienoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of octa-3,5-dienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol group to a ketone and ...
CoA 8:2
C29H46N7O17P3S (889.1883656000001)
S-[2-[3-[[4-[[[5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] oct-2-ynethioate
C29H46N7O17P3S (889.1883656000001)
(2E,5Z)-octadienoyl-CoA
C29H46N7O17P3S (889.1883656000001)
An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (2E,5Z)-octadienoic acid
Octanoyl-CoA
C29H46N7O17P3S-4 (889.1883656000001)
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
trans-3-cis-5-octadienoyl-CoA
C29H46N7O17P3S (889.1883656000001)
A medium-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of trans-3-cis-5-octadienoic acid.
octanoyl-CoA(4-)
C29H46N7O17P3S (889.1883656000001)
An acyl-CoA(4-) that is the tetraanion of octanoyl-CoA, arising from deprotonation of phosphate and diphosphate functions.
trans,trans-octa-2,4-dienoyl-CoA
C29H46N7O17P3S (889.1883656000001)
A trans,trans-2,3,4,5-tetradehydroacyl-CoA having trans,trans-octa-2,4-dienoyl as the S-acyl component.