Exact Mass: 884.4452

Exact Mass Matches: 884.4452

Found 216 metabolites which its exact mass value is equals to given mass value 884.4452, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Gracillin

(2S,3R,4R,5R,6S)-2-[(2R,3R,4S,5R,6R)-5-hydroxy-6-(hydroxymethyl)-2-[(1S,2S,4S,5R,6R,7S,8R,9S,12S,13R,16S)-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-ene-6,2-oxane]-16-yl]oxy-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-3-yl]oxy-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


Gracillin is a triterpenoid. Gracillin is a natural product found in Dracaena draco, Clintonia udensis, and other organisms with data available. Gracillin is a steroidal saponin extracted from the roots of the plant and has anti-tumor properties. Gracillin is a steroidal saponin extracted from the roots of the plant and has anti-tumor properties.

   

Deltonin

(2S,3R,4R,5R,6S)-2-[(2R,3R,4S,5S,6R)-4-hydroxy-6-(hydroxymethyl)-2-[(1S,2S,4S,5R,6R,7S,8R,9S,12S,13R,16S)-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-ene-6,2-oxane]-16-yl]oxy-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-3-yl]oxy-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


Deltonin is a triterpenoid. Deltonin is a natural product found in Ophiopogon planiscapus, Allium vineale, and other organisms with data available. Deltonin is found in onion-family vegetables. Deltonin is a constituent of Allium vineale (wild garlic) Deltonin, a steroidal saponin, isolated from Dioscorea zingiberensis, has antitumor activity; Deltonin inhibits ERK1/2 and AKT activation. Deltonin, a steroidal saponin, isolated from Dioscorea zingiberensis, has antitumor activity; Deltonin inhibits ERK1/2 and AKT activation. Deltonin, a steroidal saponin, isolated from Dioscorea zingiberensis, has antitumor activity; Deltonin inhibits ERK1/2 and AKT activation.

   

Polypodoside A

(3R,5R,9S,10R,13R,14S,17R)-3-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-10,13-dimethyl-17-[(1S)-1-[(2R,5S,6R)-5-methyl-6-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]ethyl]-1,2,3,4,5,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-6-one

C45H72O17 (884.4769)


Polypodoside A is a constituent of rhizomes of the licorice fern (Polypodium glycyrrhiza). Intensely sweet substance. Constituent of rhizomes of the licorice fern (Polypodium glycyrrhiza). Intensely sweet substance.

   

Schidigerasaponin B1

16-{[5-hydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-7,9,13-trimethyl-5-methylidene-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]-10-one

C44H68O18 (884.4405)


Schidigerasaponin B1 is found in fruits. Schidigerasaponin B1 is a constituent of Yucca schidigera (Mojave yucca) Constituent of Yucca schidigera (Mojave yucca). Schidigerasaponin B1 is found in fruits.

   

Diosgenin 3-[glucosyl-(1->4)-rhamnosyl-(1->4)-glucoside]

2-[(6-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18-eneoxy}oxan-3-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C45H72O17 (884.4769)


Diosgenin 3-[glucosyl-(1->4)-rhamnosyl-(1->4)-glucoside] is found in onion-family vegetables. Diosgenin 3-[glucosyl-(1->4)-rhamnosyl-(1->4)-glucoside] is a constituent of Allium vineale (wild garlic).

   

Melongoside H

2-{[3-hydroxy-2-(hydroxymethyl)-6-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18-eneoxy}-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


Melongoside H is found in fruits. Melongoside H is a constituent of Solanum melongena (aubergine). Constituent of Solanum melongena (aubergine). Melongoside H is found in fruits and eggplant.

   

Graecunin G

2-{[(4,5-dihydroxy-6-methyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]methyl}-6-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18-eneoxy}oxane-3,4,5-triol

C45H72O17 (884.4769)


Isolated from the leaves of Trigonella foenum-graecum (fenugreek). Graecunin G is found in herbs and spices and fenugreek. Graecunin G is found in fenugreek. Graecunin G is isolated from the leaves of Trigonella foenum-graecum (fenugreek).

   

beta-Chacotriosyllilagen

2-{[4-hydroxy-2-(hydroxymethyl)-6-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18-en-15-oloxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


beta-Chacotriosyllilagen is found in onion-family vegetables. beta-Chacotriosyllilagen is a constituent of Allium tuberosum (Chinese chives)

   

Gracillin

2-{[3-hydroxy-2-(hydroxymethyl)-6-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18-eneoxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C45H72O17 (884.4769)


   

PGP(16:0/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2S)-3-({[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-(hexadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H78O15P2 (884.4816)


PGP(16:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/16:0)

[(2S)-3-({[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-(hexadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H78O15P2 (884.4816)


PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/16:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,11Z)/18:1(12Z)-2OH(9,10))

[(2S)-3-({[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H78O15P2 (884.4816)


PGP(18:2(9Z,11Z)/18:1(12Z)-2OH(9,10)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,11Z)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:1(12Z)-2OH(9,10)/18:2(9Z,11Z))

[(2S)-3-({[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H78O15P2 (884.4816)


PGP(18:1(12Z)-2OH(9,10)/18:2(9Z,11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(12Z)-2OH(9,10)/18:2(9Z,11Z)), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,12Z)/18:1(12Z)-2OH(9,10))

[(2S)-3-({[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H78O15P2 (884.4816)


PGP(18:2(9Z,12Z)/18:1(12Z)-2OH(9,10)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,12Z)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:1(12Z)-2OH(9,10)/18:2(9Z,12Z))

[(2S)-3-({[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H78O15P2 (884.4816)


PGP(18:1(12Z)-2OH(9,10)/18:2(9Z,12Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(12Z)-2OH(9,10)/18:2(9Z,12Z)), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(a-15:0/PGE2)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(12-methyltetradecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C41H74O16P2 (884.4452)


PGP(a-15:0/PGE2) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(a-15:0/PGE2), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(PGE2/a-15:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(12-methyltetradecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C41H74O16P2 (884.4452)


PGP(PGE2/a-15:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGE2/a-15:0), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(a-15:0/PGD2)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(12-methyltetradecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C41H74O16P2 (884.4452)


PGP(a-15:0/PGD2) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(a-15:0/PGD2), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(PGD2/a-15:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(12-methyltetradecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C41H74O16P2 (884.4452)


PGP(PGD2/a-15:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGD2/a-15:0), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(a-15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(12-methyltetradecanoyl)oxy]-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C41H74O16P2 (884.4452)


PGP(a-15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(a-15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/a-15:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(12-methyltetradecanoyl)oxy]-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C41H74O16P2 (884.4452)


PGP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/a-15:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/a-15:0), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-15:0/PGE2)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(13-methyltetradecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C41H74O16P2 (884.4452)


PGP(i-15:0/PGE2) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-15:0/PGE2), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(PGE2/i-15:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(13-methyltetradecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C41H74O16P2 (884.4452)


PGP(PGE2/i-15:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGE2/i-15:0), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-15:0/PGD2)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(13-methyltetradecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C41H74O16P2 (884.4452)


PGP(i-15:0/PGD2) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-15:0/PGD2), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(PGD2/i-15:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(13-methyltetradecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C41H74O16P2 (884.4452)


PGP(PGD2/i-15:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGD2/i-15:0), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(13-methyltetradecanoyl)oxy]-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C41H74O16P2 (884.4452)


PGP(i-15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-15:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(13-methyltetradecanoyl)oxy]-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C41H74O16P2 (884.4452)


PGP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-15:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-15:0), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-16:0/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2S)-3-({[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-[(14-methylpentadecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H78O15P2 (884.4816)


PGP(i-16:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-16:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 14-methylpentadecanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/i-16:0)

[(2S)-3-({[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-[(14-methylpentadecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H78O15P2 (884.4816)


PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/i-16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/i-16:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PI(16:2(9Z,12Z)/PGJ2)

[(1R,6R,12Z,15S,19R,20R,21R,22R,23S,24R)-3,20,21,22,23,24-hexahydroxy-19-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,8,18-trioxo-2,4,7-trioxa-3lambda5-phosphabicyclo[13.6.3]tetracosa-12,16-dien-6-yl]methyl (9Z,12Z)-hexadeca-9,12-dienoate

C45H73O15P (884.4687)


PI(16:2(9Z,12Z)/PGJ2) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(16:2(9Z,12Z)/PGJ2), in particular, consists of one chain of 9Z,12Z-hexadecenoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(PGJ2/16:2(9Z,12Z))

(1R,6R,13Z,16S,20R,21R,22R,23R,24S,25R)-3,21,22,23,24,25-hexahydroxy-20-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,9,19-trioxo-2,4,8-trioxa-3lambda5-phosphabicyclo[14.6.3]pentacosa-13,17-dien-6-yl (9Z,12Z)-hexadeca-9,12-dienoate

C45H73O15P (884.4687)


PI(PGJ2/16:2(9Z,12Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(PGJ2/16:2(9Z,12Z)), in particular, consists of one chain of Prostaglandin J2 at the C-1 position and one chain of 9Z,12Z-hexadecenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

Pennogenin triglycoside

(2S,3R,4R,5R,6S)-2-[(2R,3S,4S,5R,6R)-4-hydroxy-2-(hydroxymethyl)-6-[(1R,2S,4S,5R,6R,7S,8S,9S,12S,13R,16S)-8-hydroxy-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-ene-6,2-oxane]-16-yl]oxy-5-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-3-yl]oxy-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


Pennogenin 3-O-beta-chacotrioside is a natural product found in Ypsilandra thibetica, Triteleia hyacinthina, and other organisms with data available. Pennogenin 3-O-beta-chacotrioside is an active component isolated from Paris polyphylla, modulates autophagy via increasing the expressions of autophagy-related proteins LC3 and Beclin-1. Anti-colorectal cancer activity[1]. Pennogenin 3-O-beta-chacotrioside is an active component isolated from Paris polyphylla, modulates autophagy via increasing the expressions of autophagy-related proteins LC3 and Beclin-1. Anti-colorectal cancer activity[1].

   

Pennogenin

(2S,3R,4R,5R,6S)-2-[(2R,3S,4S,5R,6R)-4-hydroxy-2-(hydroxymethyl)-6-[(1R,2S,4S,5R,6R,7S,8S,9S,12S,13R,16S)-8-hydroxy-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-ene-6,2-oxane]-16-yl]oxy-5-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-3-yl]oxy-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


Pennogenin 3-O-beta-chacotrioside is a natural product found in Ypsilandra thibetica, Triteleia hyacinthina, and other organisms with data available. Pennogenin 3-O-beta-chacotrioside is an active component isolated from Paris polyphylla, modulates autophagy via increasing the expressions of autophagy-related proteins LC3 and Beclin-1. Anti-colorectal cancer activity[1]. Pennogenin 3-O-beta-chacotrioside is an active component isolated from Paris polyphylla, modulates autophagy via increasing the expressions of autophagy-related proteins LC3 and Beclin-1. Anti-colorectal cancer activity[1].

   

Spirostane + 1O, -2H, O-Hex-dHex-dHex

Spirostane + 1O, -2H, O-Hex-dHex-dHex

C45H72O17 (884.4769)


Annotation level-3

   
   

Orbiculatoside B

Orbiculatoside B

C45H72O17 (884.4769)


   

Spiroconazole A

Spiroconazole A

C45H72O17 (884.4769)


   

Cheiranthoside V

(+)-Cheiranthoside V

C43H64O19 (884.4042)


   

Lyconoside II

Lyconoside II

C45H72O17 (884.4769)


   

Dioseptemloside G

Dioseptemloside G

C45H72O17 (884.4769)


   
   

Shatavarin VII

Shatavarin VII

C45H72O17 (884.4769)


   
   

(25S)-spirostan-5-ene-3beta,21-diol-3-O-alpha-L-rhamnopyranosyl-(1,2)-[alpha-L-rhamnopyranosyl-(1,4)]-beta-D-glucopyranoside|yamogenin II

(25S)-spirostan-5-ene-3beta,21-diol-3-O-alpha-L-rhamnopyranosyl-(1,2)-[alpha-L-rhamnopyranosyl-(1,4)]-beta-D-glucopyranoside|yamogenin II

C45H72O17 (884.4769)


   
   
   

Polygonatoside C2

Polygonatoside C2

C45H72O17 (884.4769)


   

(25R)-Spirost-5-en-3beta,14alpha-diol-3-O-(2-O-alpha-L-rhamnopyranosyl)(4-O-alpha-L-rhamnopyranosyl)-beta-D-glucopyranosid|25(R)-dracaenoside G

(25R)-Spirost-5-en-3beta,14alpha-diol-3-O-(2-O-alpha-L-rhamnopyranosyl)(4-O-alpha-L-rhamnopyranosyl)-beta-D-glucopyranosid|25(R)-dracaenoside G

C45H72O17 (884.4769)


   

Trigonella-glucoside A

Trigonella-glucoside A

C45H72O17 (884.4769)


   

(25R,26R)-26-Methoxyspirost-5-en-3beta-ol 3-O-alpha-L-rhamnopyranosyl-(1->2)-O-3)>-beta-D-glucopyranoside|(25R,26R)-26-Methoxyspirost-5-en-3beta-ol 3-O-alpha-L-rhamnopyranosyl-(1->2)-O-[alpha-L-arabinopyranosyl-(1->3)]-beta-D-glucopyranoside

(25R,26R)-26-Methoxyspirost-5-en-3beta-ol 3-O-alpha-L-rhamnopyranosyl-(1->2)-O-3)>-beta-D-glucopyranoside|(25R,26R)-26-Methoxyspirost-5-en-3beta-ol 3-O-alpha-L-rhamnopyranosyl-(1->2)-O-[alpha-L-arabinopyranosyl-(1->3)]-beta-D-glucopyranoside

C45H72O17 (884.4769)


   

3-O-<(beta-D-glucopyranosyl(1->3))(alpha-L-rhamnopyranosyl(1->4))beta-D-glucopyranosyl>-(25S)-spirost-5-en-3beta-ol|3-O-{[beta-D-glucopyranosyl(1->3)][alpha-L-rhamnopyranosyl(1->4)]beta-D-glucopyranosyl}-(25S)-spirost-5-en-3beta-ol

3-O-<(beta-D-glucopyranosyl(1->3))(alpha-L-rhamnopyranosyl(1->4))beta-D-glucopyranosyl>-(25S)-spirost-5-en-3beta-ol|3-O-{[beta-D-glucopyranosyl(1->3)][alpha-L-rhamnopyranosyl(1->4)]beta-D-glucopyranosyl}-(25S)-spirost-5-en-3beta-ol

C45H72O17 (884.4769)


   

26-O-beta-D-glucopyranose-3beta,26-diol-(25R)-Delta5,20(22)-3-O-{[alpha-L-(25R)-pyranorhamnose(1-4)]-beta-D-glucopyranoside}

26-O-beta-D-glucopyranose-3beta,26-diol-(25R)-Delta5,20(22)-3-O-{[alpha-L-(25R)-pyranorhamnose(1-4)]-beta-D-glucopyranoside}

C45H72O17 (884.4769)


   

(25R)-17alpha-hydroxyspirost-5-en-3beta-yl alpha-L-rhamnopyranosyl-(1->4)-alpha-L-rhamnopyranosyl-(1->4)-beta-D-glucopyranoside|(3beta,17alpha,25R)-spirost-5-ene-3,17-diol-3-O-alpha-L-rhamnopyranosyl-(1->4)-alpha-L-rhamnopyranosyl-(1->4)-beta-D-glucopyranoside|pennogenin 3-O-alpha-L-rhamnopyranosyl(1?4)-alpha-L-rhamnopyranosyl(1?4)-beta-D-glucopyranoside|pennogenin 3-O-alpha-L-rhamnopyranosyl-(1->4)-alpha-L-rhamnopyranosyl-(1->4)-beta-D-glucopyranoside

(25R)-17alpha-hydroxyspirost-5-en-3beta-yl alpha-L-rhamnopyranosyl-(1->4)-alpha-L-rhamnopyranosyl-(1->4)-beta-D-glucopyranoside|(3beta,17alpha,25R)-spirost-5-ene-3,17-diol-3-O-alpha-L-rhamnopyranosyl-(1->4)-alpha-L-rhamnopyranosyl-(1->4)-beta-D-glucopyranoside|pennogenin 3-O-alpha-L-rhamnopyranosyl(1?4)-alpha-L-rhamnopyranosyl(1?4)-beta-D-glucopyranoside|pennogenin 3-O-alpha-L-rhamnopyranosyl-(1->4)-alpha-L-rhamnopyranosyl-(1->4)-beta-D-glucopyranoside

C45H72O17 (884.4769)


   

Balanitisin A

Balanitisin A

C45H72O17 (884.4769)


   
   

strophanthidin-3beta-O-(3-acetyl-beta-D-digitoxosido-4-beta-D-glucosido-4-alpha-L-rhamnoside)|strophanthidin-3beta-O-<3-acetyl-beta-D-digitoxosido-4-beta-D-glucosido-4-alpha-L-rhamnoside>

strophanthidin-3beta-O-(3-acetyl-beta-D-digitoxosido-4-beta-D-glucosido-4-alpha-L-rhamnoside)|strophanthidin-3beta-O-<3-acetyl-beta-D-digitoxosido-4-beta-D-glucosido-4-alpha-L-rhamnoside>

C43H64O19 (884.4042)


   

(24S)-24-O-beta-D-glucopyranosyl-spirosta-5,25(27)-diene-1beta,3beta,24-triol 1-O-[alpha-L-rhamnopyranosyl-(1->2)-O-alpha-L-arabinopyranoside]

(24S)-24-O-beta-D-glucopyranosyl-spirosta-5,25(27)-diene-1beta,3beta,24-triol 1-O-[alpha-L-rhamnopyranosyl-(1->2)-O-alpha-L-arabinopyranoside]

C44H68O18 (884.4405)


   

2beta,3beta,17,23-tetrahydroxy-28-norolean-12-en-16-one-3-O-alpha-L-arabinopyranosyl(1-2)-alpha-L-arabinopyranosyl(1-6)-beta-D-glucopyranoside

2beta,3beta,17,23-tetrahydroxy-28-norolean-12-en-16-one-3-O-alpha-L-arabinopyranosyl(1-2)-alpha-L-arabinopyranosyl(1-6)-beta-D-glucopyranoside

C45H72O17 (884.4769)


   

solidagosaponin II

solidagosaponin II

C45H72O17 (884.4769)


   

nuatigenin 3-O-2)-O-4)>-beta-D-glucopyranoside>|nuatigenin 3-O-{O-alpha-L-rhamnopyranosyl-(1-->2)-O-[alpha-L-rhamnopyranosyl-(1-->4)]-beta-D-glucopyranoside}

nuatigenin 3-O-2)-O-4)>-beta-D-glucopyranoside>|nuatigenin 3-O-{O-alpha-L-rhamnopyranosyl-(1-->2)-O-[alpha-L-rhamnopyranosyl-(1-->4)]-beta-D-glucopyranoside}

C45H72O17 (884.4769)


   

oleandrigenin-3-O-(alpha-L-rhamnopyranosyl-(1-6)-beta-D-glucopyranosyl-(1-4)-beta-D-glucopyranosyl-(1-4)-beta-D-cymaropyranoside)|oleandrigenin-3-O-

oleandrigenin-3-O-(alpha-L-rhamnopyranosyl-(1-6)-beta-D-glucopyranosyl-(1-4)-beta-D-glucopyranosyl-(1-4)-beta-D-cymaropyranoside)|oleandrigenin-3-O-

C44H68O18 (884.4405)


   

(3beta,5alpha,8beta,25R)-spirost-6-en-5,8-epidioxy-3-ol 3-O-beta-D-apiofuranosyl-(1?3)-[alpha-L-rhamnopyranosyl-(1?2)]-beta-D-glucopyranoside|pariposide B

(3beta,5alpha,8beta,25R)-spirost-6-en-5,8-epidioxy-3-ol 3-O-beta-D-apiofuranosyl-(1?3)-[alpha-L-rhamnopyranosyl-(1?2)]-beta-D-glucopyranoside|pariposide B

C44H68O18 (884.4405)


   

(3beta,5alpha,8alpha,25R)-spirost-6-en-5,8-epidioxy-3-ol 3-O-alpha-L-arabinofuranosyl-(1?4)-[alpha-L-rhamnopyranosyl-(1?2)]-beta-D-glucopyranoside|pariposide C

(3beta,5alpha,8alpha,25R)-spirost-6-en-5,8-epidioxy-3-ol 3-O-alpha-L-arabinofuranosyl-(1?4)-[alpha-L-rhamnopyranosyl-(1?2)]-beta-D-glucopyranoside|pariposide C

C44H68O18 (884.4405)


   

3-O-{alpha-L-rhamnopyranoside(1?2)-O-[alpha-L-rhamnopyranoside(1?3)]-beta-D-glucopyranosyl}(1,3,22R,25S)-spirost-5-ene-1beta,3beta-diol|drangustoside A

3-O-{alpha-L-rhamnopyranoside(1?2)-O-[alpha-L-rhamnopyranoside(1?3)]-beta-D-glucopyranosyl}(1,3,22R,25S)-spirost-5-ene-1beta,3beta-diol|drangustoside A

C45H72O17 (884.4769)


   

ruscogenin-1-O-[beta-D-glucopyranosyl(1->2)]-[beta-D-xylopyranosyl(1->3)]-beta-D-fucopyranoside

ruscogenin-1-O-[beta-D-glucopyranosyl(1->2)]-[beta-D-xylopyranosyl(1->3)]-beta-D-fucopyranoside

C45H72O17 (884.4769)


   

(25R)-spirost-5-en-3beta-yl O-alpha-L-rhamnopyranosyl-(1->2)-O-6)>-beta-D-glucopyranoside|(25R)-spirost-5-en-3beta-yl O-beta-D-glucopyranosyl-(1->6)-[O-alpha-L-rhamnopyranosyl(1->2)]-beta-D-glucopyranoside|(3beta,25R)-spirost-5-en-3-ol 3-O-beta-D-glucopyranosyl-(1?6)-[alpha-L-rhamnopyranosyl-(1?2)]-beta-D-glucopyranoside

(25R)-spirost-5-en-3beta-yl O-alpha-L-rhamnopyranosyl-(1->2)-O-6)>-beta-D-glucopyranoside|(25R)-spirost-5-en-3beta-yl O-beta-D-glucopyranosyl-(1->6)-[O-alpha-L-rhamnopyranosyl(1->2)]-beta-D-glucopyranoside|(3beta,25R)-spirost-5-en-3-ol 3-O-beta-D-glucopyranosyl-(1?6)-[alpha-L-rhamnopyranosyl-(1?2)]-beta-D-glucopyranoside

C45H72O17 (884.4769)


   
   

(25R)-1alpha-hydroxyspirost-5-en-3beta-yl O-alpha-L-rhamnopyranosyl-(1->2)-[O-alpha-L-rhamnopyranosyl(1->4)]-beta-D-glucopyranoside

(25R)-1alpha-hydroxyspirost-5-en-3beta-yl O-alpha-L-rhamnopyranosyl-(1->2)-[O-alpha-L-rhamnopyranosyl(1->4)]-beta-D-glucopyranoside

C45H72O17 (884.4769)


   

(24S,25R)-24-Hydroxyspirost-5-en-3??-yl O-??-L-rhamnopyranosyl-(1鈥樏傗垎2)-O-[??-L-rhamnopyranosyl-(1鈥樏傗垎3)]-??-D-glucopyranoside

(24S,25R)-24-Hydroxyspirost-5-en-3??-yl O-??-L-rhamnopyranosyl-(1鈥樏傗垎2)-O-[??-L-rhamnopyranosyl-(1鈥樏傗垎3)]-??-D-glucopyranoside

C45H72O17 (884.4769)


   

Proprotogracillin

Proprotogracillin

C45H72O17 (884.4769)


   

Furostan, β-D-glucopyranoside deriv

Furostan, beta-D-glucopyranoside deriv

C45H72O17 (884.4769)


Furostan, |A-D-glucopyranoside deriv is a natural product found in Dioscorea panthaica with data available.

   

Spirostane -2H, + 1O, O-Hex-dHex-dHex

Spirostane -2H, + 1O, O-Hex-dHex-dHex

C45H72O17 (884.4769)


Annotation level-3

   

Polypodoside A

5-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-2,15-dimethyl-14-(1-{5-methyl-6-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}ethyl)tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-9-en-8-one

C45H72O17 (884.4769)


   

b-Chacotriosyllilagen

2-{[4-hydroxy-2-(hydroxymethyl)-6-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0^{2,9}.0^{4,8}.0^{13,18}]icosan]-18-en-15-oloxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

Schidigerasaponin B1

16-{[5-hydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-7,9,13-trimethyl-5-methylidene-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0^{2,9}.0^{4,8}.0^{13,18}]icosane]-10-one

C44H68O18 (884.4405)


   

GRAECUNIN G

2-{[(4,5-dihydroxy-6-methyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]methyl}-6-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0^{2,9}.0^{4,8}.0^{13,18}]icosan]-18-eneoxy}oxane-3,4,5-triol

C45H72O17 (884.4769)


   

Melongoside H

2-{[5-hydroxy-6-(hydroxymethyl)-2-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0^{2,9}.0^{4,8}.0^{13,18}]icosan]-18-eneoxy}-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C45H72O17 (884.4769)


   

Diosgenin 3-[glucosyl-(1->4)-rhamnosyl-(1->4)-glucoside]

2-[(6-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0^{2,9}.0^{4,8}.0^{13,18}]icosan]-18-eneoxy}oxan-3-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C45H72O17 (884.4769)


   

3-O-(Rhaa1-2Glcb)-26-O-(Glcb)-(25R)-furosta-5,20(22)-dien-3beta,26-diol

26-O-beta-D-glucopyranosyl-3beta,26-dihydroxy-25(R)-furosta-5,20(22)-dien-3-O-alpha-L-rhamnopyranosyl(1-2)-beta-D-glucopyranoside

C45H72O17 (884.4769)


   

TG 53:20;O3

1,3-(8R,9R-epoxy-octadec-13Z,15Z-dien-4,6-diynoyl)-2-(8-hydroxy-13E,17E-octadecadien-9,11-diynoyl)-sn-glycerol

C56H68O9 (884.4863)


   

Pariposide C

(25R)-spirost-6-ene-3beta-ol-5alpha,8alpha-epidioxy-3-O-alpha-l-rhamnopyranosyl-(1-4)-[alpha-L-Arabinofuranosyl-(1 -2)- beta-D-glucopyranoside

C44H68O18 (884.4405)


   

Pariposide B

(25R)-spirost-6-ene-3beta-ol-5alpha,8alpha-epidioxy-3-O-alpha-l-rhamnopyranosyl-(1-4)-alpha-L-Apiofuranosyl-(1 -2)- beta-D-glucopyranoside

C44H68O18 (884.4405)


   

Chloro[2-(dicyclohexylphosphino)-3,6-dimethoxy-2,4,6-triisopropyl-1,1-biphenyl][2-(2-aminoethyl)phenyl]palladium(II)

Chloro[2-(dicyclohexylphosphino)-3,6-dimethoxy-2,4,6-triisopropyl-1,1-biphenyl][2-(2-aminoethyl)phenyl]palladium(II)

C48H74ClNO3PPd (884.4129)


   

Spirostane + 1O,-2H, O-Hex-dHex-dHex

Spirostane + 1O,-2H, O-Hex-dHex-dHex

C45H72O17 (884.4769)


   

3-O-(Rhaa1-2(Glcb1-4)Glcb)-(25R)-spirost-5en-3beta-ol

(25R)-spirost-5en-3beta-ol 3-O-alpha-L-rhamnopyranosyl-(1-2)-[beta-D-glucopyranosyl-(1-4)]-beta-D-glucopyranoside

C45H72O17 (884.4769)


   
   
   
   
   
   
   
   
   

PGP(16:0/20:3(8Z,11Z,14Z)-2OH(5,6))

PGP(16:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C42H78O15P2 (884.4816)


   

PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/16:0)

PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/16:0)

C42H78O15P2 (884.4816)


   

PGP(i-16:0/20:3(8Z,11Z,14Z)-2OH(5,6))

PGP(i-16:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C42H78O15P2 (884.4816)


   

PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/i-16:0)

PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/i-16:0)

C42H78O15P2 (884.4816)


   

PGP(18:2(9Z,11Z)/18:1(12Z)-2OH(9,10))

PGP(18:2(9Z,11Z)/18:1(12Z)-2OH(9,10))

C42H78O15P2 (884.4816)


   

PGP(18:1(12Z)-2OH(9,10)/18:2(9Z,11Z))

PGP(18:1(12Z)-2OH(9,10)/18:2(9Z,11Z))

C42H78O15P2 (884.4816)


   

PGP(18:2(9Z,12Z)/18:1(12Z)-2OH(9,10))

PGP(18:2(9Z,12Z)/18:1(12Z)-2OH(9,10))

C42H78O15P2 (884.4816)


   

PGP(18:1(12Z)-2OH(9,10)/18:2(9Z,12Z))

PGP(18:1(12Z)-2OH(9,10)/18:2(9Z,12Z))

C42H78O15P2 (884.4816)


   

PGP(a-15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

PGP(a-15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C41H74O16P2 (884.4452)


   

PGP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/a-15:0)

PGP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/a-15:0)

C41H74O16P2 (884.4452)


   

PGP(i-15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

PGP(i-15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C41H74O16P2 (884.4452)


   

PGP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-15:0)

PGP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-15:0)

C41H74O16P2 (884.4452)


   

PI(16:2(9Z,12Z)/PGJ2)

PI(16:2(9Z,12Z)/PGJ2)

C45H73O15P (884.4687)


   

PI(PGJ2/16:2(9Z,12Z))

PI(PGJ2/16:2(9Z,12Z))

C45H73O15P (884.4687)


   

[6-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H72O12S (884.4744)


   

[(2S,3S,6S)-6-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C49H72O12S (884.4744)


   

Deltonin

(2S,3R,4R,5R,6S)-2-[(2R,3R,4S,5S,6R)-4-hydroxy-6-(hydroxymethyl)-2-[(1S,2S,4S,5R,6R,7S,8R,9S,12S,13R,16S)-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-ene-6,2-oxane]-16-yl]oxy-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-3-yl]oxy-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


Deltonin is a triterpenoid. Deltonin is a natural product found in Ophiopogon planiscapus, Allium vineale, and other organisms with data available. Deltonin, a steroidal saponin, isolated from Dioscorea zingiberensis, has antitumor activity; Deltonin inhibits ERK1/2 and AKT activation. Deltonin, a steroidal saponin, isolated from Dioscorea zingiberensis, has antitumor activity; Deltonin inhibits ERK1/2 and AKT activation. Deltonin, a steroidal saponin, isolated from Dioscorea zingiberensis, has antitumor activity; Deltonin inhibits ERK1/2 and AKT activation.

   
   
   

PI 14:1/22:6;O2

PI 14:1/22:6;O2

C45H73O15P (884.4687)


   

PI 16:1/20:6;O2

PI 16:1/20:6;O2

C45H73O15P (884.4687)


   
   

6-(acetyloxy)-14-{2-[2,6-bis(acetyloxy)-11-hydroxy-5,5,9-trimethyl-3,15-dioxotetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-14-yl]ethyl}-2,11,14-trihydroxy-5,5,9-trimethyl-15-oxotetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-3-yl acetate

6-(acetyloxy)-14-{2-[2,6-bis(acetyloxy)-11-hydroxy-5,5,9-trimethyl-3,15-dioxotetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-14-yl]ethyl}-2,11,14-trihydroxy-5,5,9-trimethyl-15-oxotetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-3-yl acetate

C48H68O15 (884.4558)


   

2-[(6-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}oxan-3-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

2-[(6-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}oxan-3-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C45H72O17 (884.4769)


   

2-[14'-({4,5-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-7',9',13'-trimethyl-5-methylidene-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-16'-oloxy]-6-(hydroxymethyl)oxane-3,4,5-triol

2-[14'-({4,5-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-7',9',13'-trimethyl-5-methylidene-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-16'-oloxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C44H68O18 (884.4405)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-2-[(1's,2r,2'r,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-2-[(1's,2r,2'r,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

2-{[3-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-8'-oloxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

2-{[3-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-8'-oloxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

2-{[5-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

2-{[5-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's,20'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-20'-oloxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's,20'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-20'-oloxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

n-(4,10-dimethoxy-3,5,9-trimethyl-6-oxo-11-{12,16,22-trihydroxy-10-methoxy-11,14,21-trimethyl-18-oxo-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1²,⁵.1⁶,⁹]hentriaconta-1(28),2(31),4,6(30),8,24,26(29)-heptaen-20-yl}undec-1-en-1-yl)-n-methylformamide

n-(4,10-dimethoxy-3,5,9-trimethyl-6-oxo-11-{12,16,22-trihydroxy-10-methoxy-11,14,21-trimethyl-18-oxo-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1²,⁵.1⁶,⁹]hentriaconta-1(28),2(31),4,6(30),8,24,26(29)-heptaen-20-yl}undec-1-en-1-yl)-n-methylformamide

C46H68N4O13 (884.4783)


   

2-hydroxy-10-{[(2r,3r,4s,5s,6r)-5-hydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-2,6a,6b,9,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

2-hydroxy-10-{[(2r,3r,4s,5s,6r)-5-hydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-2,6a,6b,9,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C45H72O17 (884.4769)


   

2-[(6-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-8'-oloxy}oxan-3-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

2-[(6-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-8'-oloxy}oxan-3-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s,6r)-4-hydroxy-6-(hydroxymethyl)-2-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s,6r)-4-hydroxy-6-(hydroxymethyl)-2-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5s,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5s,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s)-4,5-dihydroxy-2-[(1's,2s,2's,3s,4s,4's,7'r,8'r,9's,12's,13'r,14'r,16'r)-7',9',13'-trimethyl-5-methylidene-4-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-3,16'-dioloxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s)-4,5-dihydroxy-2-[(1's,2s,2's,3s,4s,4's,7'r,8'r,9's,12's,13'r,14'r,16'r)-7',9',13'-trimethyl-5-methylidene-4-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-3,16'-dioloxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C44H68O18 (884.4405)


   

2-{[4-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[4-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C45H72O17 (884.4769)


   

(1r,3ar,5as,7s,9ar,9br,11ar)-7-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-1-[(1s)-1-[(2s,5r,6s)-5-methyl-6-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]ethyl]-1h,2h,3h,3ah,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one

(1r,3ar,5as,7s,9ar,9br,11ar)-7-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-1-[(1s)-1-[(2s,5r,6s)-5-methyl-6-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]ethyl]-1h,2h,3h,3ah,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one

C45H72O17 (884.4769)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's,20's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-20'-oloxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's,20's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-20'-oloxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5r,6s)-6-{[(2r,3s,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]oxan-3-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5r,6s)-6-{[(2r,3s,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]oxan-3-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C45H72O17 (884.4769)


   

2-[(2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}oxan-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

2-[(2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}oxan-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

(24s,25r)-24-hydroxyspirost-5-en-3β-yl o-α-l-rhamnopyranosyl-(1→2)-o-[α-l-rhamnopyra-nosyl-(1→3)]-β-d-glucopyranoside

NA

C45H72O17 (884.4769)


{"Ingredient_id": "HBIN004522","Ingredient_name": "(24s,25r)-24-hydroxyspirost-5-en-3\u03b2-yl o-\u03b1-l-rhamnopyranosyl-(1\u21922)-o-[\u03b1-l-rhamnopyra-nosyl-(1\u21923)]-\u03b2-d-glucopyranoside","Alias": "NA","Ingredient_formula": "C45H72O17","Ingredient_Smile": "CC1COC2(CC1O)C(C3C(O2)CC4C3(CCC5C4CC=C6C5(CCC(C6)OC7C(C(C(C(O7)CO)O)OC8C(C(C(C(O8)C)O)O)O)OC9C(C(C(C(O9)C)O)O)O)C)C)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "10725","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

(25r)-spirost-5-en-3β-yl-o-α-l-rhamnopyra-nosyl-(1→2)-o-[β-d-glucopyranosyl-(1→6)]-β-d-glucopyranoside

NA

C45H72O17 (884.4769)


{"Ingredient_id": "HBIN004755","Ingredient_name": "(25r)-spirost-5-en-3\u03b2-yl-o-\u03b1-l-rhamnopyra-nosyl-(1\u21922)-o-[\u03b2-d-glucopyranosyl-(1\u21926)]-\u03b2-d-glucopyranoside","Alias": "NA","Ingredient_formula": "C45H72O17","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "20206","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

(25s)-spirost-5-en-3β-yl o-β-d-glucopyranosyl-(1→4)-o-α-l-rhamnopyranosyl-(1→3)-β-d-glucopyranoside

NA

C45H72O17 (884.4769)


{"Ingredient_id": "HBIN004805","Ingredient_name": "(25s)-spirost-5-en-3\u03b2-yl o-\u03b2-d-glucopyranosyl-(1\u21924)-o-\u03b1-l-rhamnopyranosyl-(1\u21923)-\u03b2-d-glucopyranoside","Alias": "NA","Ingredient_formula": "C45H72O17","Ingredient_Smile": "CC1CCC2(C(C3C(O2)CC4C3(CCC5C4CC=C6C5(CCC(C6)OC7C(C(C(C(O7)CO)O)OC8C(C(C(C(O8)C)OC9C(C(C(C(O9)CO)O)O)O)O)O)O)C)C)C)OC1","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "20205","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

3,20-dihydroxy-30-nor-12-oleanen-28-oic acid; (3β,20α)-form,3-o-[beta-l-xylopyranosyl-(1→2)-[alpha-l-arabinopyranosyl-(1→3)]-beta-d-glucopyranoside]

NA

C45H72O17 (884.4769)


{"Ingredient_id": "HBIN006990","Ingredient_name": "3,20-dihydroxy-30-nor-12-oleanen-28-oic acid; (3\u03b2,20\u03b1)-form,3-o-[beta-l-xylopyranosyl-(1\u21922)-[alpha-l-arabinopyranosyl-(1\u21923)]-beta-d-glucopyranoside]","Alias": "NA","Ingredient_formula": "C45H72O17","Ingredient_Smile": "NA","Ingredient_weight": "0","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "NA","TCMSP_id": "NA","TCM_ID_id": "8415","PubChem_id": "NA","DrugBank_id": "NA"}

   

3-o-[α-l-rhamnopyranosyl-(1→4)-β-d-glu-copyranosyl]-26-o-(β-d-glucopyranosyl)-(25r)-furosta-5,20-dien-3β, 26-diol

NA

C45H72O17 (884.4769)


{"Ingredient_id": "HBIN009114","Ingredient_name": "3-o-[\u03b1-l-rhamnopyranosyl-(1\u21924)-\u03b2-d-glu-copyranosyl]-26-o-(\u03b2-d-glucopyranosyl)-(25r)-furosta-5,20-dien-3\u03b2, 26-diol","Alias": "NA","Ingredient_formula": "C45H72O17","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "18696","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

3-o-[bis-α-l-rhamnopyranosyl-(1→2and1→4)-β-d-glucopyranosyl]-22r,25r-spirost-5-ene-3β,20α-diol

NA

C45H72O17 (884.4769)


{"Ingredient_id": "HBIN009276","Ingredient_name": "3-o-[bis-\u03b1-l-rhamnopyranosyl-(1\u21922and1\u21924)-\u03b2-d-glucopyranosyl]-22r,25r-spirost-5-ene-3\u03b2,20\u03b1-diol","Alias": "NA","Ingredient_formula": "C45H72O17","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "2493","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

asparanin b1

NA

C45H72O17 (884.4769)


{"Ingredient_id": "HBIN017105","Ingredient_name": "asparanin b1","Alias": "NA","Ingredient_formula": "C45H72O17","Ingredient_Smile": "CC1CCC2(C(C3C(O2)CC4C3(CCC5C4CCC6C5(CCC(C6)OC7C(C(C(C(O7)CO)O)O)OC8C9C(C(C(O8)C)OC2C(C(C(C(O2)CO)O)O)O)OO9)C)C)C)OC1","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "1869","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

2-{[4-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-2'-oloxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

2-{[4-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-2'-oloxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5s,6r)-4-hydroxy-6-(hydroxymethyl)-2-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5s,6r)-4-hydroxy-6-(hydroxymethyl)-2-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s,6r)-2-{[(2r,3s,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5s,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]oxan-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s,6r)-2-{[(2r,3s,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5s,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]oxan-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-4-hydroxy-6-(hydroxymethyl)-2-[(1's,2r,2's,4's,5r,7's,8's,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-4-hydroxy-6-(hydroxymethyl)-2-[(1's,2r,2's,4's,5r,7's,8's,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-[(1'r,2r,2's,4's,7's,8'r,9's,12's,13's,16's,18'r)-7',9',13'-trimethyl-5-methylidene-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-[(1'r,2r,2's,4's,7's,8'r,9's,12's,13's,16's,18'r)-7',9',13'-trimethyl-5-methylidene-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2r,3s,4r,5r,6s)-2-{[(2s,3r,4s,5s,6r)-6-{[(2s,3s,4r,5s,6s)-3,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2s,2'r,4'r,5r,7'r,8's,9'r,12'r,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]oxan-4-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3s,4r,5r,6s)-2-{[(2s,3r,4s,5s,6r)-6-{[(2s,3s,4r,5s,6s)-3,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2s,2'r,4'r,5r,7'r,8's,9'r,12'r,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]oxan-4-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5s,7's,8'r,9's,12's,13'r,15'r,16'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-15'-oloxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5s,7's,8'r,9's,12's,13'r,15'r,16'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-15'-oloxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

2-{[4-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-8'-oloxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

2-{[4-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-8'-oloxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2r,3r,4s,6r)-6-{[(1r,3as,3br,5as,7s,9as,9bs,11ar)-9a-formyl-3a,5a-dihydroxy-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-3-{[(2s,3r,4r,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2-methyloxan-4-yl acetate

(2r,3r,4s,6r)-6-{[(1r,3as,3br,5as,7s,9as,9bs,11ar)-9a-formyl-3a,5a-dihydroxy-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-3-{[(2s,3r,4r,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2-methyloxan-4-yl acetate

C43H64O19 (884.4042)


   

(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s)-4,5-dihydroxy-2-[(1's,2s,2's,3s,4s,4's,7's,8'r,9's,12's,13'r,14'r,16'r)-7',9',13'-trimethyl-5-methylidene-4-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-3,16'-dioloxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s)-4,5-dihydroxy-2-[(1's,2s,2's,3s,4s,4's,7's,8'r,9's,12's,13'r,14'r,16'r)-7',9',13'-trimethyl-5-methylidene-4-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-3,16'-dioloxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C44H68O18 (884.4405)


   

2-[(2-{[3,5-dihydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}oxan-4-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

2-[(2-{[3,5-dihydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}oxan-4-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-2-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-4-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-2-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-4-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

2-{[4-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-15'-oloxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

2-{[4-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-15'-oloxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

2-{[4-hydroxy-2-(hydroxymethyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-{7',9',13'-trimethyl-5-methylidene-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

2-{[4-hydroxy-2-(hydroxymethyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-{7',9',13'-trimethyl-5-methylidene-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

2-[(6-{[3,5-dihydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}oxan-4-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

2-[(6-{[3,5-dihydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}oxan-4-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2r,4ar,6as,6br,8ar,10s,12ar,12br,14bs)-2-hydroxy-10-{[(2r,3r,4s,5s,6r)-5-hydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-2,6a,6b,9,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(2r,4ar,6as,6br,8ar,10s,12ar,12br,14bs)-2-hydroxy-10-{[(2r,3r,4s,5s,6r)-5-hydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-2,6a,6b,9,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C45H72O17 (884.4769)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5r,7's,8's,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-8'-oloxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5r,7's,8's,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-8'-oloxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-3-hydroxy-2-(hydroxymethyl)-6-[(1's,2r,2'r,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-3-hydroxy-2-(hydroxymethyl)-6-[(1's,2r,2'r,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5r,7's,8's,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-8'-oloxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5r,7's,8's,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-8'-oloxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

16'-{[5-hydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-7',9',13'-trimethyl-5-methylidene-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-10'-one

16'-{[5-hydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-7',9',13'-trimethyl-5-methylidene-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-10'-one

C44H68O18 (884.4405)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-2-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-2-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2r)-2-{[(6s)-3-hydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2'r,4'r,8's,9's,12'r,13'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-{[(2r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r)-2-{[(6s)-3-hydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2'r,4'r,8's,9's,12'r,13'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-{[(2r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2r,3r,4r,5r,6s)-2-{[(2s,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-2-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2r,3r,4r,5r,6s)-2-{[(2s,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-2-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-3-hydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5r,7's,8's,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-8'-oloxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-3-hydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5r,7's,8's,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-8'-oloxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

(1r,2r,4s,6s,9s,10s,11s,13s,14s)-6-(acetyloxy)-14-{2-[(1r,2r,3r,4s,6s,9s,10s,11s,13s,14r)-3,6-bis(acetyloxy)-2,11-dihydroxy-5,5,9-trimethyl-15-oxotetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-14-yl]ethyl}-11,14-dihydroxy-5,5,9-trimethyl-3,15-dioxotetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-2-yl acetate

(1r,2r,4s,6s,9s,10s,11s,13s,14s)-6-(acetyloxy)-14-{2-[(1r,2r,3r,4s,6s,9s,10s,11s,13s,14r)-3,6-bis(acetyloxy)-2,11-dihydroxy-5,5,9-trimethyl-15-oxotetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-14-yl]ethyl}-11,14-dihydroxy-5,5,9-trimethyl-3,15-dioxotetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-2-yl acetate

C48H68O15 (884.4558)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5r,7's,8'r,9's,10'r,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-10'-oloxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5r,7's,8'r,9's,10'r,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-10'-oloxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

(1r,2s,3as,5ar,7s,9as,11ar)-3a-hydroxy-7-({4-hydroxy-5-[(4-methoxy-6-methyl-5-{[(2r,3s,5s)-2,3,4,5-tetrahydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)-9a,11a-dimethyl-1-(5-oxo-2h-furan-3-yl)-tetradecahydrocyclopenta[a]phenanthren-2-yl acetate

(1r,2s,3as,5ar,7s,9as,11ar)-3a-hydroxy-7-({4-hydroxy-5-[(4-methoxy-6-methyl-5-{[(2r,3s,5s)-2,3,4,5-tetrahydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)-9a,11a-dimethyl-1-(5-oxo-2h-furan-3-yl)-tetradecahydrocyclopenta[a]phenanthren-2-yl acetate

C44H68O18 (884.4405)


   

2-{[3-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-4-oloxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

2-{[3-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-4-oloxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1's,2s,2's,4's,5s,7's,8'r,9's,12's,13'r,16's)-5-(hydroxymethyl)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxolane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1's,2s,2's,4's,5s,7's,8'r,9's,12's,13'r,16's)-5-(hydroxymethyl)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxolane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5r,7's,8'r,9's,10's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-10'-oloxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5r,7's,8'r,9's,10's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-10'-oloxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5r,6s)-5-hydroxy-6-(hydroxymethyl)-2-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5r,6s)-5-hydroxy-6-(hydroxymethyl)-2-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

(4ar,5r,6as,6br,8ar,9r,10r,11s,12ar,12br,14bs)-5-{[(2r,3r,4s,5s,6r)-3-{[(2s,3s,4s,5r)-3,4-dihydroxy-5-[(3-hydroxybutanoyl)oxy]oxan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-10,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4ar,5r,6as,6br,8ar,9r,10r,11s,12ar,12br,14bs)-5-{[(2r,3r,4s,5s,6r)-3-{[(2s,3s,4s,5r)-3,4-dihydroxy-5-[(3-hydroxybutanoyl)oxy]oxan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-10,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C45H72O17 (884.4769)


   

(1r,3as,5ar,7r,9ar,9bs,11ar)-7-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-1-[(1s)-1-[(2r,5s,6r)-5-methyl-6-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]ethyl]-1h,2h,3h,3ah,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one

(1r,3as,5ar,7r,9ar,9bs,11ar)-7-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-1-[(1s)-1-[(2r,5s,6r)-5-methyl-6-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]ethyl]-1h,2h,3h,3ah,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one

C45H72O17 (884.4769)


   

5-{[3-({3,4-dihydroxy-5-[(3-hydroxybutanoyl)oxy]oxan-2-yl}oxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-10,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

5-{[3-({3,4-dihydroxy-5-[(3-hydroxybutanoyl)oxy]oxan-2-yl}oxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-10,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C45H72O17 (884.4769)


   

(4ar,5r,6as,6br,8ar,9r,10r,11s,12ar,12br,14bs)-5-{[(2r,3r,4s,5s,6r)-3-{[(2s,3r,4r,5s)-3,4-dihydroxy-5-{[(3s)-3-hydroxybutanoyl]oxy}oxan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-10,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4ar,5r,6as,6br,8ar,9r,10r,11s,12ar,12br,14bs)-5-{[(2r,3r,4s,5s,6r)-3-{[(2s,3r,4r,5s)-3,4-dihydroxy-5-{[(3s)-3-hydroxybutanoyl]oxy}oxan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-10,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C45H72O17 (884.4769)


   

(1r,2r,4s,6s,9s,10s,11s,13s,14r)-6-(acetyloxy)-14-{2-[(1r,2r,3r,4s,6s,9s,10s,11s,13s,14s)-3,6-bis(acetyloxy)-2,11,14-trihydroxy-5,5,9-trimethyl-15-oxotetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-14-yl]ethyl}-11-hydroxy-5,5,9-trimethyl-3,15-dioxotetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-2-yl acetate

(1r,2r,4s,6s,9s,10s,11s,13s,14r)-6-(acetyloxy)-14-{2-[(1r,2r,3r,4s,6s,9s,10s,11s,13s,14s)-3,6-bis(acetyloxy)-2,11,14-trihydroxy-5,5,9-trimethyl-15-oxotetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-14-yl]ethyl}-11-hydroxy-5,5,9-trimethyl-3,15-dioxotetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-2-yl acetate

C48H68O15 (884.4558)


   

(1r)-1-[(2r,3s,4r,5r)-5-{[(3s,6r)-6-[(1r,3r,3as,3bs,4r,5r,5ar,6r,7s,9as,9br,11ar)-3,3b,4,5,6,7-hexahydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-2-methylheptan-3-yl]oxy}-3-hydroxy-4-{[(2s,3r,4s,5s,6r)-4-hydroxy-3,5-dimethoxy-6-methyloxan-2-yl]oxy}oxolan-2-yl]ethoxysulfonic acid

(1r)-1-[(2r,3s,4r,5r)-5-{[(3s,6r)-6-[(1r,3r,3as,3bs,4r,5r,5ar,6r,7s,9as,9br,11ar)-3,3b,4,5,6,7-hexahydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-2-methylheptan-3-yl]oxy}-3-hydroxy-4-{[(2s,3r,4s,5s,6r)-4-hydroxy-3,5-dimethoxy-6-methyloxan-2-yl]oxy}oxolan-2-yl]ethoxysulfonic acid

C41H72O18S (884.4439)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,14's,16'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-14'-oloxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,14's,16'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-14'-oloxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

2-{[3-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

2-{[3-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2r,3s,4r,5r,6s)-2-{[(2s,3s,4r,5s,6s)-5-hydroxy-6-(hydroxymethyl)-2-[(1'r,2s,2'r,4'r,5r,7'r,8's,9'r,12'r,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-4-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2r,3s,4r,5r,6s)-2-{[(2s,3s,4r,5s,6s)-5-hydroxy-6-(hydroxymethyl)-2-[(1'r,2s,2'r,4'r,5r,7'r,8's,9'r,12'r,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-4-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5s,7's,8'r,9's,12's,13'r,16's)-5-(hydroxymethyl)-7',9',13'-trimethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5s,7's,8'r,9's,12's,13'r,16's)-5-(hydroxymethyl)-7',9',13'-trimethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2r,3r,4s,6s)-6-{[(2r,3s,4r,5r,6s)-6-{[(2s,3r,4s,5r,6r)-6-{[(1r,3as,3br,5as,7s,9as,9bs,11ar)-9a-formyl-3a,5a-dihydroxy-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-3-hydroxy-2-methyloxan-4-yl acetate

(2r,3r,4s,6s)-6-{[(2r,3s,4r,5r,6s)-6-{[(2s,3r,4s,5r,6r)-6-{[(1r,3as,3br,5as,7s,9as,9bs,11ar)-9a-formyl-3a,5a-dihydroxy-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-3-hydroxy-2-methyloxan-4-yl acetate

C43H64O19 (884.4042)


   

6-({6-[(6-{[9a-formyl-3a,5a-dihydroxy-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl)oxy]-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl}oxy)-3-hydroxy-2-methyloxan-4-yl acetate

6-({6-[(6-{[9a-formyl-3a,5a-dihydroxy-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl)oxy]-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl}oxy)-3-hydroxy-2-methyloxan-4-yl acetate

C43H64O19 (884.4042)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1's,2s,2's,4's,5r,6r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-6-oloxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1's,2s,2's,4's,5r,6r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-6-oloxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

2-{[4-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-10'-oloxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

2-{[4-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-10'-oloxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

2-{[3-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[3-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2r,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]oxan-4-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2r,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]oxan-4-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

6-(acetyloxy)-14-{2-[2,6-bis(acetyloxy)-11,14-dihydroxy-5,5,9-trimethyl-3,15-dioxotetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-14-yl]ethyl}-2,11-dihydroxy-5,5,9-trimethyl-15-oxotetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-3-yl acetate

6-(acetyloxy)-14-{2-[2,6-bis(acetyloxy)-11,14-dihydroxy-5,5,9-trimethyl-3,15-dioxotetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-14-yl]ethyl}-2,11-dihydroxy-5,5,9-trimethyl-15-oxotetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-3-yl acetate

C48H68O15 (884.4558)


   

(2r,3r,4s,6r)-6-{[(1r,3as,3br,5as,7s,9as,9bs,11ar)-9a-formyl-3a,5a-dihydroxy-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2-methyloxan-4-yl acetate

(2r,3r,4s,6r)-6-{[(1r,3as,3br,5as,7s,9as,9bs,11ar)-9a-formyl-3a,5a-dihydroxy-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2-methyloxan-4-yl acetate

C43H64O19 (884.4042)


   

2-{[(4,5-dihydroxy-6-methyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]methyl}-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}oxane-3,4,5-triol

2-{[(4,5-dihydroxy-6-methyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]methyl}-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}oxane-3,4,5-triol

C45H72O17 (884.4769)


   

2-{[4-hydroxy-2-(hydroxymethyl)-6-[5-(hydroxymethyl)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxolane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

2-{[4-hydroxy-2-(hydroxymethyl)-6-[5-(hydroxymethyl)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxolane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

6-{[9a-formyl-3a,5a-dihydroxy-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-3-[(3,4-dihydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-2-methyloxan-4-yl acetate

6-{[9a-formyl-3a,5a-dihydroxy-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-3-[(3,4-dihydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-2-methyloxan-4-yl acetate

C43H64O19 (884.4042)


   

2-hydroxy-10-{[5-hydroxy-6-(hydroxymethyl)-3,4-bis[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-2,6a,6b,9,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

2-hydroxy-10-{[5-hydroxy-6-(hydroxymethyl)-3,4-bis[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-2,6a,6b,9,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C45H72O17 (884.4769)


   

(2r,3r,4r,5r,6s)-2-{[(2r,3r,4r,5r,6r)-5-hydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5s,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2r,3r,4r,5r,6s)-2-{[(2r,3r,4r,5r,6r)-5-hydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5s,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

2-[(3,4-dihydroxy-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl)methoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

2-[(3,4-dihydroxy-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl)methoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C45H72O17 (884.4769)


   

2-{[4-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-6-oloxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

2-{[4-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-6-oloxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

2-[(4,5-dihydroxy-2-{7',9',13'-trimethyl-5-methylidene-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-3,16'-dioloxy}oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

2-[(4,5-dihydroxy-2-{7',9',13'-trimethyl-5-methylidene-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-3,16'-dioloxy}oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

C44H68O18 (884.4405)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5s,7'r,8'r,9's,12's,13'r,16's)-7'-(hydroxymethyl)-5,9',13'-trimethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5s,7'r,8'r,9's,12's,13'r,16's)-7'-(hydroxymethyl)-5,9',13'-trimethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

n-[(1e,3r,4r,5r,9s,10s)-4,10-dimethoxy-3,5,9-trimethyl-6-oxo-11-[(10r,11s,12s,14s,16s,20s,21r,22s,24e)-12,16,22-trihydroxy-10-methoxy-11,14,21-trimethyl-18-oxo-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1²,⁵.1⁶,⁹]hentriaconta-1(28),2(31),4,6(30),8,24,26(29)-heptaen-20-yl]undec-1-en-1-yl]-n-methylformamide

n-[(1e,3r,4r,5r,9s,10s)-4,10-dimethoxy-3,5,9-trimethyl-6-oxo-11-[(10r,11s,12s,14s,16s,20s,21r,22s,24e)-12,16,22-trihydroxy-10-methoxy-11,14,21-trimethyl-18-oxo-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1²,⁵.1⁶,⁹]hentriaconta-1(28),2(31),4,6(30),8,24,26(29)-heptaen-20-yl]undec-1-en-1-yl]-n-methylformamide

C46H68N4O13 (884.4783)


   

2-{[4-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-14'-oloxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

2-{[4-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-14'-oloxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2r,3s,4r,5r,6s)-2-{[(2s,3s,4r,5s,6s)-3-hydroxy-2-(hydroxymethyl)-6-[(1's,2s,2's,4s,4's,5s,7's,8'r,9'r,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-4-oloxy]-5-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

(2r,3s,4r,5r,6s)-2-{[(2s,3s,4r,5s,6s)-3-hydroxy-2-(hydroxymethyl)-6-[(1's,2s,2's,4s,4's,5s,7's,8'r,9'r,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-4-oloxy]-5-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2r,3r,4s,5s,6r)-2-[(1's,2r,2's,4s,4's,7's,8'r,9's,12's,13'r,14'r,16'r)-14'-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-7',9',13'-trimethyl-5-methylidene-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-16'-oloxy]-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-[(1's,2r,2's,4s,4's,7's,8'r,9's,12's,13'r,14'r,16'r)-14'-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-7',9',13'-trimethyl-5-methylidene-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-16'-oloxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C44H68O18 (884.4405)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-2-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-2-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2'r,4's,5s,7's,8'r,9'r,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-2'-oloxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2'r,4's,5s,7's,8'r,9'r,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-2'-oloxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2r,4ar,6as,6br,8ar,10s,12ar,12br,14bs)-2-hydroxy-10-{[(2r,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-2,6a,6b,9,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(2r,4ar,6as,6br,8ar,10s,12ar,12br,14bs)-2-hydroxy-10-{[(2r,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-2,6a,6b,9,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C45H72O17 (884.4769)


   

(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5r,6s)-6-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5s,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]oxan-4-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5r,6s)-6-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5s,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]oxan-4-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2s,3s,4s,5r,6s)-2-{[(2s,3r,4r,5r,6s)-4-hydroxy-6-(hydroxymethyl)-2-[(1's,2r,2'r,4's,5s,7'r,8'r,9's,12'r,13's,16'r)-5-(hydroxymethyl)-7',9',13'-trimethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3s,4s,5r,6s)-2-{[(2s,3r,4r,5r,6s)-4-hydroxy-6-(hydroxymethyl)-2-[(1's,2r,2'r,4's,5s,7'r,8'r,9's,12'r,13's,16'r)-5-(hydroxymethyl)-7',9',13'-trimethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

2-[4-(16-{[3,4-dihydroxy-6-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosa-6,18-dien-6-yl)-2-methylbutoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

2-[4-(16-{[3,4-dihydroxy-6-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosa-6,18-dien-6-yl)-2-methylbutoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2r,3r,4s,5s,6r)-2-[(2r)-4-[(1s,2s,4s,8s,9s,12s,13r,16s)-16-{[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosa-6,18-dien-6-yl]-2-methylbutoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-[(2r)-4-[(1s,2s,4s,8s,9s,12s,13r,16s)-16-{[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosa-6,18-dien-6-yl]-2-methylbutoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C45H72O17 (884.4769)


   

2-{[4-hydroxy-2-(hydroxymethyl)-6-[5-(hydroxymethyl)-7',9',13'-trimethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

2-{[4-hydroxy-2-(hydroxymethyl)-6-[5-(hydroxymethyl)-7',9',13'-trimethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5r,6s)-6-{[(2r,3s,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5r,7's,8's,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-8'-oloxy]oxan-3-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5r,6s)-6-{[(2r,3s,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5r,7's,8's,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-8'-oloxy]oxan-3-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

2-{[4-hydroxy-2-(hydroxymethyl)-6-[7'-(hydroxymethyl)-5,9',13'-trimethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

2-{[4-hydroxy-2-(hydroxymethyl)-6-[7'-(hydroxymethyl)-5,9',13'-trimethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


   

(1'r,2r,2's,4's,7's,8'r,9's,12's,13's,16's,18'r)-16'-{[(2r,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-7',9',13'-trimethyl-5-methylidene-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-10'-one

(1'r,2r,2's,4's,7's,8'r,9's,12's,13's,16's,18'r)-16'-{[(2r,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-7',9',13'-trimethyl-5-methylidene-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-10'-one

C44H68O18 (884.4405)