Octanoyl-CoA (BioDeep_00000898231)

   


代谢物信息卡片


Octanoyl-CoA

化学式: C29H46N7O17P3S-4 (889.1883656000001)
中文名称:
谱图信息: 最多检出来源 Viridiplantae(plant) 9.52%

分子结构信息

SMILES: CCCCCCCC(=O)SCCNC(=O)CCNC(=O)C(C(C)(C)COP(=O)([O-])OP(=O)([O-])OCC1C(C(C(O1)N2C=NC3=C(N=CN=C32)N)O)OP(=O)([O-])[O-])O
InChI: InChI=1S/C29H50N7O17P3S/c1-4-5-6-7-8-9-20(38)57-13-12-31-19(37)10-11-32-27(41)24(40)29(2,3)15-50-56(47,48)53-55(45,46)49-14-18-23(52-54(42,43)44)22(39)28(51-18)36-17-35-21-25(30)33-16-34-26(21)36/h16-18,22-24,28,39-40H,4-15H2,1-3H3,(H,31,37)(H,32,41)(H,45,46)(H,47,48)(H2,30,33,34)(H2,42,43,44)/p-4/t18-,22-,23-,24+,28-/m1/s1

描述信息

COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS

同义名列表

1 个代谢物同义名

Octanoyl-CoA



数据库引用编号

2 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(5)

PlantCyc(0)

代谢反应

16 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(3)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(12)

COVID-19 Disease Map(1)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Jing Hou, Heping Zheng, Wen-Shyong Tzou, David R Cooper, Maksymilian Chruszcz, Mahendra D Chordia, Keehwan Kwon, Marek Grabowski, Wladek Minor. Differences in substrate specificity of V. cholerae FabH enzymes suggest new approaches for the development of novel antibiotics and biofuels. The FEBS journal. 2018 08; 285(15):2900-2921. doi: 10.1111/febs.14588. [PMID: 29917313]
  • Kira-Lee Koster, Marga Sturm, Diran Herebian, Sander H J Smits, Ute Spiekerkoetter. Functional studies of 18 heterologously expressed medium-chain acyl-CoA dehydrogenase (MCAD) variants. Journal of inherited metabolic disease. 2014 Nov; 37(6):917-28. doi: 10.1007/s10545-014-9732-5. [PMID: 24966162]
  • Marga Sturm, Diran Herebian, Martina Mueller, Maurice D Laryea, Ute Spiekerkoetter. Functional effects of different medium-chain acyl-CoA dehydrogenase genotypes and identification of asymptomatic variants. PloS one. 2012; 7(9):e45110. doi: 10.1371/journal.pone.0045110. [PMID: 23028790]
  • Yasuzo Nishina, Kyosuke Sato, Haruhiko Tamaoki, Chiaki Setoyama, Retsu Miura, Kiyoshi Shiga. FT-IR spectroscopic studies on the molecular mechanism for substrate specificity/activation of medium-chain acyl-CoA dehydrogenase. Journal of biochemistry. 2009 Sep; 146(3):351-7. doi: 10.1093/jb/mvp077. [PMID: 19470521]
  • Seigo Korematsu, Yujiro Kosugi, Toshihide Kumamoto, Seiji Yamaguchi, Tatsuro Izumi. Novel mutation of early, perinatal-onset, myopathic-type very-long-chain acyl-CoA dehydrogenase deficiency. Pediatric neurology. 2009 Aug; 41(2):151-3. doi: 10.1016/j.pediatrneurol.2009.02.020. [PMID: 19589468]
  • Jiaquan Wu, Alasdair F Bell, Lian Luo, Avery W Stephens, Marian T Stankovich, Peter J Tonge. Probing hydrogen-bonding interactions in the active site of medium-chain acyl-CoA dehydrogenase using Raman spectroscopy. Biochemistry. 2003 Oct; 42(40):11846-56. doi: 10.1021/bi0344578. [PMID: 14529297]
  • Jocelyn E Manning Fox, Jarkko Magga, Wayne R Giles, Peter E Light. Acyl coenzyme A esters differentially activate cardiac and beta-cell adenosine triphosphate-sensitive potassium channels in a side-chain length-specific manner. Metabolism: clinical and experimental. 2003 Oct; 52(10):1313-9. doi: 10.1016/s0026-0495(03)00199-9. [PMID: 14564684]
  • K M Peterson, D K Srivastava. Energetic consequences of accommodating a bulkier ligand at the active site of medium chain acyl-CoA dehydrogenase by creating a complementary enzyme site cavity. Biochemistry. 2000 Oct; 39(41):12678-87. doi: 10.1021/bi001317e. [PMID: 11027148]
  • K L Peterson, E E Sergienko, Y Wu, N R Kumar, A W Strauss, A E Oleson, W W Muhonen, J B Shabb, D K Srivastava. Recombinant human liver medium-chain acyl-CoA dehydrogenase: purification, characterization, and the mechanism of interactions with functionally diverse C8-CoA molecules. Biochemistry. 1995 Nov; 34(45):14942-53. doi: 10.1021/bi00045a039. [PMID: 7578106]
  • A K Bhuiyan, S V Pande. Carnitine palmitoyltransferase activities: effects of serum albumin, acyl-CoA binding protein and fatty acid binding protein. Molecular and cellular biochemistry. 1994 Oct; 139(2):109-16. doi: 10.1007/bf01081733. [PMID: 7862101]
  • N R Kumar, D K Srivastava. Reductive half-reaction of medium-chain fatty acyl-CoA dehydrogenase utilizing octanoyl-CoA/octenoyl-CoA as a physiological substrate/product pair: similarity in the microscopic pathways of octanoyl-CoA oxidation and octenoyl-CoA binding. Biochemistry. 1994 Jul; 33(29):8833-41. doi: 10.1021/bi00195a027. [PMID: 8038175]
  • J G Cummings, C Thorpe. 3-Methyleneoctanoyl-CoA and 3-methyl-trans-2-octenoyl-CoA: two new mechanism-based inhibitors of medium chain acyl-CoA dehydrogenase from pig kidney. Biochemistry. 1994 Jan; 33(3):788-97. doi: 10.1021/bi00169a021. [PMID: 8292607]
  • J G Cummings, C Thorpe. Stereoselective interaction of 2-halo-acyl-CoA derivatives with medium chain acyl-CoA dehydrogenase from pig kidney. Archives of biochemistry and biophysics. 1993 Apr; 302(1):85-91. doi: 10.1006/abbi.1993.1184. [PMID: 8470910]
  • Y Nishina, K Sato, K Shiga, S Fujii, K Kuroda, R Miura. Resonance Raman study on complexes of medium-chain acyl-CoA dehydrogenase. Journal of biochemistry. 1992 Jun; 111(6):699-706. doi: 10.1093/oxfordjournals.jbchem.a123822. [PMID: 1500413]
  • B E Corkey, D E Hale, M C Glennon, R I Kelley, P M Coates, L Kilpatrick, C A Stanley. Relationship between unusual hepatic acyl coenzyme A profiles and the pathogenesis of Reye syndrome. The Journal of clinical investigation. 1988 Sep; 82(3):782-8. doi: 10.1172/jci113679. [PMID: 3417871]
  • S M Lau, C Thorpe. The nature of enzyme-substrate complexes in acyl-coenzyme A dehydrogenases. Archives of biochemistry and biophysics. 1988 Apr; 262(1):293-7. doi: 10.1016/0003-9861(88)90191-9. [PMID: 3355170]
  • B A Amendt, W J Rhead. The multiple acyl-coenzyme A dehydrogenation disorders, glutaric aciduria type II and ethylmalonic-adipic aciduria. Mitochondrial fatty acid oxidation, acyl-coenzyme A dehydrogenase, and electron transfer flavoprotein activities in fibroblasts. The Journal of clinical investigation. 1986 Jul; 78(1):205-13. doi: 10.1172/jci112553. [PMID: 3722376]
  • B A Amendt, W J Rhead. Catalytic defect of medium-chain acyl-coenzyme A dehydrogenase deficiency. Lack of both cofactor responsiveness and biochemical heterogeneity in eight patients. The Journal of clinical investigation. 1985 Sep; 76(3):963-9. doi: 10.1172/jci112096. [PMID: 3840178]
  • M Madden, S M Lau, C Thorpe. The influence of oxidation-reduction state on the kinetic stability of pig kidney general acyl-CoA dehydrogenase and other flavoproteins. The Biochemical journal. 1984 Dec; 224(2):577-80. doi: 10.1042/bj2240577. [PMID: 6517865]
  • Z Y Jiang, C Thorpe. Modification of an arginine residue in pig kidney general acyl-coenzyme A dehydrogenase by cyclohexane-1,2-dione. The Biochemical journal. 1982 Dec; 207(3):415-9. doi: 10.1042/bj2070415. [PMID: 7165702]