Exact Mass: 882.4707

Exact Mass Matches: 882.4707

Found 208 metabolites which its exact mass value is equals to given mass value 882.4707, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Elatoside E

10-[(5-hydroxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl)oxy]-2,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


Elatoside E is found in green vegetables. Elatoside E is a constituent of Aralia elata (Japanese angelica tree). Constituent of Aralia elata (Japanese angelica tree). Elatoside E is found in green vegetables.

   

Pitheduloside B

10-({6-[({4,5-dihydroxy-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)methyl]-3,4,5-trihydroxyoxan-2-yl}oxy)-2,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


Pitheduloside C is found in fruits. Pitheduloside C is a constituent of Pithecellobium dulce (Manila tamarind) Constituent of Pithecellobium dulce (Manila tamarind). Pitheduloside B is found in fruits.

   

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-2-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}propoxy]phosphinic acid

C50H75O11P (882.5047)


PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-3-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}propoxy]phosphinic acid

C50H75O11P (882.5047)


PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-2-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}propoxy]phosphinic acid

C50H75O11P (882.5047)


PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-3-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}propoxy]phosphinic acid

C50H75O11P (882.5047)


PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-2-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}propoxy]phosphinic acid

C50H75O11P (882.5047)


PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-3-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}propoxy]phosphinic acid

C50H75O11P (882.5047)


PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-2-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}propoxy]phosphinic acid

C50H75O11P (882.5047)


PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-3-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}propoxy]phosphinic acid

C50H75O11P (882.5047)


PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-2-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphinic acid

C50H75O11P (882.5047)


PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-3-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphinic acid

C50H75O11P (882.5047)


PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PGP(16:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

[(2S)-3-({[(2R)-2-{[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-3-(hexadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H76O15P2 (882.4659)


PGP(16:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/16:0)

[(2S)-3-({[(2R)-3-{[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-2-(hexadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H76O15P2 (882.4659)


PGP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/16:0), in particular, consists of one chain of one Leukotriene B4 at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(16:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

[(2S)-3-({[(2R)-2-{[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-3-(hexadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H76O15P2 (882.4659)


PGP(16:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/16:0)

[(2S)-3-({[(2R)-3-{[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-2-(hexadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H76O15P2 (882.4659)


PGP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/16:0), in particular, consists of one chain of one 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(16:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

[(2S)-3-({[(2R)-2-{[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-3-(hexadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H76O15P2 (882.4659)


PGP(16:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/16:0)

[(2S)-3-({[(2R)-3-{[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-2-(hexadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H76O15P2 (882.4659)


PGP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/16:0), in particular, consists of one chain of one 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(16:1(9Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2S)-3-({[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-[(9Z)-hexadec-9-enoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H76O15P2 (882.4659)


PGP(16:1(9Z)/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:1(9Z)/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 9Z-hexadecenoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/16:1(9Z))

[(2S)-3-({[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-[(9Z)-hexadec-9-enoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H76O15P2 (882.4659)


PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/16:1(9Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/16:1(9Z)), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 9Z-hexadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:3(6Z,9Z,12Z)/18:1(12Z)-2OH(9,10))

[(2S)-3-({[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H76O15P2 (882.4659)


PGP(18:3(6Z,9Z,12Z)/18:1(12Z)-2OH(9,10)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:3(6Z,9Z,12Z)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 6Z,9Z,12Z-octadecatrienoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:1(12Z)-2OH(9,10)/18:3(6Z,9Z,12Z))

[(2S)-3-({[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H76O15P2 (882.4659)


PGP(18:1(12Z)-2OH(9,10)/18:3(6Z,9Z,12Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(12Z)-2OH(9,10)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 6Z,9Z,12Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:3(9Z,12Z,15Z)/18:1(12Z)-2OH(9,10))

[(2S)-3-({[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H76O15P2 (882.4659)


PGP(18:3(9Z,12Z,15Z)/18:1(12Z)-2OH(9,10)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:3(9Z,12Z,15Z)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 9Z,12Z,15Z-octadecatrienoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:1(12Z)-2OH(9,10)/18:3(9Z,12Z,15Z))

[(2S)-3-({[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H76O15P2 (882.4659)


PGP(18:1(12Z)-2OH(9,10)/18:3(9Z,12Z,15Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(12Z)-2OH(9,10)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 9Z,12Z,15Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(a-15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PGP(a-15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C41H72O16P2 (882.4295)


PGP(a-15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(a-15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-15:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(12-methyltetradecanoyl)oxy]-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C41H72O16P2 (882.4295)


PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-15:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-15:0), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(a-17:0/20:3(6,8,11)-OH(5))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-3-[(14-methylhexadecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C43H80O14P2 (882.5023)


PGP(a-17:0/20:3(6,8,11)-OH(5)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(a-17:0/20:3(6,8,11)-OH(5)), in particular, consists of one chain of one 14-methylhexadecanoyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(6,8,11)-OH(5)/a-17:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-2-[(14-methylhexadecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C43H80O14P2 (882.5023)


PGP(20:3(6,8,11)-OH(5)/a-17:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(6,8,11)-OH(5)/a-17:0), in particular, consists of one chain of one 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of 14-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(13-methyltetradecanoyl)oxy]-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C41H72O16P2 (882.4295)


PGP(i-15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-15:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(13-methyltetradecanoyl)oxy]-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C41H72O16P2 (882.4295)


PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-15:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-15:0), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-16:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

[(2S)-3-({[(2R)-2-{[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-3-[(14-methylpentadecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H76O15P2 (882.4659)


PGP(i-16:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-16:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of one 14-methylpentadecanoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-16:0)

[(2S)-3-({[(2R)-3-{[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-2-[(14-methylpentadecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H76O15P2 (882.4659)


PGP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-16:0), in particular, consists of one chain of one Leukotriene B4 at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-16:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

[(2S)-3-({[(2R)-2-{[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-3-[(14-methylpentadecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H76O15P2 (882.4659)


PGP(i-16:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-16:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of one 14-methylpentadecanoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-16:0)

[(2S)-3-({[(2R)-3-{[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-2-[(14-methylpentadecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H76O15P2 (882.4659)


PGP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-16:0), in particular, consists of one chain of one 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-16:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

[(2S)-3-({[(2R)-2-{[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-3-[(14-methylpentadecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H76O15P2 (882.4659)


PGP(i-16:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-16:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of one 14-methylpentadecanoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-16:0)

[(2S)-3-({[(2R)-3-{[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-2-[(14-methylpentadecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C42H76O15P2 (882.4659)


PGP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-16:0), in particular, consists of one chain of one 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-17:0/20:3(6,8,11)-OH(5))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-3-[(15-methylhexadecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C43H80O14P2 (882.5023)


PGP(i-17:0/20:3(6,8,11)-OH(5)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-17:0/20:3(6,8,11)-OH(5)), in particular, consists of one chain of one 15-methylhexadecanoyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(6,8,11)-OH(5)/i-17:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-2-[(15-methylhexadecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C43H80O14P2 (882.5023)


PGP(20:3(6,8,11)-OH(5)/i-17:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(6,8,11)-OH(5)/i-17:0), in particular, consists of one chain of one 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of 15-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-19:0/18:2(10E,12Z)+=O(9))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(17-methyloctadecanoyl)oxy]-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C43H80O14P2 (882.5023)


PGP(i-19:0/18:2(10E,12Z)+=O(9)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-19:0/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one 17-methyloctadecanoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(10E,12Z)+=O(9)/i-19:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(17-methyloctadecanoyl)oxy]-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C43H80O14P2 (882.5023)


PGP(18:2(10E,12Z)+=O(9)/i-19:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(10E,12Z)+=O(9)/i-19:0), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of 17-methyloctadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-19:0/18:2(9Z,11E)+=O(13))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(17-methyloctadecanoyl)oxy]-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C43H80O14P2 (882.5023)


PGP(i-19:0/18:2(9Z,11E)+=O(13)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-19:0/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one 17-methyloctadecanoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,11E)+=O(13)/i-19:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(17-methyloctadecanoyl)oxy]-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C43H80O14P2 (882.5023)


PGP(18:2(9Z,11E)+=O(13)/i-19:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,11E)+=O(13)/i-19:0), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of 17-methyloctadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-19:0/18:3(10,12,15)-OH(9))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-3-[(17-methyloctadecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C43H80O14P2 (882.5023)


PGP(i-19:0/18:3(10,12,15)-OH(9)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-19:0/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one 17-methyloctadecanoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:3(10,12,15)-OH(9)/i-19:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-2-[(17-methyloctadecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C43H80O14P2 (882.5023)


PGP(18:3(10,12,15)-OH(9)/i-19:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:3(10,12,15)-OH(9)/i-19:0), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of 17-methyloctadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-19:0/18:3(9,11,15)-OH(13))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-3-[(17-methyloctadecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C43H80O14P2 (882.5023)


PGP(i-19:0/18:3(9,11,15)-OH(13)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-19:0/18:3(9,11,15)-OH(13)), in particular, consists of one chain of one 17-methyloctadecanoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:3(9,11,15)-OH(13)/i-19:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-2-[(17-methyloctadecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C43H80O14P2 (882.5023)


PGP(18:3(9,11,15)-OH(13)/i-19:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:3(9,11,15)-OH(13)/i-19:0), in particular, consists of one chain of one 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of 17-methyloctadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

Prosapogenin CP6

Prosapogenin CP6

C46H74O16 (882.4977)


   
   
   
   

Spirostane -2H, + 1O, O-Hex-dHex, C6H9O4

Spirostane -2H, + 1O, O-Hex-dHex, C6H9O4

C45H70O17 (882.4613)


Annotation level-3

   
   

3-O-beta-D-xylopyranosyl(1-3)-alpha-L-rhamnopyranosyl(1-2)-alpha-L-arabinopyranosyl hederagenin

3-O-beta-D-xylopyranosyl(1-3)-alpha-L-rhamnopyranosyl(1-2)-alpha-L-arabinopyranosyl hederagenin

C46H74O16 (882.4977)


   

3-O-[beta-D-xylopyranosyl(1->2)][beta-D-glucopyranosyl(1->3)]-alpha-L-arabinopyranosyl-ursolic acid|araliasaponin IX

3-O-[beta-D-xylopyranosyl(1->2)][beta-D-glucopyranosyl(1->3)]-alpha-L-arabinopyranosyl-ursolic acid|araliasaponin IX

C46H74O16 (882.4977)


   

calogenin 20-O-beta-D-glucopyranosyl-3-O-[4-O-tigloyl-beta-D-thevetopyranosyl-(1->4)-beta-D-oleandropyranoside]|calogenin-20-O-[beta-D-glucopyranoside]-3-O-[(4-O-tigloyl-beta-D-thevetopyranosyl)-(1->4)-beta-D-oleandropyranoside]|hoodigoside V

calogenin 20-O-beta-D-glucopyranosyl-3-O-[4-O-tigloyl-beta-D-thevetopyranosyl-(1->4)-beta-D-oleandropyranoside]|calogenin-20-O-[beta-D-glucopyranoside]-3-O-[(4-O-tigloyl-beta-D-thevetopyranosyl)-(1->4)-beta-D-oleandropyranoside]|hoodigoside V

C46H74O16 (882.4977)


   

2,6-Bis[(3,7-dihydro-7-oxo-4,6-dihydroxy-2,5,5,8a-tetramethylspiro[2H-furo[2,3-f]isoindole-2,1-decalin])-6(5H)-yl]hexanoic acid

2,6-Bis[(3,7-dihydro-7-oxo-4,6-dihydroxy-2,5,5,8a-tetramethylspiro[2H-furo[2,3-f]isoindole-2,1-decalin])-6(5H)-yl]hexanoic acid

C52H70N2O10 (882.503)


   

3-O-{[beta-D-glucopyranosyl-(1->2)]-[alpha-L-arabinopyranosyl-(1->3)]-alpha-L-arabinopyranosyl}-oleanolic acid-28-O-[beta-D-glucopyranosyl] ester|indicasaponin B

3-O-{[beta-D-glucopyranosyl-(1->2)]-[alpha-L-arabinopyranosyl-(1->3)]-alpha-L-arabinopyranosyl}-oleanolic acid-28-O-[beta-D-glucopyranosyl] ester|indicasaponin B

C46H74O16 (882.4977)


   

dracaenoside I

dracaenoside I

C45H70O17 (882.4613)


   

3-O-alpha-L-arabinofuranosyl-(1->3)2))-beta-D-xylopyranosylhederagenin|3-O-alpha-L-arabinofuranosyl-(1->3)[alpha-L-rhamnopyranosyl(1->2))-beta-D-xylopyranosylhederagenin

3-O-alpha-L-arabinofuranosyl-(1->3)2))-beta-D-xylopyranosylhederagenin|3-O-alpha-L-arabinofuranosyl-(1->3)[alpha-L-rhamnopyranosyl(1->2))-beta-D-xylopyranosylhederagenin

C46H74O16 (882.4977)


   

3-O-[beta-D-xylopyranosyl-(1->3)-alpha-L-rhamnopyranosyl-(1->2)-alpha-L-arabinopyranosyl]-hederagenin|kalopanaxsaponin I

3-O-[beta-D-xylopyranosyl-(1->3)-alpha-L-rhamnopyranosyl-(1->2)-alpha-L-arabinopyranosyl]-hederagenin|kalopanaxsaponin I

C46H74O16 (882.4977)


   

20(R),25-epoxy-9beta,19-cyclolanostane-3beta,6alpha,16beta,24(S)-tetrol (24-O-acetyl)-3-O-alpha-L-rhamnopyranosyl-(1->2)-(6-O-acetyl)-beta-D-glucopyranoside

20(R),25-epoxy-9beta,19-cyclolanostane-3beta,6alpha,16beta,24(S)-tetrol (24-O-acetyl)-3-O-alpha-L-rhamnopyranosyl-(1->2)-(6-O-acetyl)-beta-D-glucopyranoside

C46H74O16 (882.4977)


   

didemnaketal E

didemnaketal E

C46H74O16 (882.4977)


   

26-O-beta-D-glucopyranosyl-3beta,26-diol-25(R)-furost-5,20(22)-dien-3-O-alpha-L-rhamnopyranosyl(1?2)-O-beta-D-glucopyranoside

26-O-beta-D-glucopyranosyl-3beta,26-diol-25(R)-furost-5,20(22)-dien-3-O-alpha-L-rhamnopyranosyl(1?2)-O-beta-D-glucopyranoside

C46H74O16 (882.4977)


   

27-hydroxyoleanoic acid 3-O-alpha-L-arabinopyranosyl-(1->3)-alpha-L-rhamnopyranosyl-(1->2)-alpha-L-arabinopyranoside|raddeanoside Rb

27-hydroxyoleanoic acid 3-O-alpha-L-arabinopyranosyl-(1->3)-alpha-L-rhamnopyranosyl-(1->2)-alpha-L-arabinopyranoside|raddeanoside Rb

C46H74O16 (882.4977)


   

28-O-beta-D-glucopyranosyl-3beta,23-dihydroxyurs-12-en-28-oic acid 3-O-beta-D-glucuronopyranoside 6-O-butyl ester

28-O-beta-D-glucopyranosyl-3beta,23-dihydroxyurs-12-en-28-oic acid 3-O-beta-D-glucuronopyranoside 6-O-butyl ester

C46H74O16 (882.4977)


   

Prosapogenin CP(6)

Prosapogenin CP(6)

C46H74O16 (882.4977)


   

androseptoside C1

androseptoside C1

C46H74O16 (882.4977)


   

Saponin CP6

(4aS,6aR,6aS,6bR,8aR,9R,10S,12aR,14bS)-10-[(2S,3R,4S,5S)-3-[(2S,3R,4S,5S,6S)-3,5-dihydroxy-6-methyl-4-[(2S,3R,4R,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxan-2-yl]oxy-4,5-dihydroxyoxan-2-yl]oxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


Clematoside S is a natural product found in Clematis grata with data available.

   

Sapindoside B

(4aS,6aR,6aS,6bR,8aR,9R,10S,12aR,14bS)-10-[(2S,3R,4S,5S)-3-[(2S,3R,4R,5S,6S)-3,5-dihydroxy-6-methyl-4-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxan-2-yl]oxy-4,5-dihydroxyoxan-2-yl]oxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


Sapindoside B is a natural product found in Sapindus emarginatus, Nigella glandulifera, and other organisms with data available.

   

C46H74O16_Olean-12-en-28-oic acid, 23-hydroxy-3-[[O-beta-D-xylopyranosyl-(1->3)-O-6-deoxy-alpha-L-mannopyranosyl-(1->2)-alpha-L-arabinopyranosyl]oxy]-, (3beta,5xi,9xi)

NCGC00347379-02_C46H74O16_Olean-12-en-28-oic acid, 23-hydroxy-3-[[O-beta-D-xylopyranosyl-(1->3)-O-6-deoxy-alpha-L-mannopyranosyl-(1->2)-alpha-L-arabinopyranosyl]oxy]-, (3beta,5xi,9xi)-

C46H74O16 (882.4977)


   

(4aS,6aS,6bR,9R,10S,12aR,14bS)-10-[(2S,3R,4S,5S)-3-[(2S,3R,4R,5S,6S)-3,5-dihydroxy-6-methyl-4-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxan-2-yl]oxy-4,5-dihydroxyoxan-2-yl]oxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid

(4aS,6aS,6bR,9R,10S,12aR,14bS)-10-[(2S,3R,4S,5S)-3-[(2S,3R,4R,5S,6S)-3,5-dihydroxy-6-methyl-4-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxan-2-yl]oxy-4,5-dihydroxyoxan-2-yl]oxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

Pitheduloside B

10-({6-[({4,5-dihydroxy-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)methyl]-3,4,5-trihydroxyoxan-2-yl}oxy)-2,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

Elatoside E

10-[(5-hydroxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl)oxy]-2,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

Lycogaride D

1,2,3-(8R,9R-epoxy-octadec-13Z,15Z-dien-4,6-diynoyl)-sn-glycerol

C56H66O9 (882.4707)


   

Trillfurostanoside F

26-O-beta-D-glucopyranosyl-(25R)-furost-5,16(17),20(22)-trien-3beta,26-diol-3-O-alpha-l-rhamnopyranosyl-(1-2)-beta-D-glucopyranoside

C45H70O17 (882.4613)


   

[(E,5S,9S,10S)-11-[(10S,16S,20S,21R,22S,24E)-16-hydroxy-22-methoxy-10,21-dimethyl-12,18-dioxo-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.12,5.16,9]hentriaconta-1(28),2(31),4,6(30),8,24,26(29)-heptaen-20-yl]-1-[hydroxymethyl(methyl)amino]-10-methoxy-3,5,9-trimethyl-6-oxoundec-1-en-4-yl] acetate

[(E,5S,9S,10S)-11-[(10S,16S,20S,21R,22S,24E)-16-hydroxy-22-methoxy-10,21-dimethyl-12,18-dioxo-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.12,5.16,9]hentriaconta-1(28),2(31),4,6(30),8,24,26(29)-heptaen-20-yl]-1-[hydroxymethyl(methyl)amino]-10-methoxy-3,5,9-trimethyl-6-oxoundec-1-en-4-yl] acetate

C46H66N4O13 (882.4626)


   

Spirostane-2H, + 1O, O-Hex-dHex, C6H9O4

Spirostane-2H, + 1O, O-Hex-dHex, C6H9O4

C45H70O17 (882.4613)


   

PGP(i-19:0/18:2(10E,12Z)+=O(9))

PGP(i-19:0/18:2(10E,12Z)+=O(9))

C43H80O14P2 (882.5023)


   

PGP(18:2(10E,12Z)+=O(9)/i-19:0)

PGP(18:2(10E,12Z)+=O(9)/i-19:0)

C43H80O14P2 (882.5023)


   

PGP(i-19:0/18:2(9Z,11E)+=O(13))

PGP(i-19:0/18:2(9Z,11E)+=O(13))

C43H80O14P2 (882.5023)


   

PGP(18:2(9Z,11E)+=O(13)/i-19:0)

PGP(18:2(9Z,11E)+=O(13)/i-19:0)

C43H80O14P2 (882.5023)


   

PGP(a-17:0/20:3(6,8,11)-OH(5))

PGP(a-17:0/20:3(6,8,11)-OH(5))

C43H80O14P2 (882.5023)


   

PGP(20:3(6,8,11)-OH(5)/a-17:0)

PGP(20:3(6,8,11)-OH(5)/a-17:0)

C43H80O14P2 (882.5023)


   

PGP(i-17:0/20:3(6,8,11)-OH(5))

PGP(i-17:0/20:3(6,8,11)-OH(5))

C43H80O14P2 (882.5023)


   

PGP(20:3(6,8,11)-OH(5)/i-17:0)

PGP(20:3(6,8,11)-OH(5)/i-17:0)

C43H80O14P2 (882.5023)


   

PGP(i-19:0/18:3(10,12,15)-OH(9))

PGP(i-19:0/18:3(10,12,15)-OH(9))

C43H80O14P2 (882.5023)


   

PGP(18:3(10,12,15)-OH(9)/i-19:0)

PGP(18:3(10,12,15)-OH(9)/i-19:0)

C43H80O14P2 (882.5023)


   

PGP(i-19:0/18:3(9,11,15)-OH(13))

PGP(i-19:0/18:3(9,11,15)-OH(13))

C43H80O14P2 (882.5023)


   

PGP(18:3(9,11,15)-OH(13)/i-19:0)

PGP(18:3(9,11,15)-OH(13)/i-19:0)

C43H80O14P2 (882.5023)


   

PGP(16:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

PGP(16:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

C42H76O15P2 (882.4659)


   

PGP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/16:0)

PGP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/16:0)

C42H76O15P2 (882.4659)


   

PGP(16:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

PGP(16:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

C42H76O15P2 (882.4659)


   

PGP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/16:0)

PGP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/16:0)

C42H76O15P2 (882.4659)


   

PGP(16:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

PGP(16:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

C42H76O15P2 (882.4659)


   

PGP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/16:0)

PGP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/16:0)

C42H76O15P2 (882.4659)


   

PGP(16:1(9Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

PGP(16:1(9Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

C42H76O15P2 (882.4659)


   

PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/16:1(9Z))

PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/16:1(9Z))

C42H76O15P2 (882.4659)


   

PGP(18:3(6Z,9Z,12Z)/18:1(12Z)-2OH(9,10))

PGP(18:3(6Z,9Z,12Z)/18:1(12Z)-2OH(9,10))

C42H76O15P2 (882.4659)


   

PGP(18:1(12Z)-2OH(9,10)/18:3(6Z,9Z,12Z))

PGP(18:1(12Z)-2OH(9,10)/18:3(6Z,9Z,12Z))

C42H76O15P2 (882.4659)


   

PGP(18:3(9Z,12Z,15Z)/18:1(12Z)-2OH(9,10))

PGP(18:3(9Z,12Z,15Z)/18:1(12Z)-2OH(9,10))

C42H76O15P2 (882.4659)


   

PGP(18:1(12Z)-2OH(9,10)/18:3(9Z,12Z,15Z))

PGP(18:1(12Z)-2OH(9,10)/18:3(9Z,12Z,15Z))

C42H76O15P2 (882.4659)


   

PGP(i-16:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

PGP(i-16:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

C42H76O15P2 (882.4659)


   

PGP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-16:0)

PGP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-16:0)

C42H76O15P2 (882.4659)


   

PGP(i-16:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

PGP(i-16:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

C42H76O15P2 (882.4659)


   

PGP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-16:0)

PGP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-16:0)

C42H76O15P2 (882.4659)


   

PGP(i-16:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

PGP(i-16:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

C42H76O15P2 (882.4659)


   

PGP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-16:0)

PGP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-16:0)

C42H76O15P2 (882.4659)


   

PGP(a-15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PGP(a-15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C41H72O16P2 (882.4295)


   

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-15:0)

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-15:0)

C41H72O16P2 (882.4295)


   

PGP(i-15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PGP(i-15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C41H72O16P2 (882.4295)


   

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-15:0)

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-15:0)

C41H72O16P2 (882.4295)


   

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

C50H75O11P (882.5047)


   

PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

C50H75O11P (882.5047)


   

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

C50H75O11P (882.5047)


   

PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

C50H75O11P (882.5047)


   

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

C50H75O11P (882.5047)


   

PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

C50H75O11P (882.5047)


   

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

C50H75O11P (882.5047)


   

PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

C50H75O11P (882.5047)


   

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

C50H75O11P (882.5047)


   

PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

C50H75O11P (882.5047)


   

Pitheduloside C

Pitheduloside C

C46H74O16 (882.4977)


   

3-O-[alpha-L-arabinopyranosyl(1->2)-alpha-L-arabinopyranosyl(1->6)]-beta-D-glucopyranosyl oleanolic acid

3-O-[alpha-L-arabinopyranosyl(1->2)-alpha-L-arabinopyranosyl(1->6)]-beta-D-glucopyranosyl oleanolic acid

C46H74O16 (882.4977)


A natural product found in Albizia inundata.

   

Brachystemin H

Brachystemin H

C45H58N10O9 (882.4388)


A natural product found in Brachystemma calycinum.

   

3-O-[beta-D-xylopyranosyl(1->2)-alpha-L-arabinopyranosyl(1->6)]-beta-D-glucopyranosyl oleanolic acid

3-O-[beta-D-xylopyranosyl(1->2)-alpha-L-arabinopyranosyl(1->6)]-beta-D-glucopyranosyl oleanolic acid

C46H74O16 (882.4977)


A natural product found in Albizia inundata.

   

1,2,3-(8R,9R-epoxy-octadec-13Z,15Z-dien-4,6-diynoyl)-sn-glycerol

1,2,3-(8R,9R-epoxy-octadec-13Z,15Z-dien-4,6-diynoyl)-sn-glycerol

C56H66O9 (882.4707)


   
   
   

PG 20:5/20:3;O4

PG 20:5/20:3;O4

C46H75O14P (882.4894)


   
   
   
   
   
   

PI 22:0/12:2;O3

PI 22:0/12:2;O3

C43H79O16P (882.5105)


   
   

2,6-bis({4,6'-dihydroxy-2',5',5',8'a-tetramethyl-7-oxo-3,3',4',4'a,5,6',7',8'-octahydro-2'h-spiro[furo[2,3-f]isoindole-2,1'-naphthalen]-6-yl})hexanoic acid

2,6-bis({4,6'-dihydroxy-2',5',5',8'a-tetramethyl-7-oxo-3,3',4',4'a,5,6',7',8'-octahydro-2'h-spiro[furo[2,3-f]isoindole-2,1'-naphthalen]-6-yl})hexanoic acid

C52H70N2O10 (882.503)


   

(4as,6as,6br,8ar,9r,10s,12ar,12bs,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12bs,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

2-[({3-benzyl-2,5,8,14-tetrahydroxy-10-methyl-6-[(methyl-c-hydroxycarbonimidoyl)methyl]-11-oxo-9-(2-phenylethyl)-12-(sec-butyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,7,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]-3-phenylpropanoic acid

2-[({3-benzyl-2,5,8,14-tetrahydroxy-10-methyl-6-[(methyl-c-hydroxycarbonimidoyl)methyl]-11-oxo-9-(2-phenylethyl)-12-(sec-butyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,7,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]-3-phenylpropanoic acid

C47H62N8O9 (882.464)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

(3s)-5-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-16'-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-7',9',13'-trimethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-5-ylmethoxy]-3-hydroxy-3-methyl-5-oxopentanoic acid

(3s)-5-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-16'-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-7',9',13'-trimethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-5-ylmethoxy]-3-hydroxy-3-methyl-5-oxopentanoic acid

C45H70O17 (882.4613)


   

butyl (2s,3s,4s,5r,6r)-6-{[(3s,4r,4ar,6ar,6bs,8ar,10r,11s,12r,12as,14ar,14br)-10-hydroxy-4-(hydroxymethyl)-4,6a,6b,11,12,14b-hexamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylate

butyl (2s,3s,4s,5r,6r)-6-{[(3s,4r,4ar,6ar,6bs,8ar,10r,11s,12r,12as,14ar,14br)-10-hydroxy-4-(hydroxymethyl)-4,6a,6b,11,12,14b-hexamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylate

C46H74O16 (882.4977)


   

2-{[3-hydroxy-2-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-6-{7',9',13'-trimethyl-5-methylidene-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[3-hydroxy-2-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-6-{7',9',13'-trimethyl-5-methylidene-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C45H70O17 (882.4613)


   

10-[(4-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-5-hydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl)oxy]-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-[(4-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-5-hydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl)oxy]-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

(3s)-5-[(1's,2r,2's,4's,5s,7's,8'r,9's,12's,13'r,16's)-16'-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-7',9',13'-trimethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-5-ylmethoxy]-3-hydroxy-3-methyl-5-oxopentanoic acid

(3s)-5-[(1's,2r,2's,4's,5s,7's,8'r,9's,12's,13'r,16's)-16'-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-7',9',13'-trimethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-5-ylmethoxy]-3-hydroxy-3-methyl-5-oxopentanoic acid

C45H70O17 (882.4613)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14br)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14br)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

aralia-saponin ix

NA

C46H74O16 (882.4977)


{"Ingredient_id": "HBIN016580","Ingredient_name": "aralia-saponin ix","Alias": "NA","Ingredient_formula": "C46H74O16","Ingredient_Smile": "CC1CCC2(CCC3(C(=CCC4C3(CCC5C4(CCC(C5(C)C)OC6C(C(C(CO6)O)OC7C(C(C(C(O7)CO)O)O)O)OC8C(C(C(CO8)O)O)O)C)C)C2C1C)C)C(=O)O","Ingredient_weight": "883.1 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "1607","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "10605695","DrugBank_id": "NA"}

   

araloside d

NA

C46H74O16 (882.4977)


{"Ingredient_id": "HBIN016589","Ingredient_name": "araloside d","Alias": "NA","Ingredient_formula": "C46H74O16","Ingredient_Smile": "CC1(CCC2(CCC3(C(=CCC4C3(CCC5C4(CCC(C5(C)C)OC6C(C(C(CO6)O)OC7C(C(C(C(O7)CO)O)O)O)OC8C(C(C(CO8)O)O)O)C)C)C2C1)C)C(=O)O)C","Ingredient_weight": "883.1 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "1611","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "195805","DrugBank_id": "NA"}

   

2,6-bis[2-(4,8-dimethylnona-3,7-dien-1-yl)-3,5-dihydroxy-2-methyl-7-oxo-3h,4h,9h-pyrano[2,3-e]isoindol-8-yl]hexanoic acid

2,6-bis[2-(4,8-dimethylnona-3,7-dien-1-yl)-3,5-dihydroxy-2-methyl-7-oxo-3h,4h,9h-pyrano[2,3-e]isoindol-8-yl]hexanoic acid

C52H70N2O10 (882.503)


   

[6-({14-[5-(acetyloxy)-2,6,6-trimethyloxan-2-yl]-9,13-dihydroxy-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl}oxy)-3,4-dihydroxy-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]methyl acetate

[6-({14-[5-(acetyloxy)-2,6,6-trimethyloxan-2-yl]-9,13-dihydroxy-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl}oxy)-3,4-dihydroxy-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]methyl acetate

C46H74O16 (882.4977)


   

(4as,6as,6br,8ar,9r,10r,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-5-hydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10r,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-5-hydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

10-{[3-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-{[3-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

(1s,2r,4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-5-hydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylic acid

(1s,2r,4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-5-hydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylic acid

C46H74O16 (882.4977)


   

5-(16'-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-7',9',13'-trimethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-5-ylmethoxy)-3-hydroxy-3-methyl-5-oxopentanoic acid

5-(16'-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-7',9',13'-trimethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-5-ylmethoxy)-3-hydroxy-3-methyl-5-oxopentanoic acid

C45H70O17 (882.4613)


   

(4as,6as,6br,8ar,10s,12ar,12br,14br)-10-{[(2r,3r,4r,5s,6r)-5-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,10s,12ar,12br,14br)-10-{[(2r,3r,4r,5s,6r)-5-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

7-[(5-hydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl)oxy]-6,6,9a,11a-tetramethyl-1-(6-methylhept-5-en-2-yl)-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-3a-carboxylic acid

7-[(5-hydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl)oxy]-6,6,9a,11a-tetramethyl-1-(6-methylhept-5-en-2-yl)-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-3a-carboxylic acid

C46H74O16 (882.4977)


   

(1r,3as,5ar,7s,9as,11ar)-7-{[(2s,3r,4s,5s)-5-hydroxy-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-6,6,9a,11a-tetramethyl-1-[(2r)-6-methylhept-5-en-2-yl]-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-3a-carboxylic acid

(1r,3as,5ar,7s,9as,11ar)-7-{[(2s,3r,4s,5s)-5-hydroxy-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-6,6,9a,11a-tetramethyl-1-[(2r)-6-methylhept-5-en-2-yl]-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-3a-carboxylic acid

C46H74O16 (882.4977)


   

10-[(5-hydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl)oxy]-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-[(5-hydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl)oxy]-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

(2s)-2,6-bis[(2r,2'r,4'as,6'r,8'as)-4,6'-dihydroxy-2',5',5',8'a-tetramethyl-6-oxo-3,3',4',4'a,6',7',8,8'-octahydro-2'h-spiro[furo[2,3-e]isoindole-2,1'-naphthalen]-7-yl]hexanoic acid

(2s)-2,6-bis[(2r,2'r,4'as,6'r,8'as)-4,6'-dihydroxy-2',5',5',8'a-tetramethyl-6-oxo-3,3',4',4'a,6',7',8,8'-octahydro-2'h-spiro[furo[2,3-e]isoindole-2,1'-naphthalen]-7-yl]hexanoic acid

C52H70N2O10 (882.503)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10-({3,5-dihydroxy-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10-({3,5-dihydroxy-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylate

C46H74O16 (882.4977)


   

2,6-bis({4,6'-dihydroxy-2',5',5',8'a-tetramethyl-6-oxo-3,3',4',4'a,6',7',8,8'-octahydro-2'h-spiro[furo[2,3-e]isoindole-2,1'-naphthalen]-7-yl})hexanoic acid

2,6-bis({4,6'-dihydroxy-2',5',5',8'a-tetramethyl-6-oxo-3,3',4',4'a,6',7',8,8'-octahydro-2'h-spiro[furo[2,3-e]isoindole-2,1'-naphthalen]-7-yl})hexanoic acid

C52H70N2O10 (882.503)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5r)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5r)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2r,3s,4r,5r)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2r,3s,4r,5r)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

(4as,6as,6br,9r,10s,12ar)-10-{[3-({3,5-dihydroxy-6-methyl-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,9r,10s,12ar)-10-{[3-({3,5-dihydroxy-6-methyl-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,2r,4as,6as,6br,8ar,10r,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3,5-dihydroxy-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,2r,4as,6as,6br,8ar,10r,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3,5-dihydroxy-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylate

C46H74O16 (882.4977)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5r,6r)-3-hydroxy-2-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-6-[(1's,2r,2's,4's,7's,8'r,9's,12's,13'r,16's)-7',9',13'-trimethyl-5-methylidene-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5r,6r)-3-hydroxy-2-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-6-[(1's,2r,2's,4's,7's,8'r,9's,12's,13'r,16's)-7',9',13'-trimethyl-5-methylidene-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C45H70O17 (882.4613)


   

5-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-16'-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-7',9',13'-trimethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-5-ylmethoxy]-3-hydroxy-3-methyl-5-oxopentanoic acid

5-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-16'-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-7',9',13'-trimethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-5-ylmethoxy]-3-hydroxy-3-methyl-5-oxopentanoic acid

C45H70O17 (882.4613)


   

(4as,6as,6br,8ar,9r,10r,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-5-hydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10r,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-5-hydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-5-hydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-9-(hydroxymethyl)-6a,6b,9,12a-tetramethyl-2-methylidene-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-5-hydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-9-(hydroxymethyl)-6a,6b,9,12a-tetramethyl-2-methylidene-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C45H70O17 (882.4613)


   

(3s)-5-[(1's,2r,2's,4's,5r,7's,8'r,9's,12'r,13'r,16's)-16'-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-7',9',13'-trimethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-5-ylmethoxy]-3-hydroxy-3-methyl-5-oxopentanoic acid

(3s)-5-[(1's,2r,2's,4's,5r,7's,8'r,9's,12'r,13'r,16's)-16'-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-7',9',13'-trimethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-5-ylmethoxy]-3-hydroxy-3-methyl-5-oxopentanoic acid

C45H70O17 (882.4613)


   

(4as,6ar,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-6a-(hydroxymethyl)-2,2,6b,9,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6ar,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-6a-(hydroxymethyl)-2,2,6b,9,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

(4as,6br,9s,10s,12ar)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6br,9s,10s,12ar)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

(2r)-2-[(2s,2's,4'as,6'r,8'as)-4,6'-dihydroxy-2',5',5',8'a-tetramethyl-7-oxo-3,3',4',4'a,5,6',7',8'-octahydro-2'h-spiro[furo[2,3-f]isoindole-2,1'-naphthalen]-6-yl]-6-[(2s,2's,4'as,6's,8'as)-4,6'-dihydroxy-2',5',5',8'a-tetramethyl-7-oxo-3,3',4',4'a,5,6',7',8'-octahydro-2'h-spiro[furo[2,3-f]isoindole-2,1'-naphthalen]-6-yl]hexanoic acid

(2r)-2-[(2s,2's,4'as,6'r,8'as)-4,6'-dihydroxy-2',5',5',8'a-tetramethyl-7-oxo-3,3',4',4'a,5,6',7',8'-octahydro-2'h-spiro[furo[2,3-f]isoindole-2,1'-naphthalen]-6-yl]-6-[(2s,2's,4'as,6's,8'as)-4,6'-dihydroxy-2',5',5',8'a-tetramethyl-7-oxo-3,3',4',4'a,5,6',7',8'-octahydro-2'h-spiro[furo[2,3-f]isoindole-2,1'-naphthalen]-6-yl]hexanoic acid

C52H70N2O10 (882.503)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14br)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14br)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

6-[(6-{[3a-hydroxy-9a,11a-dimethyl-1-(1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}ethyl)-1h,2h,3h,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4-methoxy-2-methyloxan-3-yl)oxy]-5-hydroxy-4-methoxy-2-methyloxan-3-yl 2-methylbut-2-enoate

6-[(6-{[3a-hydroxy-9a,11a-dimethyl-1-(1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}ethyl)-1h,2h,3h,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4-methoxy-2-methyloxan-3-yl)oxy]-5-hydroxy-4-methoxy-2-methyloxan-3-yl 2-methylbut-2-enoate

C46H74O16 (882.4977)


   

butyl 3,4,5-trihydroxy-6-{[10-hydroxy-4-(hydroxymethyl)-4,6a,6b,11,12,14b-hexamethyl-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picen-3-yl]oxy}oxane-2-carboxylate

butyl 3,4,5-trihydroxy-6-{[10-hydroxy-4-(hydroxymethyl)-4,6a,6b,11,12,14b-hexamethyl-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picen-3-yl]oxy}oxane-2-carboxylate

C46H74O16 (882.4977)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4s,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4s,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

(4as,6as,6br,8ar,9r,10s,12ar,12bs,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12bs,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

(4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-5-hydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-5-hydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

(4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-5-hydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-5-hydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

(4as,6as,6br,8ar,9r,10s,12ar,12bs,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12bs,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

10-({5-hydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-({5-hydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-5-hydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-5-hydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

7-ethyl 1-methyl (2e,5s,6s)-6-[(1r,2r,4s,5s)-1-(acetyloxy)-5-[(2s,4s,6s,8s,10r)-8-hydroxy-4,10-dimethyl-8-(2-oxopropyl)-1,7-dioxaspiro[5.5]undecan-2-yl]-4-methyl-2,5-bis[(3-methylbutanoyl)oxy]pentyl]-2-methyl-5-(propanoyloxy)hept-2-enedioate

7-ethyl 1-methyl (2e,5s,6s)-6-[(1r,2r,4s,5s)-1-(acetyloxy)-5-[(2s,4s,6s,8s,10r)-8-hydroxy-4,10-dimethyl-8-(2-oxopropyl)-1,7-dioxaspiro[5.5]undecan-2-yl]-4-methyl-2,5-bis[(3-methylbutanoyl)oxy]pentyl]-2-methyl-5-(propanoyloxy)hept-2-enedioate

C46H74O16 (882.4977)


   

[(2r,3s,4s,5r,6r)-6-{[(1s,3r,6s,8r,9s,11r,12s,13r,14r,16r)-14-[(2r,5s)-5-(acetyloxy)-2,6,6-trimethyloxan-2-yl]-9,13-dihydroxy-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]methyl acetate

[(2r,3s,4s,5r,6r)-6-{[(1s,3r,6s,8r,9s,11r,12s,13r,14r,16r)-14-[(2r,5s)-5-(acetyloxy)-2,6,6-trimethyloxan-2-yl]-9,13-dihydroxy-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]methyl acetate

C46H74O16 (882.4977)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2r,3r,4s,5s)-4-{[(2s,3r,4r,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-5-hydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2r,3r,4s,5s)-4-{[(2s,3r,4r,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-5-hydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

10-{[3-({3,5-dihydroxy-6-methyl-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-{[3-({3,5-dihydroxy-6-methyl-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

10-{[5-({4,5-dihydroxy-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-{[5-({4,5-dihydroxy-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

10-({3-[(4-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl}oxy)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-({3-[(4-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl}oxy)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

10-[(5-hydroxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl)oxy]-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylic acid

10-[(5-hydroxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl)oxy]-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylic acid

C46H74O16 (882.4977)


   

(4as,6as,6br,10s,12ar,12br,14br)-10-{[(2s,3r,4s,5s)-5-hydroxy-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,10s,12ar,12br,14br)-10-{[(2s,3r,4s,5s)-5-hydroxy-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

(4ar,6ar,6bs,8ar,10r,12ar,12br,14br)-10-{[(2r,3r,4s,5r)-5-hydroxy-3-{[(2s,3s,4s,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2r,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4ar,6ar,6bs,8ar,10r,12ar,12br,14br)-10-{[(2r,3r,4s,5r)-5-hydroxy-3-{[(2s,3s,4s,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2r,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

(4as,6as,6br,10s,12ar,12br,14br)-10-{[(2s,3r,4s,5s)-5-hydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,10s,12ar,12br,14br)-10-{[(2s,3r,4s,5s)-5-hydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

(4as,6as,6br,8ar,9s,10s,12ar,12br,14br)-10-{[(2r,3s,4r,5r)-3-{[(2r,3s,4r,5r,6r)-3,4-dihydroxy-6-methyl-5-{[(2r,3s,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9s,10s,12ar,12br,14br)-10-{[(2r,3s,4r,5r)-3-{[(2r,3s,4r,5r,6r)-3,4-dihydroxy-6-methyl-5-{[(2r,3s,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

(4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2r,3r,4s,5s,6r)-6-({[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2r,3r,4s,5s,6r)-6-({[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

(3r,5r)-3-[(1s,3ar,3br,5ar,7s,9ar,9br,11ar)-7-{[(2s,3r,4s,5s)-5-hydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-3-hydroxy-5-(2-methylprop-1-en-1-yl)oxolan-2-one

(3r,5r)-3-[(1s,3ar,3br,5ar,7s,9ar,9br,11ar)-7-{[(2s,3r,4s,5s)-5-hydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-3-hydroxy-5-(2-methylprop-1-en-1-yl)oxolan-2-one

C46H74O16 (882.4977)


   

(2r,3r,4r,5r,6s)-6-{[(2r,3r,4r,6r)-6-{[(1s,3as,3br,7s,9ar,9bs,11ar)-3a-hydroxy-9a,11a-dimethyl-1-[(1s)-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}ethyl]-1h,2h,3h,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4-methoxy-2-methyloxan-3-yl]oxy}-5-hydroxy-4-methoxy-2-methyloxan-3-yl (2e)-2-methylbut-2-enoate

(2r,3r,4r,5r,6s)-6-{[(2r,3r,4r,6r)-6-{[(1s,3as,3br,7s,9ar,9bs,11ar)-3a-hydroxy-9a,11a-dimethyl-1-[(1s)-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}ethyl]-1h,2h,3h,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4-methoxy-2-methyloxan-3-yl]oxy}-5-hydroxy-4-methoxy-2-methyloxan-3-yl (2e)-2-methylbut-2-enoate

C46H74O16 (882.4977)


   

(4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2r,3r,4s,5s,6r)-6-({[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2r,3r,4s,5s,6r)-6-({[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

(2s)-2,6-bis[(2r,2'r,6'r,8'as)-4,6'-dihydroxy-2',5',5',8'a-tetramethyl-6-oxo-3,3',4',4'a,6',7',8,8'-octahydro-2'h-spiro[furo[2,3-e]isoindole-2,1'-naphthalen]-7-yl]hexanoic acid

(2s)-2,6-bis[(2r,2'r,6'r,8'as)-4,6'-dihydroxy-2',5',5',8'a-tetramethyl-6-oxo-3,3',4',4'a,6',7',8,8'-octahydro-2'h-spiro[furo[2,3-e]isoindole-2,1'-naphthalen]-7-yl]hexanoic acid

C52H70N2O10 (882.503)


   

(2r)-2,6-bis[(2r,3r)-2-[(3e)-4,8-dimethylnona-3,7-dien-1-yl]-3,5-dihydroxy-2-methyl-7-oxo-3h,4h,9h-pyrano[2,3-e]isoindol-8-yl]hexanoic acid

(2r)-2,6-bis[(2r,3r)-2-[(3e)-4,8-dimethylnona-3,7-dien-1-yl]-3,5-dihydroxy-2-methyl-7-oxo-3h,4h,9h-pyrano[2,3-e]isoindol-8-yl]hexanoic acid

C52H70N2O10 (882.503)


   

3-hydroxy-3-[7-({5-hydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-5-(2-methylprop-1-en-1-yl)oxolan-2-one

3-hydroxy-3-[7-({5-hydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-5-(2-methylprop-1-en-1-yl)oxolan-2-one

C46H74O16 (882.4977)


   

(1r,3as,5as,7s,9as,11ar)-7-{[(2s,3r,4s,5s)-5-hydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-6,6,9a,11a-tetramethyl-1-[(2r)-6-methylhept-5-en-2-yl]-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-3a-carboxylic acid

(1r,3as,5as,7s,9as,11ar)-7-{[(2s,3r,4s,5s)-5-hydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-6,6,9a,11a-tetramethyl-1-[(2r)-6-methylhept-5-en-2-yl]-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-3a-carboxylic acid

C46H74O16 (882.4977)


   

10-{[3-({3,5-dihydroxy-6-methyl-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxyoxan-2-yl]oxy}-6a-(hydroxymethyl)-2,2,6b,9,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-{[3-({3,5-dihydroxy-6-methyl-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxyoxan-2-yl]oxy}-6a-(hydroxymethyl)-2,2,6b,9,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5r)-4-{[(2s,3r,4r,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-5-hydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5r)-4-{[(2s,3r,4r,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-5-hydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C46H74O16 (882.4977)