Exact Mass: 885.6540926

Exact Mass Matches: 885.6540926

Found 428 metabolites which its exact mass value is equals to given mass value 885.6540926, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PC(22:2(13Z,16Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

(2-{[(2R)-3-[(13Z,16Z)-docosa-13,16-dienoyloxy]-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C52H88NO8P (885.6247218)


PC(22:2(13Z,16Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:2(13Z,16Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The docosadienoic acid moiety is derived from animal fats, while the docosahexaenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(22:4(7Z,10Z,13Z,16Z)/22:4(7Z,10Z,13Z,16Z))

(2-{[(2R)-2,3-bis[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C52H88NO8P (885.6247218)


PC(22:4(7Z,10Z,13Z,16Z)/22:4(7Z,10Z,13Z,16Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:4(7Z,10Z,13Z,16Z)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of two chains of adrenic acid at the C-1 and C-2 positions. The adrenic acid moieties are derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:2(13Z,16Z))

(2-{[(2R)-2-[(13Z,16Z)-docosa-13,16-dienoyloxy]-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C52H88NO8P (885.6247218)


PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:2(13Z,16Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:2(13Z,16Z)), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the docosadienoic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PS(22:0/20:3(6,8,11)-OH(5))

(2S)-2-amino-3-({[(2R)-3-(docosanoyloxy)-2-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H88NO11P (885.6094668)


PS(22:0/20:3(6,8,11)-OH(5)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:0/20:3(6,8,11)-OH(5)), in particular, consists of one chain of one docosanoyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:3(6,8,11)-OH(5)/22:0)

(2S)-2-amino-3-({[(2R)-2-(docosanoyloxy)-3-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H88NO11P (885.6094668)


PS(20:3(6,8,11)-OH(5)/22:0) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:3(6,8,11)-OH(5)/22:0), in particular, consists of one chain of one 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of docosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(24:0/18:2(10E,12Z)+=O(9))

(2S)-2-amino-3-{[hydroxy((2R)-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}-3-(tetracosanoyloxy)propoxy)phosphoryl]oxy}propanoic acid

C48H88NO11P (885.6094668)


PS(24:0/18:2(10E,12Z)+=O(9)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(24:0/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one tetracosanoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(18:2(10E,12Z)+=O(9)/24:0)

(2S)-2-amino-3-({hydroxy[(2R)-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}-2-(tetracosanoyloxy)propoxy]phosphoryl}oxy)propanoic acid

C48H88NO11P (885.6094668)


PS(18:2(10E,12Z)+=O(9)/24:0) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(18:2(10E,12Z)+=O(9)/24:0), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of tetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(24:0/18:2(9Z,11E)+=O(13))

(2S)-2-amino-3-({hydroxy[(2R)-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}-3-(tetracosanoyloxy)propoxy]phosphoryl}oxy)propanoic acid

C48H88NO11P (885.6094668)


PS(24:0/18:2(9Z,11E)+=O(13)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(24:0/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one tetracosanoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(18:2(9Z,11E)+=O(13)/24:0)

(2S)-2-amino-3-({hydroxy[(2R)-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}-2-(tetracosanoyloxy)propoxy]phosphoryl}oxy)propanoic acid

C48H88NO11P (885.6094668)


PS(18:2(9Z,11E)+=O(13)/24:0) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(18:2(9Z,11E)+=O(13)/24:0), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of tetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(24:0/18:3(10,12,15)-OH(9))

(2S)-2-amino-3-({hydroxy[(2R)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-3-(tetracosanoyloxy)propoxy]phosphoryl}oxy)propanoic acid

C48H88NO11P (885.6094668)


PS(24:0/18:3(10,12,15)-OH(9)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(24:0/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one tetracosanoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(18:3(10,12,15)-OH(9)/24:0)

(2S)-2-amino-3-({hydroxy[(2R)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-2-(tetracosanoyloxy)propoxy]phosphoryl}oxy)propanoic acid

C48H88NO11P (885.6094668)


PS(18:3(10,12,15)-OH(9)/24:0) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(18:3(10,12,15)-OH(9)/24:0), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of tetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(24:0/18:3(9,11,15)-OH(13))

(2S)-2-amino-3-{[hydroxy((2R)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-3-(tetracosanoyloxy)propoxy)phosphoryl]oxy}propanoic acid

C48H88NO11P (885.6094668)


PS(24:0/18:3(9,11,15)-OH(13)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(24:0/18:3(9,11,15)-OH(13)), in particular, consists of one chain of one tetracosanoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(18:3(9,11,15)-OH(13)/24:0)

(2S)-2-amino-3-({hydroxy[(2R)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-2-(tetracosanoyloxy)propoxy]phosphoryl}oxy)propanoic acid

C48H88NO11P (885.6094668)


PS(18:3(9,11,15)-OH(13)/24:0) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(18:3(9,11,15)-OH(13)/24:0), in particular, consists of one chain of one 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of tetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(24:0/20:3(8Z,11Z,14Z)-2OH(5,6))

(2-aminoethoxy)[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-(tetracosanoyloxy)propoxy]phosphinic acid

C49H92NO10P (885.6458501999999)


PE(24:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(24:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one tetracosanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:3(8Z,11Z,14Z)-2OH(5,6)/24:0)

(2-aminoethoxy)[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-(tetracosanoyloxy)propoxy]phosphinic acid

C49H92NO10P (885.6458501999999)


PE(20:3(8Z,11Z,14Z)-2OH(5,6)/24:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:3(8Z,11Z,14Z)-2OH(5,6)/24:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of tetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PC(20:0/PGE2)

(2-{[(2R)-2-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-3-(icosanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C48H88NO11P (885.6094668)


PC(20:0/PGE2) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:0/PGE2), in particular, consists of one chain of one eicosanoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(PGE2/20:0)

(2-{[(2R)-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-2-(icosanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C48H88NO11P (885.6094668)


PC(PGE2/20:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(PGE2/20:0), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of eicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:0/PGD2)

(2-{[(2R)-2-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-3-(icosanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C48H88NO11P (885.6094668)


PC(20:0/PGD2) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:0/PGD2), in particular, consists of one chain of one eicosanoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(PGD2/20:0)

(2-{[(2R)-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-2-(icosanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C48H88NO11P (885.6094668)


PC(PGD2/20:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(PGD2/20:0), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of eicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

(2-{[(2R)-3-(icosanoyloxy)-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H88NO11P (885.6094668)


PC(20:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one eicosanoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/20:0)

(2-{[(2R)-2-(icosanoyloxy)-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H88NO11P (885.6094668)


PC(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/20:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/20:0), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of eicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:1(11Z)/PGF2alpha)

(2-{[(2R)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-[(11Z)-icos-11-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H88NO11P (885.6094668)


PC(20:1(11Z)/PGF2alpha) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:1(11Z)/PGF2alpha), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(PGF2alpha/20:1(11Z))

(2-{[(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-[(11Z)-icos-11-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H88NO11P (885.6094668)


PC(PGF2alpha/20:1(11Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(PGF2alpha/20:1(11Z)), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:1(11Z)/PGE1)

(2-{[(2R)-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-3-[(11Z)-icos-11-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H88NO11P (885.6094668)


PC(20:1(11Z)/PGE1) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:1(11Z)/PGE1), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(PGE1/20:1(11Z))

(2-{[(2R)-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-2-[(11Z)-icos-11-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H88NO11P (885.6094668)


PC(PGE1/20:1(11Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(PGE1/20:1(11Z)), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:1(11Z)/PGD1)

(2-{[(2R)-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-3-[(11Z)-icos-11-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H88NO11P (885.6094668)


PC(20:1(11Z)/PGD1) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:1(11Z)/PGD1), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(PGD1/20:1(11Z))

(2-{[(2R)-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-2-[(11Z)-icos-11-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H88NO11P (885.6094668)


PC(PGD1/20:1(11Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(PGD1/20:1(11Z)), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:2(11Z,14Z)/PGF1alpha)

(2-{[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H88NO11P (885.6094668)


PC(20:2(11Z,14Z)/PGF1alpha) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:2(11Z,14Z)/PGF1alpha), in particular, consists of one chain of one 11Z,14Z-eicosadienoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(PGF1alpha/20:2(11Z,14Z))

(2-{[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H88NO11P (885.6094668)


PC(PGF1alpha/20:2(11Z,14Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(PGF1alpha/20:2(11Z,14Z)), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of 11Z,14Z-eicosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:1(13Z)/5-iso PGF2VI)

(2-{[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-[(13Z)-docos-13-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H88NO11P (885.6094668)


PC(22:1(13Z)/5-iso PGF2VI) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:1(13Z)/5-iso PGF2VI), in particular, consists of one chain of one 13Z-docosenoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(5-iso PGF2VI/22:1(13Z))

(2-{[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-[(13Z)-docos-13-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H88NO11P (885.6094668)


PC(5-iso PGF2VI/22:1(13Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(5-iso PGF2VI/22:1(13Z)), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 13Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(24:0/18:1(12Z)-O(9S,10R))

trimethyl(2-{[(2R)-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]-3-(tetracosanoyloxy)propyl phosphono]oxy}ethyl)azanium

C50H96NO9P (885.6822335999999)


PC(24:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(24:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one tetracosanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:1(12Z)-O(9S,10R)/24:0)

trimethyl(2-{[(2R)-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]-2-(tetracosanoyloxy)propyl phosphono]oxy}ethyl)azanium

C50H96NO9P (885.6822335999999)


PC(18:1(12Z)-O(9S,10R)/24:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:1(12Z)-O(9S,10R)/24:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of tetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(24:0/18:1(9Z)-O(12,13))

trimethyl(2-{[(2R)-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}-3-(tetracosanoyloxy)propyl phosphono]oxy}ethyl)azanium

C50H96NO9P (885.6822335999999)


PC(24:0/18:1(9Z)-O(12,13)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(24:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one tetracosanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:1(9Z)-O(12,13)/24:0)

trimethyl(2-{[(2R)-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}-2-(tetracosanoyloxy)propyl phosphono]oxy}ethyl)azanium

C50H96NO9P (885.6822335999999)


PC(18:1(9Z)-O(12,13)/24:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:1(9Z)-O(12,13)/24:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of tetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(DiMe(11,5)/18:1(12Z)-2OH(9,10))

(2-{[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-{[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H88NO11P (885.6094668)


PC(DiMe(11,5)/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(11,5)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:1(12Z)-2OH(9,10)/DiMe(11,5))

(2-{[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-{[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C48H88NO11P (885.6094668)


PC(18:1(12Z)-2OH(9,10)/DiMe(11,5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:1(12Z)-2OH(9,10)/DiMe(11,5)), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC 44:8

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-(13Z,16Z-docosadienoyl)-glycero-3-phosphocholine

C52H88NO8P (885.6247218)


Found in mouse spleen; TwoDicalId=534; MgfFile=160729_spleen_AA_19_Neg; MgfId=1242

   

(2S,3S,4R,5R,6Z)-1-O-(beta-D-glucopyranosyl)-2N-((2R)-2-hydroxy-(17Z)-hexacosenoyl)-6(Z)-octadecene-1,3,4,5-tetraol-2-amino|(2S,3S,4R,5R,6Z)-1-O-(beta-D-glucopyranosyl)-2N-<(2R)-2-hydroxy-(17Z)-hexa-cosenoyl>-6(Z)-octadecene-1,3,4,5-tetraol-2-amino|(2S,3S,4R,5R,6Z)-1-O-(beta-D-glucopyranosyl)-2N-<(2R)-2-hydroxy-(17Z)-hexacosenoyl>-6(Z)-octadecene-1,3,4,5-tetraol-2-amino

(2S,3S,4R,5R,6Z)-1-O-(beta-D-glucopyranosyl)-2N-((2R)-2-hydroxy-(17Z)-hexacosenoyl)-6(Z)-octadecene-1,3,4,5-tetraol-2-amino|(2S,3S,4R,5R,6Z)-1-O-(beta-D-glucopyranosyl)-2N-<(2R)-2-hydroxy-(17Z)-hexa-cosenoyl>-6(Z)-octadecene-1,3,4,5-tetraol-2-amino|(2S,3S,4R,5R,6Z)-1-O-(beta-D-glucopyranosyl)-2N-<(2R)-2-hydroxy-(17Z)-hexacosenoyl>-6(Z)-octadecene-1,3,4,5-tetraol-2-amino

C50H95NO11 (885.690476)


   

(2S,3S,4R,5R,6Z)-1-O-(beta-D-glucopyranosyl)-2N-((2R)-2-hydroxy-(19Z)-hexacosenoyl)-6(Z)-octadecene-1,3,4,5-tetraol-2-amino|(2S,3S,4R,5R,6Z)-1-O-(beta-D-glucopyranosyl)-2N-<(2R)-2-hydroxy-(19Z)-hexacosenoyl>-6(Z)-octadecene-1,3,4,5-tetraol-2-amino

(2S,3S,4R,5R,6Z)-1-O-(beta-D-glucopyranosyl)-2N-((2R)-2-hydroxy-(19Z)-hexacosenoyl)-6(Z)-octadecene-1,3,4,5-tetraol-2-amino|(2S,3S,4R,5R,6Z)-1-O-(beta-D-glucopyranosyl)-2N-<(2R)-2-hydroxy-(19Z)-hexacosenoyl>-6(Z)-octadecene-1,3,4,5-tetraol-2-amino

C50H95NO11 (885.690476)


   

Lecithin

1-Docosahexaenoyl-2-docosadienoyl-sn-glycero-3-phosphocholine

C52H88NO8P (885.6247218)


   

PS(21:0/22:2(13Z,16Z))

1-heneicosanoyl-2-(13Z,16Z-docosadienoyl)-glycero-3-phosphoserine

C49H92NO10P (885.6458501999999)


   

PS(22:2(13Z,16Z)/21:0)

1-(13Z,16Z-docosadienoyl)-2-heneicosanoyl-glycero-3-phosphoserine

C49H92NO10P (885.6458501999999)


   

PS 43:2

1-(13Z,16Z-docosadienoyl)-2-heneicosanoyl-glycero-3-phosphoserine

C49H92NO10P (885.6458501999999)


   

[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H88NO8P (885.6247218)


   
   
   
   
   

PC(20:1(11Z)/PGF2alpha)

PC(20:1(11Z)/PGF2alpha)

C48H88NO11P (885.6094668)


   

PC(PGF2alpha/20:1(11Z))

PC(PGF2alpha/20:1(11Z))

C48H88NO11P (885.6094668)


   
   
   
   
   

PC(20:2(11Z,14Z)/PGF1alpha)

PC(20:2(11Z,14Z)/PGF1alpha)

C48H88NO11P (885.6094668)


   

PC(PGF1alpha/20:2(11Z,14Z))

PC(PGF1alpha/20:2(11Z,14Z))

C48H88NO11P (885.6094668)


   

PC(22:1(13Z)/5-iso PGF2VI)

PC(22:1(13Z)/5-iso PGF2VI)

C48H88NO11P (885.6094668)


   

PC(5-iso PGF2VI/22:1(13Z))

PC(5-iso PGF2VI/22:1(13Z))

C48H88NO11P (885.6094668)


   
   
   

PC(DiMe(11,5)/18:1(12Z)-2OH(9,10))

PC(DiMe(11,5)/18:1(12Z)-2OH(9,10))

C48H88NO11P (885.6094668)


   

PC(18:1(12Z)-2OH(9,10)/DiMe(11,5))

PC(18:1(12Z)-2OH(9,10)/DiMe(11,5))

C48H88NO11P (885.6094668)


   

PS(24:0/18:2(10E,12Z)+=O(9))

PS(24:0/18:2(10E,12Z)+=O(9))

C48H88NO11P (885.6094668)


   

PS(18:2(10E,12Z)+=O(9)/24:0)

PS(18:2(10E,12Z)+=O(9)/24:0)

C48H88NO11P (885.6094668)


   

PS(24:0/18:2(9Z,11E)+=O(13))

PS(24:0/18:2(9Z,11E)+=O(13))

C48H88NO11P (885.6094668)


   

PS(18:2(9Z,11E)+=O(13)/24:0)

PS(18:2(9Z,11E)+=O(13)/24:0)

C48H88NO11P (885.6094668)


   

[(2R)-2-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy-3-tetracosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy-3-tetracosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H96NO9P (885.6822335999999)


   

[(2R)-3-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy-2-tetracosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy-2-tetracosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H96NO9P (885.6822335999999)


   

(2S)-2-amino-3-[[(2R)-3-docosanoyloxy-2-[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-3-docosanoyloxy-2-[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H88NO11P (885.6094668)


   

(2S)-2-amino-3-[[(2R)-2-docosanoyloxy-3-[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-2-docosanoyloxy-3-[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H88NO11P (885.6094668)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy-3-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy-3-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C48H88NO11P (885.6094668)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy-2-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy-2-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C48H88NO11P (885.6094668)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy-3-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy-3-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C48H88NO11P (885.6094668)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy-2-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy-2-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C48H88NO11P (885.6094668)


   
   
   

PC(20:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

PC(20:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C48H88NO11P (885.6094668)


   

PC(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/20:0)

PC(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/20:0)

C48H88NO11P (885.6094668)


   

2,3-bis[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy]propyl 2-(trimethylazaniumyl)ethyl phosphate

2,3-bis[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy]propyl 2-(trimethylazaniumyl)ethyl phosphate

C52H88NO8P (885.6247218)


   

[3-[(Z)-heptadec-9-enoxy]-2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-heptadec-9-enoxy]-2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C53H92NO7P (885.6611051999998)


   

HexCer 14:3;2O/32:5;2O

HexCer 14:3;2O/32:5;2O

C52H87NO10 (885.6329642)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C53H92NO7P (885.6611051999998)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] (16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] (16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoate

C53H92NO7P (885.6611051999998)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoxy]propan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoxy]propan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C53H92NO7P (885.6611051999998)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]propan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]propan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C53H92NO7P (885.6611051999998)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] (14Z,17Z,20Z)-octacosa-14,17,20-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] (14Z,17Z,20Z)-octacosa-14,17,20-trienoate

C53H92NO7P (885.6611051999998)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

C53H92NO7P (885.6611051999998)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(15Z,18Z)-hexacosa-15,18-dienoxy]propan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(15Z,18Z)-hexacosa-15,18-dienoxy]propan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C53H92NO7P (885.6611051999998)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propan-2-yl] (11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propan-2-yl] (11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoate

C53H92NO7P (885.6611051999998)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

C53H92NO7P (885.6611051999998)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoxy]propan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoxy]propan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C53H92NO7P (885.6611051999998)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]propan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]propan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C53H92NO7P (885.6611051999998)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]propan-2-yl] (Z)-docos-13-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]propan-2-yl] (Z)-docos-13-enoate

C53H92NO7P (885.6611051999998)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-docosa-13,16-dienoxy]propan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-docosa-13,16-dienoxy]propan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate

C53H92NO7P (885.6611051999998)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]propan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]propan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C53H92NO7P (885.6611051999998)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C53H92NO7P (885.6611051999998)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C53H92NO7P (885.6611051999998)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-docos-13-enoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-docos-13-enoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C53H92NO7P (885.6611051999998)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate

C53H92NO7P (885.6611051999998)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]propan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]propan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate

C53H92NO7P (885.6611051999998)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

C53H92NO7P (885.6611051999998)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]propan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]propan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C53H92NO7P (885.6611051999998)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoxy]propan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoxy]propan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C53H92NO7P (885.6611051999998)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoate

C53H92NO7P (885.6611051999998)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoxy]propan-2-yl] (Z)-icos-11-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoxy]propan-2-yl] (Z)-icos-11-enoate

C53H92NO7P (885.6611051999998)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] (13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] (13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoate

C53H92NO7P (885.6611051999998)


   

2-amino-3-[[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-tricosoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-tricosoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C50H96NO9P (885.6822335999999)


   

2-amino-3-[hydroxy-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-pentacosoxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-pentacosoxypropoxy]phosphoryl]oxypropanoic acid

C50H96NO9P (885.6822335999999)


   

[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C53H92NO7P (885.6611051999998)


   

[3-[(11Z,14Z)-henicosa-11,14-dienoxy]-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(11Z,14Z)-henicosa-11,14-dienoxy]-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C53H92NO7P (885.6611051999998)


   

[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C53H92NO7P (885.6611051999998)


   

2-amino-3-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-docosoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-docosoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C50H96NO9P (885.6822335999999)


   

2-amino-3-[[2-[(Z)-hexacos-15-enoyl]oxy-3-[(Z)-octadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(Z)-hexacos-15-enoyl]oxy-3-[(Z)-octadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C50H96NO9P (885.6822335999999)


   

2-amino-3-[hydroxy-[2-icosanoyloxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-icosanoyloxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propoxy]phosphoryl]oxypropanoic acid

C50H96NO9P (885.6822335999999)


   

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C53H92NO7P (885.6611051999998)


   

[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-2-[(Z)-nonadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-2-[(Z)-nonadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C53H92NO7P (885.6611051999998)


   

2-amino-3-[[3-[(Z)-docos-13-enoxy]-2-[(Z)-docos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(Z)-docos-13-enoxy]-2-[(Z)-docos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C50H96NO9P (885.6822335999999)


   

[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C53H92NO7P (885.6611051999998)


   

2-amino-3-[[2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-3-octadecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-3-octadecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C50H96NO9P (885.6822335999999)


   

2-amino-3-[hydroxy-[3-[(11Z,14Z)-icosa-11,14-dienoxy]-2-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(11Z,14Z)-icosa-11,14-dienoxy]-2-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C50H96NO9P (885.6822335999999)


   

2-amino-3-[[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-docosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-docosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C50H96NO9P (885.6822335999999)


   

2-amino-3-[[3-[(Z)-hexacos-15-enoxy]-2-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(Z)-hexacos-15-enoxy]-2-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C50H96NO9P (885.6822335999999)


   

2-amino-3-[hydroxy-[3-[(9Z,12Z)-nonadeca-9,12-dienoxy]-2-pentacosanoyloxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(9Z,12Z)-nonadeca-9,12-dienoxy]-2-pentacosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C50H96NO9P (885.6822335999999)


   

2-amino-3-[hydroxy-[3-[(Z)-icos-11-enoxy]-2-[(Z)-tetracos-13-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(Z)-icos-11-enoxy]-2-[(Z)-tetracos-13-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C50H96NO9P (885.6822335999999)


   

2-amino-3-[[2-hexacosanoyloxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-hexacosanoyloxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C50H96NO9P (885.6822335999999)


   

2-amino-3-[hydroxy-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-tetracosoxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-tetracosoxypropoxy]phosphoryl]oxypropanoic acid

C50H96NO9P (885.6822335999999)


   

[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(Z)-nonadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(Z)-nonadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C53H92NO7P (885.6611051999998)


   

2-amino-3-[[3-[(15Z,18Z)-hexacosa-15,18-dienoxy]-2-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(15Z,18Z)-hexacosa-15,18-dienoxy]-2-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C50H96NO9P (885.6822335999999)


   

2-amino-3-[[3-[(11Z,14Z)-henicosa-11,14-dienoxy]-2-tricosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(11Z,14Z)-henicosa-11,14-dienoxy]-2-tricosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C50H96NO9P (885.6822335999999)


   

2-amino-3-[[3-hexacosoxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-hexacosoxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C50H96NO9P (885.6822335999999)


   

2-amino-3-[hydroxy-[2-[(Z)-icos-11-enoyl]oxy-3-[(Z)-tetracos-13-enoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(Z)-icos-11-enoyl]oxy-3-[(Z)-tetracos-13-enoxy]propoxy]phosphoryl]oxypropanoic acid

C50H96NO9P (885.6822335999999)


   

2-amino-3-[hydroxy-[3-icosoxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-icosoxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C50H96NO9P (885.6822335999999)


   

[2-[(Z)-heptadec-9-enoyl]oxy-3-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-heptadec-9-enoyl]oxy-3-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C53H92NO7P (885.6611051999998)


   

[3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C53H92NO7P (885.6611051999998)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoate

C52H88NO8P (885.6247218)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropan-2-yl] (10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropan-2-yl] (10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoate

C52H88NO8P (885.6247218)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C52H88NO8P (885.6247218)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoate

C52H88NO8P (885.6247218)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-13,16,19,22,25,28,31-heptaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-13,16,19,22,25,28,31-heptaenoate

C52H88NO8P (885.6247218)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-11,14,17,20,23,26,29-heptaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-11,14,17,20,23,26,29-heptaenoate

C52H88NO8P (885.6247218)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate

C52H88NO8P (885.6247218)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-12,15,18,21,24,27,30,33-octaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-12,15,18,21,24,27,30,33-octaenoate

C52H88NO8P (885.6247218)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-10,13,16,19,22,25,28,31-octaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-10,13,16,19,22,25,28,31-octaenoate

C52H88NO8P (885.6247218)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoate

C52H88NO8P (885.6247218)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate

C52H88NO8P (885.6247218)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoate

C52H88NO8P (885.6247218)


   

AHexCer (O-14:1)16:1;2O/16:5;O

AHexCer (O-14:1)16:1;2O/16:5;O

C52H87NO10 (885.6329642)


   

AHexCer (O-16:5)16:1;2O/14:1;O

AHexCer (O-16:5)16:1;2O/14:1;O

C52H87NO10 (885.6329642)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-14,17,20,23,26,29,32,35-octaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-14,17,20,23,26,29,32,35-octaenoate

C52H88NO8P (885.6247218)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]propan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]propan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C53H92NO7P (885.6611051999998)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]propan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]propan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

C53H92NO7P (885.6611051999998)


   

[2-[(12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-12,15,18,21,24,27,30,33-octaenoyl]oxy-3-octanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-12,15,18,21,24,27,30,33-octaenoyl]oxy-3-octanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H88NO8P (885.6247218)


   

2-amino-3-[[3-heptadecanoyloxy-2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-heptadecanoyloxy-2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H92NO10P (885.6458501999999)


   

2-amino-3-[hydroxy-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C49H92NO10P (885.6458501999999)


   

2-amino-3-[hydroxy-[3-nonadecanoyloxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-nonadecanoyloxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C49H92NO10P (885.6458501999999)


   

2-amino-3-[hydroxy-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-tricosanoyloxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-tricosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C49H92NO10P (885.6458501999999)


   

2-amino-3-[hydroxy-[3-[(Z)-nonadec-9-enoyl]oxy-2-[(Z)-tetracos-13-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(Z)-nonadec-9-enoyl]oxy-2-[(Z)-tetracos-13-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C49H92NO10P (885.6458501999999)


   

2-amino-3-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-henicosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-henicosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H92NO10P (885.6458501999999)


   

2-amino-3-[[2-[(Z)-docos-13-enoyl]oxy-3-[(Z)-henicos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(Z)-docos-13-enoyl]oxy-3-[(Z)-henicos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H92NO10P (885.6458501999999)


   

2-amino-3-[[3-[(Z)-heptadec-9-enoyl]oxy-2-[(Z)-hexacos-15-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(Z)-heptadec-9-enoyl]oxy-2-[(Z)-hexacos-15-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H92NO10P (885.6458501999999)


   

2-amino-3-[[3-docosanoyloxy-2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-docosanoyloxy-2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H92NO10P (885.6458501999999)


   

2-amino-3-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-hexacosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-hexacosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H92NO10P (885.6458501999999)


   

2-amino-3-[hydroxy-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-pentacosanoyloxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-pentacosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C49H92NO10P (885.6458501999999)


   

[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H88NO8P (885.6247218)


   

[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H88NO8P (885.6247218)


   

[3-dodecanoyloxy-2-[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-dodecanoyloxy-2-[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H88NO8P (885.6247218)


   

[3-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H88NO8P (885.6247218)


   

[3-[(Z)-hexadec-9-enoyl]oxy-2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-hexadec-9-enoyl]oxy-2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H88NO8P (885.6247218)


   

[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H88NO8P (885.6247218)


   

[2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H88NO8P (885.6247218)


   

[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H88NO8P (885.6247218)


   

[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H88NO8P (885.6247218)


   

[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-2-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-2-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H88NO8P (885.6247218)


   

[3-tetradecanoyloxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-tetradecanoyloxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H88NO8P (885.6247218)


   

[3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H88NO8P (885.6247218)


   

[3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H88NO8P (885.6247218)


   

[3-[(Z)-tetradec-9-enoyl]oxy-2-[(9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-tetradec-9-enoyl]oxy-2-[(9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H88NO8P (885.6247218)


   

[3-decanoyloxy-2-[(10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-10,13,16,19,22,25,28,31-octaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-decanoyloxy-2-[(10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-10,13,16,19,22,25,28,31-octaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H88NO8P (885.6247218)


   

[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H88NO8P (885.6247218)


   

[3-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H88NO8P (885.6247218)


   

[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H88NO8P (885.6247218)


   

2-amino-3-[[3-heptacosanoyloxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-heptacosanoyloxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H92NO10P (885.6458501999999)


   

(12Z,15Z,18Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydecan-2-yl]hexacosa-12,15,18-trienamide

(12Z,15Z,18Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydecan-2-yl]hexacosa-12,15,18-trienamide

C48H87NO13 (885.6177091999999)


   

(13Z,16Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradec-4-en-2-yl]docosa-13,16-dienamide

(13Z,16Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradec-4-en-2-yl]docosa-13,16-dienamide

C48H87NO13 (885.6177091999999)


   

(14Z,17Z,20Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctan-2-yl]octacosa-14,17,20-trienamide

(14Z,17Z,20Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctan-2-yl]octacosa-14,17,20-trienamide

C48H87NO13 (885.6177091999999)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxypentacosa-4,8,12-trien-2-yl]undecanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxypentacosa-4,8,12-trien-2-yl]undecanamide

C48H87NO13 (885.6177091999999)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctacosa-4,8,12-trien-2-yl]octanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctacosa-4,8,12-trien-2-yl]octanamide

C48H87NO13 (885.6177091999999)


   

(Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodeca-4,8-dien-2-yl]tetracos-13-enamide

(Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodeca-4,8-dien-2-yl]tetracos-13-enamide

C48H87NO13 (885.6177091999999)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradeca-4,8,12-trien-2-yl]docosanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradeca-4,8,12-trien-2-yl]docosanamide

C48H87NO13 (885.6177091999999)


   

(13Z,16Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodec-4-en-2-yl]tetracosa-13,16-dienamide

(13Z,16Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodec-4-en-2-yl]tetracosa-13,16-dienamide

C48H87NO13 (885.6177091999999)


   

(10Z,13Z,16Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradecan-2-yl]docosa-10,13,16-trienamide

(10Z,13Z,16Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradecan-2-yl]docosa-10,13,16-trienamide

C48H87NO13 (885.6177091999999)


   

(Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydocosa-4,8-dien-2-yl]tetradec-9-enamide

(Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydocosa-4,8-dien-2-yl]tetradec-9-enamide

C48H87NO13 (885.6177091999999)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxypentadeca-4,8,12-trien-2-yl]henicosanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxypentadeca-4,8,12-trien-2-yl]henicosanamide

C48H87NO13 (885.6177091999999)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytritriaconta-4,8,12-trien-2-yl]propanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytritriaconta-4,8,12-trien-2-yl]propanamide

C48H87NO13 (885.6177091999999)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydocosa-4,8,12-trien-2-yl]tetradecanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydocosa-4,8,12-trien-2-yl]tetradecanamide

C48H87NO13 (885.6177091999999)


   

(10Z,13Z,16Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodecan-2-yl]tetracosa-10,13,16-trienamide

(10Z,13Z,16Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodecan-2-yl]tetracosa-10,13,16-trienamide

C48H87NO13 (885.6177091999999)


   

(Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradeca-4,8-dien-2-yl]docos-13-enamide

(Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradeca-4,8-dien-2-yl]docos-13-enamide

C48H87NO13 (885.6177091999999)


   

(15Z,18Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydec-4-en-2-yl]hexacosa-15,18-dienamide

(15Z,18Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydec-4-en-2-yl]hexacosa-15,18-dienamide

C48H87NO13 (885.6177091999999)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhenicosa-4,8,12-trien-2-yl]pentadecanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhenicosa-4,8,12-trien-2-yl]pentadecanamide

C48H87NO13 (885.6177091999999)


   

(Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytricosa-4,8-dien-2-yl]tridec-9-enamide

(Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytricosa-4,8-dien-2-yl]tridec-9-enamide

C48H87NO13 (885.6177091999999)


   

(Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxypentadeca-4,8-dien-2-yl]henicos-11-enamide

(Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxypentadeca-4,8-dien-2-yl]henicos-11-enamide

C48H87NO13 (885.6177091999999)


   

(17Z,20Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]octacosa-17,20-dienamide

(17Z,20Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]octacosa-17,20-dienamide

C48H87NO13 (885.6177091999999)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydotriaconta-4,8,12-trien-2-yl]butanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydotriaconta-4,8,12-trien-2-yl]butanamide

C48H87NO13 (885.6177091999999)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhexacosa-4,8,12-trien-2-yl]decanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhexacosa-4,8,12-trien-2-yl]decanamide

C48H87NO13 (885.6177091999999)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetratriaconta-4,8,12-trien-2-yl]acetamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetratriaconta-4,8,12-trien-2-yl]acetamide

C48H87NO13 (885.6177091999999)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyheptacosa-4,8,12-trien-2-yl]nonanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyheptacosa-4,8,12-trien-2-yl]nonanamide

C48H87NO13 (885.6177091999999)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxynonacosa-4,8,12-trien-2-yl]heptanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxynonacosa-4,8,12-trien-2-yl]heptanamide

C48H87NO13 (885.6177091999999)


   

(11Z,14Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxypentadec-4-en-2-yl]henicosa-11,14-dienamide

(11Z,14Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxypentadec-4-en-2-yl]henicosa-11,14-dienamide

C48H87NO13 (885.6177091999999)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetracosa-4,8,12-trien-2-yl]dodecanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetracosa-4,8,12-trien-2-yl]dodecanamide

C48H87NO13 (885.6177091999999)


   

(Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhenicosa-4,8-dien-2-yl]pentadec-9-enamide

(Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhenicosa-4,8-dien-2-yl]pentadec-9-enamide

C48H87NO13 (885.6177091999999)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhentriaconta-4,8,12-trien-2-yl]pentanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhentriaconta-4,8,12-trien-2-yl]pentanamide

C48H87NO13 (885.6177091999999)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytriaconta-4,8,12-trien-2-yl]hexanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytriaconta-4,8,12-trien-2-yl]hexanamide

C48H87NO13 (885.6177091999999)


   

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytricosa-4,8,12-trien-2-yl]tridecanamide

N-[(4E,8E,12E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytricosa-4,8,12-trien-2-yl]tridecanamide

C48H87NO13 (885.6177091999999)


   

(2S)-2-amino-3-[[(2S)-3-[(E)-heptadec-9-enoyl]oxy-2-[(E)-hexacos-5-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2S)-3-[(E)-heptadec-9-enoyl]oxy-2-[(E)-hexacos-5-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H92NO10P (885.6458501999999)


   

4-[2-[(11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C56H87NO7 (885.6482191999999)


   

(2S)-2-amino-3-[hydroxy-[(2S)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-pentacosanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-pentacosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C49H92NO10P (885.6458501999999)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(5E,8E)-icosa-5,8-dienoyl]oxy-2-tricosanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(5E,8E)-icosa-5,8-dienoyl]oxy-2-tricosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C49H92NO10P (885.6458501999999)


   

[(2R)-3-[(13E,16E)-docosa-13,16-dienoyl]oxy-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(13E,16E)-docosa-13,16-dienoyl]oxy-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H88NO8P (885.6247218)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-tricosanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-tricosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C49H92NO10P (885.6458501999999)


   

4-[3-[(11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C56H87NO7 (885.6482191999999)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-tricosanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-tricosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C49H92NO10P (885.6458501999999)


   

[(2R)-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-2-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-2-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H88NO8P (885.6247218)


   

4-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C56H87NO7 (885.6482191999999)


   

4-[3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C56H87NO7 (885.6482191999999)


   

4-[2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C56H87NO7 (885.6482191999999)


   

[(2R)-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H88NO8P (885.6247218)


   

4-[2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C56H87NO7 (885.6482191999999)


   

4-[2-[(8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C56H87NO7 (885.6482191999999)


   

4-[3-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C56H87NO7 (885.6482191999999)


   

4-[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C56H87NO7 (885.6482191999999)


   

(2S)-2-amino-3-[[(2R)-3-[(13E,16E)-docosa-13,16-dienoyl]oxy-2-henicosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-3-[(13E,16E)-docosa-13,16-dienoyl]oxy-2-henicosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H92NO10P (885.6458501999999)


   

4-[2-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C56H87NO7 (885.6482191999999)


   

4-[3-[(8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C56H87NO7 (885.6482191999999)


   

4-[3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxy-2-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxy-2-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C56H87NO7 (885.6482191999999)


   

(2S)-2-amino-3-[[(2R)-2-[(13E,16E)-docosa-13,16-dienoyl]oxy-3-henicosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-2-[(13E,16E)-docosa-13,16-dienoyl]oxy-3-henicosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H92NO10P (885.6458501999999)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-tricosanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-tricosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C49H92NO10P (885.6458501999999)


   

(2S)-2-amino-3-[[(2S)-3-heptadecanoyloxy-2-[(5E,9E)-hexacosa-5,9-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2S)-3-heptadecanoyloxy-2-[(5E,9E)-hexacosa-5,9-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H92NO10P (885.6458501999999)


   

4-[2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxy-3-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxy-3-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C56H87NO7 (885.6482191999999)


   

(2S)-2-amino-3-[[(2S)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-hexacosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2S)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-hexacosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H92NO10P (885.6458501999999)


   

[(2R)-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-2-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-2-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H88NO8P (885.6247218)


   

(2R)-2-amino-3-[hydroxy-[(2S)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-pentacosanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2R)-2-amino-3-[hydroxy-[(2S)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-pentacosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C49H92NO10P (885.6458501999999)


   

(2S)-2-amino-3-[hydroxy-[(2S)-3-[(9E,12E)-octadeca-9,12-dienoyl]oxy-2-pentacosanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-3-[(9E,12E)-octadeca-9,12-dienoyl]oxy-2-pentacosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C49H92NO10P (885.6458501999999)


   

[(2R)-2-[(13E,16E)-docosa-13,16-dienoyl]oxy-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(13E,16E)-docosa-13,16-dienoyl]oxy-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H88NO8P (885.6247218)


   

[(2R)-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H88NO8P (885.6247218)


   

(2R)-2-amino-3-[hydroxy-[(2S)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-pentacosanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2R)-2-amino-3-[hydroxy-[(2S)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-pentacosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C49H92NO10P (885.6458501999999)


   

(2R)-2-amino-3-[hydroxy-[(2S)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-pentacosanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2R)-2-amino-3-[hydroxy-[(2S)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-pentacosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C49H92NO10P (885.6458501999999)


   

(2S)-2-amino-3-[hydroxy-[(2S)-3-[(9E,11E)-octadeca-9,11-dienoyl]oxy-2-pentacosanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-3-[(9E,11E)-octadeca-9,11-dienoyl]oxy-2-pentacosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C49H92NO10P (885.6458501999999)


   

(2R)-2-amino-3-[hydroxy-[(2S)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-pentacosanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2R)-2-amino-3-[hydroxy-[(2S)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-pentacosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C49H92NO10P (885.6458501999999)


   

4-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C56H87NO7 (885.6482191999999)


   

4-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C56H87NO7 (885.6482191999999)


   

4-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C56H87NO7 (885.6482191999999)


   

[(2R)-2,3-bis[[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2,3-bis[[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H88NO8P (885.6247218)


   

(2S)-2-amino-3-[hydroxy-[(2S)-3-[(6E,9E)-octadeca-6,9-dienoyl]oxy-2-pentacosanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-3-[(6E,9E)-octadeca-6,9-dienoyl]oxy-2-pentacosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C49H92NO10P (885.6458501999999)


   

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]tetracosa-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]tetracosa-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C53H94N2O6P+ (885.6849133999999)


   

2-[[(4E,8E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxydocosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxydocosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C53H94N2O6P+ (885.6849133999999)


   

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(15Z,18Z,21Z,24Z,27Z)-triaconta-15,18,21,24,27-pentaenoyl]amino]octadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(15Z,18Z,21Z,24Z,27Z)-triaconta-15,18,21,24,27-pentaenoyl]amino]octadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

C53H94N2O6P+ (885.6849133999999)


   

2-[[(4E,8E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxyhexacosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxyhexacosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C53H94N2O6P+ (885.6849133999999)


   

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]amino]icosa-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]amino]icosa-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C53H94N2O6P+ (885.6849133999999)


   

2-[hydroxy-[(E)-3-hydroxy-2-[[(13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-13,16,19,22,25,28,31-heptaenoyl]amino]tetradec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E)-3-hydroxy-2-[[(13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-13,16,19,22,25,28,31-heptaenoyl]amino]tetradec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C53H94N2O6P+ (885.6849133999999)


   

2-[hydroxy-[(E)-3-hydroxy-2-[[(17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-17,20,23,26,29,32,35-heptaenoyl]amino]dec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E)-3-hydroxy-2-[[(17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-17,20,23,26,29,32,35-heptaenoyl]amino]dec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C53H94N2O6P+ (885.6849133999999)


   

2-[hydroxy-[3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]amino]octadecoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]amino]octadecoxy]phosphoryl]oxyethyl-trimethylazanium

C53H94N2O6P+ (885.6849133999999)


   

2-[hydroxy-[3-hydroxy-2-[[(10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-10,13,16,19,22,25,28,31-octaenoyl]amino]tetradecoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-hydroxy-2-[[(10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-10,13,16,19,22,25,28,31-octaenoyl]amino]tetradecoxy]phosphoryl]oxyethyl-trimethylazanium

C53H94N2O6P+ (885.6849133999999)


   

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]octacosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]octacosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

C53H94N2O6P+ (885.6849133999999)


   

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]triaconta-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]triaconta-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

C53H94N2O6P+ (885.6849133999999)


   

2-[hydroxy-[(E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoyl]amino]octadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoyl]amino]octadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C53H94N2O6P+ (885.6849133999999)


   

2-[[(4E,8E)-2-[[(14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-14,17,20,23,26,29-hexaenoyl]amino]-3-hydroxyhexadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E)-2-[[(14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-14,17,20,23,26,29-hexaenoyl]amino]-3-hydroxyhexadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C53H94N2O6P+ (885.6849133999999)


   

2-[[(E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxydocos-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxydocos-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C53H94N2O6P+ (885.6849133999999)


   

2-[[(4E,8E,12E)-2-[[(17Z,20Z,23Z,26Z,29Z)-dotriaconta-17,20,23,26,29-pentaenoyl]amino]-3-hydroxyhexadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E,12E)-2-[[(17Z,20Z,23Z,26Z,29Z)-dotriaconta-17,20,23,26,29-pentaenoyl]amino]-3-hydroxyhexadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C53H94N2O6P+ (885.6849133999999)


   

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoyl]amino]octadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoyl]amino]octadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C53H94N2O6P+ (885.6849133999999)


   

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(19Z,22Z,25Z,28Z,31Z)-tetratriaconta-19,22,25,28,31-pentaenoyl]amino]tetradeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(19Z,22Z,25Z,28Z,31Z)-tetratriaconta-19,22,25,28,31-pentaenoyl]amino]tetradeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

C53H94N2O6P+ (885.6849133999999)


   

2-[[(E)-2-[[(15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-15,18,21,24,27,30,33-heptaenoyl]amino]-3-hydroxydodec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(E)-2-[[(15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-15,18,21,24,27,30,33-heptaenoyl]amino]-3-hydroxydodec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C53H94N2O6P+ (885.6849133999999)


   

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-16,19,22,25,28,31-hexaenoyl]amino]tetradeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-16,19,22,25,28,31-hexaenoyl]amino]tetradeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C53H94N2O6P+ (885.6849133999999)


   

2-[[(4E,8E,12E)-2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxydocosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E,12E)-2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxydocosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C53H94N2O6P+ (885.6849133999999)


   

2-[hydroxy-[(E)-3-hydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]amino]icos-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E)-3-hydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]amino]icos-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C53H94N2O6P+ (885.6849133999999)


   

2-[hydroxy-[3-hydroxy-2-[[(16Z,19Z,22Z,25Z,28Z,31Z,34Z,37Z)-tetraconta-16,19,22,25,28,31,34,37-octaenoyl]amino]octoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-hydroxy-2-[[(16Z,19Z,22Z,25Z,28Z,31Z,34Z,37Z)-tetraconta-16,19,22,25,28,31,34,37-octaenoyl]amino]octoxy]phosphoryl]oxyethyl-trimethylazanium

C53H94N2O6P+ (885.6849133999999)


   

2-[[(E)-2-[[(11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-11,14,17,20,23,26,29-heptaenoyl]amino]-3-hydroxyhexadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(E)-2-[[(11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-11,14,17,20,23,26,29-heptaenoyl]amino]-3-hydroxyhexadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C53H94N2O6P+ (885.6849133999999)


   

2-[hydroxy-[3-hydroxy-2-[[(14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-14,17,20,23,26,29,32,35-octaenoyl]amino]decoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-hydroxy-2-[[(14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-14,17,20,23,26,29,32,35-octaenoyl]amino]decoxy]phosphoryl]oxyethyl-trimethylazanium

C53H94N2O6P+ (885.6849133999999)


   

2-[hydroxy-[(E)-3-hydroxy-2-[[(19Z,22Z,25Z,28Z,31Z,34Z,37Z)-tetraconta-19,22,25,28,31,34,37-heptaenoyl]amino]oct-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E)-3-hydroxy-2-[[(19Z,22Z,25Z,28Z,31Z,34Z,37Z)-tetraconta-19,22,25,28,31,34,37-heptaenoyl]amino]oct-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C53H94N2O6P+ (885.6849133999999)


   

2-[[2-[[(12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-12,15,18,21,24,27,30,33-octaenoyl]amino]-3-hydroxydodecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[[(12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-12,15,18,21,24,27,30,33-octaenoyl]amino]-3-hydroxydodecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C53H94N2O6P+ (885.6849133999999)


   

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]tetracosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]tetracosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

C53H94N2O6P+ (885.6849133999999)


   

2-[[(4E,8E)-2-[[(18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-18,21,24,27,30,33-hexaenoyl]amino]-3-hydroxydodeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E)-2-[[(18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-18,21,24,27,30,33-hexaenoyl]amino]-3-hydroxydodeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C53H94N2O6P+ (885.6849133999999)


   

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoyl]amino]icosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoyl]amino]icosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

C53H94N2O6P+ (885.6849133999999)


   

2-[[(4E,8E,12E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxyhexacosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E,12E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxyhexacosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C53H94N2O6P+ (885.6849133999999)


   

2-[[2-[[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]amino]-3-hydroxyhexadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]amino]-3-hydroxyhexadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C53H94N2O6P+ (885.6849133999999)


   

PC(22:2(13Z,16Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

PC(22:2(13Z,16Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

C52H88NO8P (885.6247218)


   

PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:2(13Z,16Z))

PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:2(13Z,16Z))

C52H88NO8P (885.6247218)


   

Hex2Cer(36:3)

Hex2Cer(d16:0_20:3)

C48H87NO13 (885.6177091999999)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

Hex2Cer(37:2)

Hex2Cer(m19:0_18:2)

C49H91NO12 (885.6540926)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved