Exact Mass: 880.5852880000001

Exact Mass Matches: 880.5852880000001

Found 396 metabolites which its exact mass value is equals to given mass value 880.5852880000001, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PC(DiMe(11,3)/MonoMe(11,5))

(3-{[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyl]oxy}-2-{[11-(3-methyl-5-pentylfuran-2-yl)undecanoyl]oxy}propoxy)[2-(trimethylazaniumyl)ethoxy]phosphinic acid

C49H87NO10P (880.6067271999999)


PC(DiMe(11,3)/MonoMe(11,5)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(DiMe(11,3)/MonoMe(11,5)), in particular, consists of one chain of 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoic at the C-1 position and one chain of 12,15-epoxy-13-methyleicosa-12,14-dienoic at the C-2 position. The 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoic moiety is derived from fish oil, while the 12,15-epoxy-13-methyleicosa-12,14-dienoic moiety is derived from fish oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(DiMe(11,5)/MonoMe(11,3))

(3-{[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyl]oxy}-2-{[11-(3-methyl-5-propylfuran-2-yl)undecanoyl]oxy}propoxy)[2-(trimethylazaniumyl)ethoxy]phosphinic acid

C49H87NO10P (880.6067271999999)


PC(DiMe(11,5)/MonoMe(11,3)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(DiMe(11,5)/MonoMe(11,3)), in particular, consists of one chain of 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoic at the C-1 position and one chain of 12,15-epoxy-13-methyleicosa-12,14-dienoic at the C-2 position. The 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoic moiety is derived from fish oil, while the 12,15-epoxy-13-methyleicosa-12,14-dienoic moiety is derived from fish oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(DiMe(11,5)/MonoMe(9,5))

(3-{[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyl]oxy}-2-{[9-(3-methyl-5-pentylfuran-2-yl)nonanoyl]oxy}propoxy)[2-(trimethylazaniumyl)ethoxy]phosphinic acid

C49H87NO10P (880.6067271999999)


PC(DiMe(11,5)/MonoMe(9,5)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(DiMe(11,5)/MonoMe(9,5)), in particular, consists of one chain of 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoic at the C-1 position and one chain of 10,13-epoxy-11-methyloctadeca-10,12-dienoic at the C-2 position. The 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoic moiety is derived from fish oil, while the 10,13-epoxy-11-methyloctadeca-10,12-dienoic moiety is derived from fish oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(DiMe(9,3)/MonoMe(13,5))

(3-{[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyl]oxy}-2-{[13-(3-methyl-5-pentylfuran-2-yl)tridecanoyl]oxy}propoxy)[2-(trimethylazaniumyl)ethoxy]phosphinic acid

C49H87NO10P (880.6067271999999)


PC(DiMe(9,3)/MonoMe(13,5)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(DiMe(9,3)/MonoMe(13,5)), in particular, consists of one chain of 10,13-epoxy-11-methylhexadeca-10,12-dienoic acid at the C-1 position and one chain of 14,17-epoxy-15,16-dimethyldocosa-14,16-dienoic at the C-2 position. The 10,13-epoxy-11-methylhexadeca-10,12-dienoic acid moiety is derived from fish oil, while the 14,17-epoxy-15,16-dimethyldocosa-14,16-dienoic moiety is derived from X. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(DiMe(9,5)/MonoMe(11,5))

(3-{[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyl]oxy}-2-{[11-(3-methyl-5-pentylfuran-2-yl)undecanoyl]oxy}propoxy)[2-(trimethylazaniumyl)ethoxy]phosphinic acid

C49H87NO10P (880.6067271999999)


PC(DiMe(9,5)/MonoMe(11,5)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(DiMe(9,5)/MonoMe(11,5)), in particular, consists of one chain of 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoic at the C-1 position and one chain of 12,15-epoxy-13-methyleicosa-12,14-dienoic at the C-2 position. The 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoic moiety is derived from fish oil, while the 12,15-epoxy-13-methyleicosa-12,14-dienoic moiety is derived from fish oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(MonoMe(11,3)/DiMe(11,5))

(2-{[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyl]oxy}-3-{[11-(3-methyl-5-propylfuran-2-yl)undecanoyl]oxy}propoxy)[2-(trimethylazaniumyl)ethoxy]phosphinic acid

C49H87NO10P (880.6067271999999)


PC(MonoMe(11,3)/DiMe(11,5)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(MonoMe(11,3)/DiMe(11,5)), in particular, consists of one chain of 12,15-epoxy-13-methyleicosa-12,14-dienoic at the C-1 position and one chain of 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoic at the C-2 position. The 12,15-epoxy-13-methyleicosa-12,14-dienoic moiety is derived from fish oil, while the 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoic moiety is derived from fish oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(MonoMe(11,5)/DiMe(11,3))

(2-{[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyl]oxy}-3-{[11-(3-methyl-5-pentylfuran-2-yl)undecanoyl]oxy}propoxy)[2-(trimethylazaniumyl)ethoxy]phosphinic acid

C49H87NO10P (880.6067271999999)


PC(MonoMe(11,5)/DiMe(11,3)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(MonoMe(11,5)/DiMe(11,3)), in particular, consists of one chain of 12,15-epoxy-13-methyleicosa-12,14-dienoic at the C-1 position and one chain of 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoic at the C-2 position. The 12,15-epoxy-13-methyleicosa-12,14-dienoic moiety is derived from fish oil, while the 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoic moiety is derived from fish oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(MonoMe(11,5)/DiMe(9,5))

(2-{[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyl]oxy}-3-{[11-(3-methyl-5-pentylfuran-2-yl)undecanoyl]oxy}propoxy)[2-(trimethylazaniumyl)ethoxy]phosphinic acid

C49H87NO10P (880.6067271999999)


PC(MonoMe(11,5)/DiMe(9,5)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(MonoMe(11,5)/DiMe(9,5)), in particular, consists of one chain of 12,15-epoxy-13-methyleicosa-12,14-dienoic at the C-1 position and one chain of 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoic at the C-2 position. The 12,15-epoxy-13-methyleicosa-12,14-dienoic moiety is derived from fish oil, while the 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoic moiety is derived from fish oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(MonoMe(13,5)/DiMe(9,3))

(2-{[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyl]oxy}-3-{[13-(3-methyl-5-pentylfuran-2-yl)tridecanoyl]oxy}propoxy)[2-(trimethylazaniumyl)ethoxy]phosphinic acid

C49H87NO10P (880.6067271999999)


PC(MonoMe(13,5)/DiMe(9,3)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(MonoMe(13,5)/DiMe(9,3)), in particular, consists of one chain of 14,17-epoxy-15,16-dimethyldocosa-14,16-dienoic at the C-1 position and one chain of 10,13-epoxy-11-methylhexadeca-10,12-dienoic acid at the C-2 position. The 14,17-epoxy-15,16-dimethyldocosa-14,16-dienoic moiety is derived from X, while the 10,13-epoxy-11-methylhexadeca-10,12-dienoic acid moiety is derived from fish oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(MonoMe(9,5)/DiMe(11,5))

(2-{[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyl]oxy}-3-{[9-(3-methyl-5-pentylfuran-2-yl)nonanoyl]oxy}propoxy)[2-(trimethylazaniumyl)ethoxy]phosphinic acid

C49H87NO10P (880.6067271999999)


PC(MonoMe(9,5)/DiMe(11,5)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(MonoMe(9,5)/DiMe(11,5)), in particular, consists of one chain of 10,13-epoxy-11-methyloctadeca-10,12-dienoic at the C-1 position and one chain of 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoic at the C-2 position. The 10,13-epoxy-11-methyloctadeca-10,12-dienoic moiety is derived from fish oil, while the 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoic moiety is derived from fish oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PG(20:1(11Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-[(11Z)-icos-11-enoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C48H81O12P (880.5465356)


PG(20:1(11Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:1(11Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/20:1(11Z))

[(2R)-3-{[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-2-[(11Z)-icos-11-enoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C48H81O12P (880.5465356)


PG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/20:1(11Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/20:1(11Z)), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:1(11Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-[(11Z)-icos-11-enoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C48H81O12P (880.5465356)


PG(20:1(11Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:1(11Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/20:1(11Z))

[(2R)-3-{[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-2-[(11Z)-icos-11-enoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C48H81O12P (880.5465356)


PG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/20:1(11Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/20:1(11Z)), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:4(7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C48H81O12P (880.5465356)


PG(22:4(7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:4(7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:3(8Z,11Z,14Z)-2OH(5,6)/22:4(7Z,10Z,13Z,16Z))

[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C48H81O12P (880.5465356)


PG(20:3(8Z,11Z,14Z)-2OH(5,6)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:3(8Z,11Z,14Z)-2OH(5,6)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-21:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-3-[(18-methylicosanoyl)oxy]propoxy]phosphinic acid

C49H85O11P (880.582919)


PG(a-21:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-21:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one 18-methyleicosanoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/a-21:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-2-[(18-methylicosanoyl)oxy]propoxy]phosphinic acid

C49H85O11P (880.582919)


PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/a-21:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/a-21:0), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of 18-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-21:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-3-[(18-methylicosanoyl)oxy]propoxy]phosphinic acid

C49H85O11P (880.582919)


PG(a-21:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-21:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one 18-methyleicosanoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/a-21:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-2-[(18-methylicosanoyl)oxy]propoxy]phosphinic acid

C49H85O11P (880.582919)


PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/a-21:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/a-21:0), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of 18-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-21:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-3-[(18-methylicosanoyl)oxy]propoxy]phosphinic acid

C49H85O11P (880.582919)


PG(a-21:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-21:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one 18-methyleicosanoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/a-21:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-2-[(18-methylicosanoyl)oxy]propoxy]phosphinic acid

C49H85O11P (880.582919)


PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/a-21:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/a-21:0), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of 18-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-21:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-3-[(18-methylicosanoyl)oxy]propoxy]phosphinic acid

C49H85O11P (880.582919)


PG(a-21:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-21:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one 18-methyleicosanoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/a-21:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-2-[(18-methylicosanoyl)oxy]propoxy]phosphinic acid

C49H85O11P (880.582919)


PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/a-21:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/a-21:0), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of 18-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-21:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(18-methylicosanoyl)oxy]-2-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphinic acid

C49H85O11P (880.582919)


PG(a-21:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-21:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one 18-methyleicosanoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/a-21:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(18-methylicosanoyl)oxy]-3-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphinic acid

C49H85O11P (880.582919)


PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/a-21:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/a-21:0), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of 18-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-21:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-3-[(19-methylicosanoyl)oxy]propoxy]phosphinic acid

C49H85O11P (880.582919)


PG(i-21:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-21:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one 19-methyleicosanoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-21:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-2-[(19-methylicosanoyl)oxy]propoxy]phosphinic acid

C49H85O11P (880.582919)


PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-21:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-21:0), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of 19-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-21:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-3-[(19-methylicosanoyl)oxy]propoxy]phosphinic acid

C49H85O11P (880.582919)


PG(i-21:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-21:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one 19-methyleicosanoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-21:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-2-[(19-methylicosanoyl)oxy]propoxy]phosphinic acid

C49H85O11P (880.582919)


PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-21:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-21:0), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of 19-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-21:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-3-[(19-methylicosanoyl)oxy]propoxy]phosphinic acid

C49H85O11P (880.582919)


PG(i-21:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-21:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one 19-methyleicosanoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-21:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-2-[(19-methylicosanoyl)oxy]propoxy]phosphinic acid

C49H85O11P (880.582919)


PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-21:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-21:0), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of 19-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-21:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-3-[(19-methylicosanoyl)oxy]propoxy]phosphinic acid

C49H85O11P (880.582919)


PG(i-21:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-21:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one 19-methyleicosanoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-21:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-2-[(19-methylicosanoyl)oxy]propoxy]phosphinic acid

C49H85O11P (880.582919)


PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-21:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-21:0), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of 19-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-21:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(19-methylicosanoyl)oxy]-2-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphinic acid

C49H85O11P (880.582919)


PG(i-21:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-21:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one 19-methyleicosanoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-21:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(19-methylicosanoyl)oxy]-3-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphinic acid

C49H85O11P (880.582919)


PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-21:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-21:0), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of 19-methyleicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   
   
   
   
   

PG(22:1(11Z)/22:4(7Z,10Z,13Z,16Z))

1-(11Z-docosenoyl)-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-glycero-3-phospho-(1-sn-glycerol)

C50H89O10P (880.6193024)


   

PG(22:4(7Z,10Z,13Z,16Z)/22:1(11Z))

1-(7Z,10Z,13Z,16Z-docosatetraenoyl)-2-(11Z-docosenoyl)-glycero-3-phospho-(1-sn-glycerol)

C50H89O10P (880.6193024)


   

PI(15:0/22:0)

1-pentadecanoyl-2-docosanoyl-glycero-3-phospho-(1-myo-inositol)

C46H89O13P (880.6040474)


   

PI(16:0/21:0)

1-hexadecanoyl-2-heneicosanoyl-glycero-3-phospho-(1-myo-inositol)

C46H89O13P (880.6040474)


   

PI(18:0/19:0)

1-octadecanoyl-2-nonadecanoyl-glycero-3-phospho-(1-myo-inositol)

C46H89O13P (880.6040474)


   

PI(20:0/17:0)

1-eicosanoyl-2-heptadecanoyl-glycero-3-phospho-(1-myo-inositol)

C46H89O13P (880.6040474)


   

PI(21:0/16:0)

1-heneicosanoyl-2-hexadecanoyl-glycero-3-phospho-(1-myo-inositol)

C46H89O13P (880.6040474)


   

PI(22:0/15:0)

1-docosanoyl-2-pentadecanoyl-glycero-3-phospho-(1-myo-inositol)

C46H89O13P (880.6040474)


   

PI(19:0/18:0)

1-nonadecanoyl-2-octadecanoyl-glycero-3-phospho-(1-myo-inositol)

C46H89O13P (880.6040474)


   

PI(17:0/20:0)

1-heptadecanoyl-2-eicosanoyl-glycero-3-phospho-(1-myo-inositol)

C46H89O13P (880.6040474)


   

Assimiloside A

16-(beta-d-xylopyranosyl-(1-6)-beta-d-xylopyranosyl-(1-2)]-beta-d-glucopyranosyl)-26R-hydroxy-hexadeca-4R-olide

C44H80O17 (880.5395230000001)


   

TG 53:14;O2

1,3-(8R,9R-epoxy-octadec-13Z,15Z-dien-4,6-diynoyl)-2-(octadecanoyl)-sn-glycerol

C56H80O8 (880.5852880000001)


   

PG 44:5

1-(7Z,10Z,13Z,16Z-docosatetraenoyl)-2-(11Z-docosenoyl)-glycero-3-phospho-(1-sn-glycerol)

C50H89O10P (880.6193024)


   

PI 37:0

1-heneicosanoyl-2-hexadecanoyl-glycero-3-phospho-(1-myo-inositol)

C46H89O13P (880.6040474)


   

Decaprenoxanthin monoglucoside

(2R,6R,2R,6R)-2-[4-(beta-D-Glucopyranosyloxy)-3-methylbut-2-enyl]-2-(4-hydroxy-3-methylbut-2-enyl)-epsilon,epsilon-carotene

C57H84O7 (880.6216714)


   

3,3-Dioctadecyloxacarbocyanine perchlorate

3,3-Dioctadecyloxacarbocyanine perchlorate

C53H85ClN2O6 (880.609582)


   
   
   
   
   
   
   
   
   
   
   

PG(a-21:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

PG(a-21:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

C49H85O11P (880.582919)


   

PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/a-21:0)

PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/a-21:0)

C49H85O11P (880.582919)


   

PG(a-21:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

PG(a-21:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

C49H85O11P (880.582919)


   

PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/a-21:0)

PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/a-21:0)

C49H85O11P (880.582919)


   

PG(a-21:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

PG(a-21:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

C49H85O11P (880.582919)


   

PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/a-21:0)

PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/a-21:0)

C49H85O11P (880.582919)


   

PG(a-21:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

PG(a-21:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

C49H85O11P (880.582919)


   

PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/a-21:0)

PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/a-21:0)

C49H85O11P (880.582919)


   

PG(a-21:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

PG(a-21:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

C49H85O11P (880.582919)


   

PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/a-21:0)

PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/a-21:0)

C49H85O11P (880.582919)


   

PG(i-21:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

PG(i-21:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

C49H85O11P (880.582919)


   

PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-21:0)

PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-21:0)

C49H85O11P (880.582919)


   

PG(i-21:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

PG(i-21:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

C49H85O11P (880.582919)


   

PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-21:0)

PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-21:0)

C49H85O11P (880.582919)


   

PG(i-21:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

PG(i-21:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

C49H85O11P (880.582919)


   

PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-21:0)

PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-21:0)

C49H85O11P (880.582919)


   

PG(i-21:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

PG(i-21:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

C49H85O11P (880.582919)


   

PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-21:0)

PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-21:0)

C49H85O11P (880.582919)


   

PG(i-21:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

PG(i-21:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

C49H85O11P (880.582919)


   

PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-21:0)

PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-21:0)

C49H85O11P (880.582919)


   

PG(20:1(11Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

PG(20:1(11Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C48H81O12P (880.5465356)


   

PG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/20:1(11Z))

PG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/20:1(11Z))

C48H81O12P (880.5465356)


   

PG(20:1(11Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

PG(20:1(11Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C48H81O12P (880.5465356)


   

PG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/20:1(11Z))

PG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/20:1(11Z))

C48H81O12P (880.5465356)


   

PG(22:4(7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

PG(22:4(7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

C48H81O12P (880.5465356)


   

PG(20:3(8Z,11Z,14Z)-2OH(5,6)/22:4(7Z,10Z,13Z,16Z))

PG(20:3(8Z,11Z,14Z)-2OH(5,6)/22:4(7Z,10Z,13Z,16Z))

C48H81O12P (880.5465356)


   

2-[[(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C52H83NO8P+ (880.5855988)


   

2-[[(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C52H83NO8P+ (880.5855988)


   

2-[[(2R)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C52H83NO8P+ (880.5855988)


   

2-[[(2R)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C52H83NO8P+ (880.5855988)


   

2-[hydroxy-[(2R)-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-2-[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-2-[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[hydroxy-[(2R)-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[hydroxy-[(2R)-2-[(Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]hept-5-enoyl]oxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]hept-5-enoyl]oxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[hydroxy-[(2R)-3-[(Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]hept-5-enoyl]oxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]hept-5-enoyl]oxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[hydroxy-[(2R)-2-[(Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]hept-5-enoyl]oxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]hept-5-enoyl]oxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[hydroxy-[(2R)-3-[(Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]hept-5-enoyl]oxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]hept-5-enoyl]oxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxy-2-[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxy-2-[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxy-3-[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxy-3-[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[hydroxy-[(2R)-2-[(Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]hept-5-enoyl]oxy-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]hept-5-enoyl]oxy-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[hydroxy-[(2R)-3-[(Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]hept-5-enoyl]oxy-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]hept-5-enoyl]oxy-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[hydroxy-[(2R)-2-[(Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]hept-5-enoyl]oxy-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]hept-5-enoyl]oxy-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[hydroxy-[(2R)-3-[(Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]hept-5-enoyl]oxy-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]hept-5-enoyl]oxy-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[hydroxy-[(2R)-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxy-2-[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxy-2-[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[hydroxy-[(2R)-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxy-3-[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxy-3-[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[[(2R)-2-[(E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoyl]oxy-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoyl]oxy-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[[(2R)-3-[(E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoyl]oxy-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoyl]oxy-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[hydroxy-[(2R)-2-[7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoyloxy]-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoyloxy]-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[hydroxy-[(2R)-3-[7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoyloxy]-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoyloxy]-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[hydroxy-[(2R)-2-[7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]heptanoyloxy]-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]heptanoyloxy]-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[hydroxy-[(2R)-3-[7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]heptanoyloxy]-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]heptanoyloxy]-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[[(2R)-2-[(E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoyl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoyl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[[(2R)-3-[(E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoyl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoyl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[hydroxy-[(2R)-2-[7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoyloxy]-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoyloxy]-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[hydroxy-[(2R)-3-[7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoyloxy]-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoyloxy]-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[hydroxy-[(2R)-2-[7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]heptanoyloxy]-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]heptanoyloxy]-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[hydroxy-[(2R)-3-[7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]heptanoyloxy]-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]heptanoyloxy]-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[[(2R)-2-[7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]heptanoyloxy]-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]heptanoyloxy]-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[[(2R)-3-[7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]heptanoyloxy]-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]heptanoyloxy]-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[[(2R)-2-[(Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(E,3R)-3-hydroxyoct-1-enyl]cyclopentyl]pent-3-enoyl]oxy-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(E,3R)-3-hydroxyoct-1-enyl]cyclopentyl]pent-3-enoyl]oxy-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[[(2R)-3-[(Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(E,3R)-3-hydroxyoct-1-enyl]cyclopentyl]pent-3-enoyl]oxy-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(E,3R)-3-hydroxyoct-1-enyl]cyclopentyl]pent-3-enoyl]oxy-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[[(2R)-2-[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-3-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-3-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[[(2R)-3-[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-2-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-2-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[[(2R)-2-[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy-3-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy-3-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[[(2R)-3-[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy-2-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy-2-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[[(2R)-2-[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy-3-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy-3-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[[(2R)-3-[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy-2-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy-2-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[[(2R)-2-[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-3-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-3-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[[(2R)-3-[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-2-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-2-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[[(2R)-2-[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy-3-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy-3-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[[(2R)-3-[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy-2-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy-2-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[[(2R)-2-[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy-3-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy-3-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[[(2R)-3-[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy-2-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy-2-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

Benzoxazolium, 3-octadecyl-2-[3-(3-octadecyl-2(3H)-benzoxazolylidene)-1-propenyl]-, perchlorate

Benzoxazolium, 3-octadecyl-2-[3-(3-octadecyl-2(3H)-benzoxazolylidene)-1-propenyl]-, perchlorate

C53H85ClN2O6 (880.609582)


D004396 - Coloring Agents > D002232 - Carbocyanines

   

OH-Chlorobactene glucoside laurate

OH-Chlorobactene glucoside laurate

C57H84O7 (880.6216714)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

C48H81O12P (880.5465356)


   

[1-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C48H81O12P (880.5465356)


   

[1-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-heptadec-9-enoate

[1-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-heptadec-9-enoate

C48H81O12P (880.5465356)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C52H81O9P (880.5617906)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate

C48H81O12P (880.5465356)


   

[1-[(9Z,12Z)-heptadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[(9Z,12Z)-heptadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C48H81O12P (880.5465356)


   

[1-[(11Z,14Z)-henicosa-11,14-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-[(11Z,14Z)-henicosa-11,14-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C48H81O12P (880.5465356)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C52H81O9P (880.5617906)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C48H81O12P (880.5465356)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propan-2-yl] (Z)-pentadec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propan-2-yl] (Z)-pentadec-9-enoate

C48H81O12P (880.5465356)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C48H81O12P (880.5465356)


   

[1-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tridec-9-enoate

[1-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tridec-9-enoate

C48H81O12P (880.5465356)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]propan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]propan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

C52H81O9P (880.5617906)


   

[1-[(Z)-heptadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[(Z)-heptadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C48H81O12P (880.5465356)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C52H81O9P (880.5617906)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C48H81O12P (880.5465356)


   

[1-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] tridecanoate

[1-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] tridecanoate

C48H81O12P (880.5465356)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecoxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecoxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C48H81O12P (880.5465356)


   
   
   

[3,4,5-trihydroxy-6-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C48H80O12S (880.5370200000001)


   

[3,4,5-trihydroxy-6-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C48H80O12S (880.5370200000001)


   

[6-[3-[(Z)-henicos-11-enoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-[(Z)-henicos-11-enoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C48H80O12S (880.5370200000001)


   

[6-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C48H80O12S (880.5370200000001)


   

[6-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-heptadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-heptadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C48H80O12S (880.5370200000001)


   

[6-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C48H80O12S (880.5370200000001)


   

[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C53H84O10 (880.6064164000001)


   

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C53H84O10 (880.6064164000001)


   

[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C53H84O10 (880.6064164000001)


   

[6-[3-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C48H80O12S (880.5370200000001)


   

[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C53H84O10 (880.6064164000001)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-tetracos-13-enoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-tetracos-13-enoate

C50H89O10P (880.6193024)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C50H89O10P (880.6193024)


   

[1-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] docosanoate

[1-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] docosanoate

C50H89O10P (880.6193024)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C50H89O10P (880.6193024)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] hexacosanoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] hexacosanoate

C50H89O10P (880.6193024)


   

[1-[[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C50H89O10P (880.6193024)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] tetracosanoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] tetracosanoate

C50H89O10P (880.6193024)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

C50H89O10P (880.6193024)


   

[1-[[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-docos-13-enoate

[1-[[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-docos-13-enoate

C50H89O10P (880.6193024)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-icos-11-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-icos-11-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C50H89O10P (880.6193024)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-hexacos-15-enoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-hexacos-15-enoate

C50H89O10P (880.6193024)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-octadec-9-enoyl]oxypropan-2-yl] 12-hydroxyoctadecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-octadec-9-enoyl]oxypropan-2-yl] 12-hydroxyoctadecanoate

C45H85O14P (880.5676639999999)


   

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] docosanoate

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] docosanoate

C46H89O13P (880.6040474)


   

[1-Hexadecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] henicosanoate

[1-Hexadecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] henicosanoate

C46H89O13P (880.6040474)


   

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octadecanoyloxypropan-2-yl] nonadecanoate

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octadecanoyloxypropan-2-yl] nonadecanoate

C46H89O13P (880.6040474)


   

[1-Heptadecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] icosanoate

[1-Heptadecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] icosanoate

C46H89O13P (880.6040474)


   

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] hexacosanoate

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] hexacosanoate

C46H89O13P (880.6040474)


   

[1-Dodecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] pentacosanoate

[1-Dodecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] pentacosanoate

C46H89O13P (880.6040474)


   

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] tetracosanoate

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] tetracosanoate

C46H89O13P (880.6040474)


   

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] tricosanoate

[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] tricosanoate

C46H89O13P (880.6040474)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropyl] (13Z,16Z)-tetracosa-13,16-dienoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropyl] (13Z,16Z)-tetracosa-13,16-dienoate

C50H89O10P (880.6193024)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] (15Z,18Z)-hexacosa-15,18-dienoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] (15Z,18Z)-hexacosa-15,18-dienoate

C50H89O10P (880.6193024)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxypropyl] (13Z,16Z)-docosa-13,16-dienoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxypropyl] (13Z,16Z)-docosa-13,16-dienoate

C50H89O10P (880.6193024)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (Z)-hexacos-15-enoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (Z)-hexacos-15-enoate

C50H89O10P (880.6193024)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxypropyl] docosanoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxypropyl] docosanoate

C50H89O10P (880.6193024)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropyl] (Z)-tetracos-13-enoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropyl] (Z)-tetracos-13-enoate

C50H89O10P (880.6193024)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoyl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoyl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C50H89O10P (880.6193024)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoyl]oxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoyl]oxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C50H89O10P (880.6193024)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] hexacosanoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] hexacosanoate

C50H89O10P (880.6193024)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] tetracosanoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] tetracosanoate

C50H89O10P (880.6193024)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxypropyl] (Z)-docos-13-enoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxypropyl] (Z)-docos-13-enoate

C50H89O10P (880.6193024)


   

[1-Decanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] heptacosanoate

[1-Decanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] heptacosanoate

C46H89O13P (880.6040474)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octadecanoyloxypropan-2-yl] (E)-10-hydroxyoctadec-12-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octadecanoyloxypropan-2-yl] (E)-10-hydroxyoctadec-12-enoate

C45H85O14P (880.5676639999999)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-undecanoyloxypropyl] hexacosanoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-undecanoyloxypropyl] hexacosanoate

C46H89O13P (880.6040474)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-icos-13-enoyl]oxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-icos-13-enoyl]oxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C50H89O10P (880.6193024)


   

[(2R)-1-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-1-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C53H84O10 (880.6064164000001)


   

[(2S,3S,6S)-6-[(2S)-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C48H80O12S (880.5370200000001)


   

[(2S,3S,6S)-6-[(2S)-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(E)-heptadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(E)-heptadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C48H80O12S (880.5370200000001)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (E)-hexacos-5-enoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (E)-hexacos-5-enoate

C50H89O10P (880.6193024)


   

[(2R)-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C53H84O10 (880.6064164000001)


   

[(2R)-1-hexadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] henicosanoate

[(2R)-1-hexadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] henicosanoate

C46H89O13P (880.6040474)


   

[(2R)-1-dodecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] pentacosanoate

[(2R)-1-dodecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] pentacosanoate

C46H89O13P (880.6040474)


   

[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-heptadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-heptadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C48H80O12S (880.5370200000001)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropyl] (E)-tetracos-15-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropyl] (E)-tetracos-15-enoate

C50H89O10P (880.6193024)


   

[(2R)-1-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-1-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C53H84O10 (880.6064164000001)


   

[(2S)-2-dodecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] pentacosanoate

[(2S)-2-dodecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] pentacosanoate

C46H89O13P (880.6040474)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] (E)-hexacos-5-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] (E)-hexacos-5-enoate

C50H89O10P (880.6193024)


   

[(2S,3S,6S)-6-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(14E,17E,20E)-tricosa-14,17,20-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(14E,17E,20E)-tricosa-14,17,20-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C48H80O12S (880.5370200000001)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-pentadecanoyloxypropyl] docosanoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-pentadecanoyloxypropyl] docosanoate

C46H89O13P (880.6040474)


   

[(2S,3S,6S)-6-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C48H80O12S (880.5370200000001)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxypropyl] docosanoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxypropyl] docosanoate

C50H89O10P (880.6193024)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-icos-11-enoyl]oxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-icos-11-enoyl]oxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C50H89O10P (880.6193024)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-octadecanoyloxypropyl] nonadecanoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-octadecanoyloxypropyl] nonadecanoate

C46H89O13P (880.6040474)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropan-2-yl] (5E,9E)-hexacosa-5,9-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropan-2-yl] (5E,9E)-hexacosa-5,9-dienoate

C50H89O10P (880.6193024)


   

2-[[(2R)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C52H83NO8P+ (880.5855988)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] tricosanoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] tricosanoate

C46H89O13P (880.6040474)


   

[(2R)-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C53H84O10 (880.6064164000001)


   

[(2S,3S,6S)-6-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(14E,16E)-tricosa-14,16-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(14E,16E)-tricosa-14,16-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C48H80O12S (880.5370200000001)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropan-2-yl] (E)-tetracos-15-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropan-2-yl] (E)-tetracos-15-enoate

C50H89O10P (880.6193024)


   

[(2S,3S,6S)-6-[(2S)-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(E)-heptadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(E)-heptadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C48H80O12S (880.5370200000001)


   

[(2R)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C53H84O10 (880.6064164000001)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-icos-11-enoyl]oxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-icos-11-enoyl]oxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C50H89O10P (880.6193024)


   

[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tetradecanoyloxypropyl] tricosanoate

[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tetradecanoyloxypropyl] tricosanoate

C46H89O13P (880.6040474)


   

[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-[(E)-heptadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-[(E)-heptadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C48H80O12S (880.5370200000001)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (5E,9E)-hexacosa-5,9-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (5E,9E)-hexacosa-5,9-dienoate

C50H89O10P (880.6193024)


   

[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] tetracosanoate

[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] tetracosanoate

C46H89O13P (880.6040474)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropan-2-yl] (E)-tetracos-15-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropan-2-yl] (E)-tetracos-15-enoate

C50H89O10P (880.6193024)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxypropan-2-yl] (E)-docos-13-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxypropan-2-yl] (E)-docos-13-enoate

C50H89O10P (880.6193024)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] (5E,9E)-hexacosa-5,9-dienoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] (5E,9E)-hexacosa-5,9-dienoate

C50H89O10P (880.6193024)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tridecanoyloxypropyl] tetracosanoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tridecanoyloxypropyl] tetracosanoate

C46H89O13P (880.6040474)


   

[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] docosanoate

[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] docosanoate

C46H89O13P (880.6040474)


   

[(2S)-2-heptadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] icosanoate

[(2S)-2-heptadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] icosanoate

C46H89O13P (880.6040474)


   

2-[[(2R)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C52H83NO8P+ (880.5855988)


   

[(2S)-2-hexadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] henicosanoate

[(2S)-2-hexadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] henicosanoate

C46H89O13P (880.6040474)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxypropan-2-yl] docosanoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxypropan-2-yl] docosanoate

C50H89O10P (880.6193024)


   

[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-2-[(E)-heptadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-2-[(E)-heptadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C48H80O12S (880.5370200000001)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] tetracosanoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] tetracosanoate

C50H89O10P (880.6193024)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] (5E,9E)-hexacosa-5,9-dienoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] (5E,9E)-hexacosa-5,9-dienoate

C50H89O10P (880.6193024)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] tetracosanoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] tetracosanoate

C50H89O10P (880.6193024)


   

[(2S)-1-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2S)-1-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C53H84O10 (880.6064164000001)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxypropyl] (E)-docos-13-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxypropyl] (E)-docos-13-enoate

C50H89O10P (880.6193024)


   

[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] hexacosanoate

[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] hexacosanoate

C46H89O13P (880.6040474)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-icos-13-enoyl]oxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-icos-13-enoyl]oxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C50H89O10P (880.6193024)


   

[(2S,3S,6S)-6-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(E)-tricos-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(E)-tricos-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C48H80O12S (880.5370200000001)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropyl] (E)-tetracos-15-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropyl] (E)-tetracos-15-enoate

C50H89O10P (880.6193024)


   

[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-heptadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-heptadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C48H80O12S (880.5370200000001)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (E)-hexacos-5-enoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (E)-hexacos-5-enoate

C50H89O10P (880.6193024)


   

2-[[(2R)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C52H83NO8P+ (880.5855988)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (E)-hexacos-5-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (E)-hexacos-5-enoate

C50H89O10P (880.6193024)


   

2-[[(2R)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C52H83NO8P+ (880.5855988)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxypropyl] docosanoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxypropyl] docosanoate

C50H89O10P (880.6193024)


   

[(2S,3S,6S)-6-[(2S)-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C48H80O12S (880.5370200000001)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxypropan-2-yl] docosanoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxypropan-2-yl] docosanoate

C50H89O10P (880.6193024)


   

2-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C52H83NO8P+ (880.5855988)


   

2-[hydroxy-[3-[(Z)-octadec-9-enoyl]oxy-2-[(4E,8E,10E,12Z,14E,19Z)-7,16,17-trihydroxydocosa-4,8,10,12,14,19-hexaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(Z)-octadec-9-enoyl]oxy-2-[(4E,8E,10E,12Z,14E,19Z)-7,16,17-trihydroxydocosa-4,8,10,12,14,19-hexaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO11P+ (880.5703437999999)


   

2-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C52H83NO8P+ (880.5855988)


   

2-[[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C52H83NO8P+ (880.5855988)


   

2-[hydroxy-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C52H83NO8P+ (880.5855988)


   

2-[[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C52H83NO8P+ (880.5855988)


   

1,3-(8R,9R-epoxy-octadec-13Z,15Z-dien-4,6-diynoyl)-2-(stearoyl)-sn-glycerol

1,3-(8R,9R-epoxy-octadec-13Z,15Z-dien-4,6-diynoyl)-2-(stearoyl)-sn-glycerol

C56H80O8 (880.5852880000001)


   

1-pentadecanoyl-2-docosanoyl-glycero-3-phospho-(1-myo-inositol)

1-pentadecanoyl-2-docosanoyl-glycero-3-phospho-(1-myo-inositol)

C46H89O13P (880.6040474)


   

1-hexadecanoyl-2-heneicosanoyl-glycero-3-phospho-(1-myo-inositol)

1-hexadecanoyl-2-heneicosanoyl-glycero-3-phospho-(1-myo-inositol)

C46H89O13P (880.6040474)


   

1-eicosanoyl-2-heptadecanoyl-glycero-3-phospho-(1-myo-inositol)

1-eicosanoyl-2-heptadecanoyl-glycero-3-phospho-(1-myo-inositol)

C46H89O13P (880.6040474)


   

1-heneicosanoyl-2-hexadecanoyl-glycero-3-phospho-(1-myo-inositol)

1-heneicosanoyl-2-hexadecanoyl-glycero-3-phospho-(1-myo-inositol)

C46H89O13P (880.6040474)


   

1-nonadecanoyl-2-octadecanoyl-glycero-3-phospho-(1-myo-inositol)

1-nonadecanoyl-2-octadecanoyl-glycero-3-phospho-(1-myo-inositol)

C46H89O13P (880.6040474)


   

MGDG(44:9)

MGDG(20:4_24:5)

C53H84O10 (880.6064164000001)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[(1r,2r,6s,7s,8r,10s,11s,12r,14s,16s,17r,18r)-17-(acetyloxy)-6,7-dihydroxy-4,18-dimethyl-5-oxo-16-(prop-1-en-2-yl)-14-[(1e,3e)-trideca-1,3-dien-1-yl]-9,13,15,19-tetraoxahexacyclo[12.4.1.0¹,¹¹.0²,⁶.0⁸,¹⁰.0¹²,¹⁶]nonadec-3-en-8-yl]methyl hexadecanoate

[(1r,2r,6s,7s,8r,10s,11s,12r,14s,16s,17r,18r)-17-(acetyloxy)-6,7-dihydroxy-4,18-dimethyl-5-oxo-16-(prop-1-en-2-yl)-14-[(1e,3e)-trideca-1,3-dien-1-yl]-9,13,15,19-tetraoxahexacyclo[12.4.1.0¹,¹¹.0²,⁶.0⁸,¹⁰.0¹²,¹⁶]nonadec-3-en-8-yl]methyl hexadecanoate

C52H80O11 (880.5700330000001)


   

6-heptyl-3,4,9,10,15,16,21,22-octamethyl-12,18,24-tripentyl-1,7,13,19-tetraoxa-4,10,16,22-tetraazacyclotetracosan-2,5,8,11,14,17,20,23-octone

6-heptyl-3,4,9,10,15,16,21,22-octamethyl-12,18,24-tripentyl-1,7,13,19-tetraoxa-4,10,16,22-tetraazacyclotetracosan-2,5,8,11,14,17,20,23-octone

C46H80N4O12 (880.5772440000001)


   

[17-(acetyloxy)-6,7-dihydroxy-4,18-dimethyl-5-oxo-16-(prop-1-en-2-yl)-14-(trideca-1,3-dien-1-yl)-9,13,15,19-tetraoxahexacyclo[12.4.1.0¹,¹¹.0²,⁶.0⁸,¹⁰.0¹²,¹⁶]nonadec-3-en-8-yl]methyl hexadecanoate

[17-(acetyloxy)-6,7-dihydroxy-4,18-dimethyl-5-oxo-16-(prop-1-en-2-yl)-14-(trideca-1,3-dien-1-yl)-9,13,15,19-tetraoxahexacyclo[12.4.1.0¹,¹¹.0²,⁶.0⁸,¹⁰.0¹²,¹⁶]nonadec-3-en-8-yl]methyl hexadecanoate

C52H80O11 (880.5700330000001)


   

[(1r,5ar,7r,8r,9as,10r,11r,11ar)-11-(acetyloxy)-10-hydroxy-8-[(3-hydroxyhexadecanoyl)oxy]-1-{4-[2-(2-hydroxypropan-2-yl)oxiran-2-yl]butan-2-yl}-6,6,9a,11a-tetramethyl-1h,2h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-7-yl]oxidanesulfonic acid

[(1r,5ar,7r,8r,9as,10r,11r,11ar)-11-(acetyloxy)-10-hydroxy-8-[(3-hydroxyhexadecanoyl)oxy]-1-{4-[2-(2-hydroxypropan-2-yl)oxiran-2-yl]butan-2-yl}-6,6,9a,11a-tetramethyl-1h,2h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-7-yl]oxidanesulfonic acid

C48H80O12S (880.5370200000001)


   

(2r,3's,3''s,3'as,4's,4''s,5'r,5'''s,6''r,6'as,7''r,8''r,9''s,10''r,12''r,15''r,18''s,24''s,25''s,29''r,32''s)-4',6''-dihydroxy-5'''-(hydroxymethyl)-3',3'',4',5,5,5''',7'',9'',24''-nonamethyl-3',3'a,6',6'a-tetrahydrotrispiro[oxolane-2,2'-cyclopenta[b]furan-5',28''-[11]oxa-[21,35]diazanonacyclo[18.15.0.0³,¹⁸.0⁴,¹⁵.0⁷,¹⁴.0⁸,¹².0²²,³⁴.0²⁴,³².0²⁵,²⁹]pentatriacontane-10'',2'''-oxolane]-1''(20''),13'',21'',34''-tetraen-27''-one

(2r,3's,3''s,3'as,4's,4''s,5'r,5'''s,6''r,6'as,7''r,8''r,9''s,10''r,12''r,15''r,18''s,24''s,25''s,29''r,32''s)-4',6''-dihydroxy-5'''-(hydroxymethyl)-3',3'',4',5,5,5''',7'',9'',24''-nonamethyl-3',3'a,6',6'a-tetrahydrotrispiro[oxolane-2,2'-cyclopenta[b]furan-5',28''-[11]oxa-[21,35]diazanonacyclo[18.15.0.0³,¹⁸.0⁴,¹⁵.0⁷,¹⁴.0⁸,¹².0²²,³⁴.0²⁴,³².0²⁵,²⁹]pentatriacontane-10'',2'''-oxolane]-1''(20''),13'',21'',34''-tetraen-27''-one

C54H76N2O8 (880.5601376000001)


   

(2s,2'''r,3's,3'''s,3'as,3'''as,4's,4'''s,5'r,5''s,6''s,6'as,6'''as,9''r,10''r,13''s,19''s,20''r,24''r,27''s)-4',4'''-dihydroxy-3',3''',4',4''',5,5,5'',5'''',5'''',19''-decamethyl-3',3''',3'a,3'''a,6',6''',6'a,6'''a-octahydrotetraspiro[oxolane-2,2'-cyclopenta[b]furan-5',23''-[2,16]diazaheptacyclo[15.11.0.0³,¹⁵.0⁵,¹³.0⁶,¹⁰.0¹⁹,²⁷.0²⁰,²⁴]octacosane-9'',5'''-cyclopenta[b]furan-2''',2''''-oxolane]-1'',3''(15''),16''-triene-8'',22''-dione

(2s,2'''r,3's,3'''s,3'as,3'''as,4's,4'''s,5'r,5''s,6''s,6'as,6'''as,9''r,10''r,13''s,19''s,20''r,24''r,27''s)-4',4'''-dihydroxy-3',3''',4',4''',5,5,5'',5'''',5'''',19''-decamethyl-3',3''',3'a,3'''a,6',6''',6'a,6'''a-octahydrotetraspiro[oxolane-2,2'-cyclopenta[b]furan-5',23''-[2,16]diazaheptacyclo[15.11.0.0³,¹⁵.0⁵,¹³.0⁶,¹⁰.0¹⁹,²⁷.0²⁰,²⁴]octacosane-9'',5'''-cyclopenta[b]furan-2''',2''''-oxolane]-1'',3''(15''),16''-triene-8'',22''-dione

C54H76N2O8 (880.5601376000001)


   

(2s,3's,3''s,3'as,4's,4''r,4'''r,5'r,6''r,6'as,7''r,8''r,9''s,10''r,12''s,15''r,18''s,24''s,25''s,29''r,32''s)-4',6''-dihydroxy-4'''-(hydroxymethyl)-3',3'',4',4''',5,5,7'',9'',24''-nonamethyl-3',3'a,6',6'a-tetrahydrotrispiro[oxolane-2,2'-cyclopenta[b]furan-5',28''-[11]oxa-[21,35]diazanonacyclo[18.15.0.0³,¹⁸.0⁴,¹⁵.0⁷,¹⁴.0⁸,¹².0²²,³⁴.0²⁴,³².0²⁵,²⁹]pentatriacontane-10'',2'''-oxolane]-1''(20''),13'',21'',34''-tetraen-27''-one

(2s,3's,3''s,3'as,4's,4''r,4'''r,5'r,6''r,6'as,7''r,8''r,9''s,10''r,12''s,15''r,18''s,24''s,25''s,29''r,32''s)-4',6''-dihydroxy-4'''-(hydroxymethyl)-3',3'',4',4''',5,5,7'',9'',24''-nonamethyl-3',3'a,6',6'a-tetrahydrotrispiro[oxolane-2,2'-cyclopenta[b]furan-5',28''-[11]oxa-[21,35]diazanonacyclo[18.15.0.0³,¹⁸.0⁴,¹⁵.0⁷,¹⁴.0⁸,¹².0²²,³⁴.0²⁴,³².0²⁵,²⁹]pentatriacontane-10'',2'''-oxolane]-1''(20''),13'',21'',34''-tetraen-27''-one

C54H76N2O8 (880.5601376000001)


   

(2r,2'''r,3's,3'''s,3'as,3'''as,4's,4'''s,5'r,5''s,6''s,6'as,6'''as,9''r,10''r,13''s,19''s,20''s,24''r,27''s)-4',4'''-dihydroxy-3',3''',4',4''',5,5,5'',5'''',5'''',19''-decamethyl-3',3''',3'a,3'''a,6',6''',6'a,6'''a-octahydrotetraspiro[oxolane-2,2'-cyclopenta[b]furan-5',23''-[2,16]diazaheptacyclo[15.11.0.0³,¹⁵.0⁵,¹³.0⁶,¹⁰.0¹⁹,²⁷.0²⁰,²⁴]octacosane-9'',5'''-cyclopenta[b]furan-2''',2''''-oxolane]-1'',3''(15''),16''-triene-8'',22''-dione

(2r,2'''r,3's,3'''s,3'as,3'''as,4's,4'''s,5'r,5''s,6''s,6'as,6'''as,9''r,10''r,13''s,19''s,20''s,24''r,27''s)-4',4'''-dihydroxy-3',3''',4',4''',5,5,5'',5'''',5'''',19''-decamethyl-3',3''',3'a,3'''a,6',6''',6'a,6'''a-octahydrotetraspiro[oxolane-2,2'-cyclopenta[b]furan-5',23''-[2,16]diazaheptacyclo[15.11.0.0³,¹⁵.0⁵,¹³.0⁶,¹⁰.0¹⁹,²⁷.0²⁰,²⁴]octacosane-9'',5'''-cyclopenta[b]furan-2''',2''''-oxolane]-1'',3''(15''),16''-triene-8'',22''-dione

C54H76N2O8 (880.5601376000001)


   

(2s,2''r,3's,3''s,3''as,4's,4''s,5s,6'r,6''as,8'r,9's,12'r,15'r,18's,24's,25's,28'r,29'r,32's)-4'',5,6'-trihydroxy-3',3'',4'',5,5''',5''',7',9',24'-nonamethyl-3'',3''a,6'',6''a-tetrahydrotrispiro[oxane-2,10'-[11]oxa-[21,35]diazanonacyclo[18.15.0.0³,¹⁸.0⁴,¹⁵.0⁷,¹⁴.0⁸,¹².0²²,³⁴.0²⁴,³².0²⁵,²⁹]pentatriacontane-28',5''-cyclopenta[b]furan-2'',2'''-oxolane]-1'(35'),13',20',22'(34')-tetraen-27'-one

(2s,2''r,3's,3''s,3''as,4's,4''s,5s,6'r,6''as,8'r,9's,12'r,15'r,18's,24's,25's,28'r,29'r,32's)-4'',5,6'-trihydroxy-3',3'',4'',5,5''',5''',7',9',24'-nonamethyl-3'',3''a,6'',6''a-tetrahydrotrispiro[oxane-2,10'-[11]oxa-[21,35]diazanonacyclo[18.15.0.0³,¹⁸.0⁴,¹⁵.0⁷,¹⁴.0⁸,¹².0²²,³⁴.0²⁴,³².0²⁵,²⁹]pentatriacontane-28',5''-cyclopenta[b]furan-2'',2'''-oxolane]-1'(35'),13',20',22'(34')-tetraen-27'-one

C54H76N2O8 (880.5601376000001)


   

(2s,2''r,3's,3''s,3''as,4's,4''s,5s,6'r,6''as,7'r,8'r,9's,12'r,15'r,18's,24's,25's,28'r,29'r,32's)-4'',5,6'-trihydroxy-3',3'',4'',5,5''',5''',7',9',24'-nonamethyl-3'',3''a,6'',6''a-tetrahydrotrispiro[oxane-2,10'-[11]oxa-[21,35]diazanonacyclo[18.15.0.0³,¹⁸.0⁴,¹⁵.0⁷,¹⁴.0⁸,¹².0²²,³⁴.0²⁴,³².0²⁵,²⁹]pentatriacontane-28',5''-cyclopenta[b]furan-2'',2'''-oxolane]-1'(35'),13',20',22'(34')-tetraen-27'-one

(2s,2''r,3's,3''s,3''as,4's,4''s,5s,6'r,6''as,7'r,8'r,9's,12'r,15'r,18's,24's,25's,28'r,29'r,32's)-4'',5,6'-trihydroxy-3',3'',4'',5,5''',5''',7',9',24'-nonamethyl-3'',3''a,6'',6''a-tetrahydrotrispiro[oxane-2,10'-[11]oxa-[21,35]diazanonacyclo[18.15.0.0³,¹⁸.0⁴,¹⁵.0⁷,¹⁴.0⁸,¹².0²²,³⁴.0²⁴,³².0²⁵,²⁹]pentatriacontane-28',5''-cyclopenta[b]furan-2'',2'''-oxolane]-1'(35'),13',20',22'(34')-tetraen-27'-one

C54H76N2O8 (880.5601376000001)


   

(2s,2'''r,3's,3'''s,3'as,3'''as,4's,4'''s,5'r,5''s,6''s,6'as,6'''as,9''r,10''r,13''s,19''s,20''s,24''r,27''s)-4',4'''-dihydroxy-3',3''',4',4''',5,5,5'',5'''',5'''',19''-decamethyl-3',3''',3'a,3'''a,6',6''',6'a,6'''a-octahydrotetraspiro[oxolane-2,2'-cyclopenta[b]furan-5',23''-[2,16]diazaheptacyclo[15.11.0.0³,¹⁵.0⁵,¹³.0⁶,¹⁰.0¹⁹,²⁷.0²⁰,²⁴]octacosane-9'',5'''-cyclopenta[b]furan-2''',2''''-oxolane]-1'',3''(15''),16''-triene-8'',22''-dione

(2s,2'''r,3's,3'''s,3'as,3'''as,4's,4'''s,5'r,5''s,6''s,6'as,6'''as,9''r,10''r,13''s,19''s,20''s,24''r,27''s)-4',4'''-dihydroxy-3',3''',4',4''',5,5,5'',5'''',5'''',19''-decamethyl-3',3''',3'a,3'''a,6',6''',6'a,6'''a-octahydrotetraspiro[oxolane-2,2'-cyclopenta[b]furan-5',23''-[2,16]diazaheptacyclo[15.11.0.0³,¹⁵.0⁵,¹³.0⁶,¹⁰.0¹⁹,²⁷.0²⁰,²⁴]octacosane-9'',5'''-cyclopenta[b]furan-2''',2''''-oxolane]-1'',3''(15''),16''-triene-8'',22''-dione

C54H76N2O8 (880.5601376000001)


   

(2r,3's,3''s,3'as,4's,4''s,5'r,5'''s,6''r,6'as,7''r,8''r,9''s,10''s,12''r,15''r,18''s,24''s,25''s,29''r,32''s)-4',6''-dihydroxy-5'''-(hydroxymethyl)-3',3'',4',5,5,5''',7'',9'',24''-nonamethyl-3',3'a,6',6'a-tetrahydrotrispiro[oxolane-2,2'-cyclopenta[b]furan-5',28''-[11]oxa-[21,35]diazanonacyclo[18.15.0.0³,¹⁸.0⁴,¹⁵.0⁷,¹⁴.0⁸,¹².0²²,³⁴.0²⁴,³².0²⁵,²⁹]pentatriacontane-10'',2'''-oxolane]-1''(35''),13'',20'',22''(34'')-tetraen-27''-one

(2r,3's,3''s,3'as,4's,4''s,5'r,5'''s,6''r,6'as,7''r,8''r,9''s,10''s,12''r,15''r,18''s,24''s,25''s,29''r,32''s)-4',6''-dihydroxy-5'''-(hydroxymethyl)-3',3'',4',5,5,5''',7'',9'',24''-nonamethyl-3',3'a,6',6'a-tetrahydrotrispiro[oxolane-2,2'-cyclopenta[b]furan-5',28''-[11]oxa-[21,35]diazanonacyclo[18.15.0.0³,¹⁸.0⁴,¹⁵.0⁷,¹⁴.0⁸,¹².0²²,³⁴.0²⁴,³².0²⁵,²⁹]pentatriacontane-10'',2'''-oxolane]-1''(35''),13'',20'',22''(34'')-tetraen-27''-one

C54H76N2O8 (880.5601376000001)


   

(2r,2'''r,3's,3'''s,3'as,3'''as,4's,4'''s,5'r,5''s,6''r,6'as,6'''as,9''r,10''r,13''s,19''s,20''s,24''r,27''s)-4',4'''-dihydroxy-3',3''',4',4''',5,5,5'',5'''',5'''',19''-decamethyl-3',3''',3'a,3'''a,6',6''',6'a,6'''a-octahydrotetraspiro[oxolane-2,2'-cyclopenta[b]furan-5',23''-[2,16]diazaheptacyclo[15.11.0.0³,¹⁵.0⁵,¹³.0⁶,¹⁰.0¹⁹,²⁷.0²⁰,²⁴]octacosane-9'',5'''-cyclopenta[b]furan-2''',2''''-oxolane]-1'',3''(15''),16''-triene-8'',22''-dione

(2r,2'''r,3's,3'''s,3'as,3'''as,4's,4'''s,5'r,5''s,6''r,6'as,6'''as,9''r,10''r,13''s,19''s,20''s,24''r,27''s)-4',4'''-dihydroxy-3',3''',4',4''',5,5,5'',5'''',5'''',19''-decamethyl-3',3''',3'a,3'''a,6',6''',6'a,6'''a-octahydrotetraspiro[oxolane-2,2'-cyclopenta[b]furan-5',23''-[2,16]diazaheptacyclo[15.11.0.0³,¹⁵.0⁵,¹³.0⁶,¹⁰.0¹⁹,²⁷.0²⁰,²⁴]octacosane-9'',5'''-cyclopenta[b]furan-2''',2''''-oxolane]-1'',3''(15''),16''-triene-8'',22''-dione

C54H76N2O8 (880.5601376000001)


   

(2r,3's,3''s,3'as,4's,4''r,4'''r,5'r,6''r,6'as,7''r,8''r,9''s,10''r,12''s,15''r,18''s,24''s,25''s,29''r,32''s)-4',6''-dihydroxy-4'''-(hydroxymethyl)-3',3'',4',4''',5,5,7'',9'',24''-nonamethyl-3',3'a,6',6'a-tetrahydrotrispiro[oxolane-2,2'-cyclopenta[b]furan-5',28''-[11]oxa-[21,35]diazanonacyclo[18.15.0.0³,¹⁸.0⁴,¹⁵.0⁷,¹⁴.0⁸,¹².0²²,³⁴.0²⁴,³².0²⁵,²⁹]pentatriacontane-10'',2'''-oxolane]-1''(20''),13'',21'',34''-tetraen-27''-one

(2r,3's,3''s,3'as,4's,4''r,4'''r,5'r,6''r,6'as,7''r,8''r,9''s,10''r,12''s,15''r,18''s,24''s,25''s,29''r,32''s)-4',6''-dihydroxy-4'''-(hydroxymethyl)-3',3'',4',4''',5,5,7'',9'',24''-nonamethyl-3',3'a,6',6'a-tetrahydrotrispiro[oxolane-2,2'-cyclopenta[b]furan-5',28''-[11]oxa-[21,35]diazanonacyclo[18.15.0.0³,¹⁸.0⁴,¹⁵.0⁷,¹⁴.0⁸,¹².0²²,³⁴.0²⁴,³².0²⁵,²⁹]pentatriacontane-10'',2'''-oxolane]-1''(20''),13'',21'',34''-tetraen-27''-one

C54H76N2O8 (880.5601376000001)


   

[(1r,2r,6s,7s,8r,10s,11s,12r,16s,17r,18r)-17-(acetyloxy)-6,7-dihydroxy-4,18-dimethyl-5-oxo-16-(prop-1-en-2-yl)-14-[(1e,3e)-trideca-1,3-dien-1-yl]-9,13,15,19-tetraoxahexacyclo[12.4.1.0¹,¹¹.0²,⁶.0⁸,¹⁰.0¹²,¹⁶]nonadec-3-en-8-yl]methyl hexadecanoate

[(1r,2r,6s,7s,8r,10s,11s,12r,16s,17r,18r)-17-(acetyloxy)-6,7-dihydroxy-4,18-dimethyl-5-oxo-16-(prop-1-en-2-yl)-14-[(1e,3e)-trideca-1,3-dien-1-yl]-9,13,15,19-tetraoxahexacyclo[12.4.1.0¹,¹¹.0²,⁶.0⁸,¹⁰.0¹²,¹⁶]nonadec-3-en-8-yl]methyl hexadecanoate

C52H80O11 (880.5700330000001)


   

(9z)-3-hydroxy-n-(3-methyl-1-{[(9s,12r,15s,16s)-5,8,11,14-tetrahydroxy-9-[(1s)-1-hydroxyethyl]-12-(hydroxymethyl)-16-methyl-3,6-bis(2-methylpropyl)-2-oxo-1-oxa-4,7,10,13-tetraazacyclohexadeca-4,7,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}butyl)hexadec-9-enimidic acid

(9z)-3-hydroxy-n-(3-methyl-1-{[(9s,12r,15s,16s)-5,8,11,14-tetrahydroxy-9-[(1s)-1-hydroxyethyl]-12-(hydroxymethyl)-16-methyl-3,6-bis(2-methylpropyl)-2-oxo-1-oxa-4,7,10,13-tetraazacyclohexadeca-4,7,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}butyl)hexadec-9-enimidic acid

C45H80N6O11 (880.5884770000001)


   

(2r,2''r,3's,3''s,3''as,4'r,4''s,5s,6'r,6''as,7'r,8'r,9's,12's,15'r,18's,24's,25's,28'r,29'r,32's)-4'',5,6'-trihydroxy-3',3'',4'',5,5''',5''',7',9',24'-nonamethyl-3'',3''a,6'',6''a-tetrahydrotrispiro[oxane-2,10'-[11]oxa-[21,35]diazanonacyclo[18.15.0.0³,¹⁸.0⁴,¹⁵.0⁷,¹⁴.0⁸,¹².0²²,³⁴.0²⁴,³².0²⁵,²⁹]pentatriacontane-28',5''-cyclopenta[b]furan-2'',2'''-oxolane]-1'(20'),13',21',34'-tetraen-27'-one

(2r,2''r,3's,3''s,3''as,4'r,4''s,5s,6'r,6''as,7'r,8'r,9's,12's,15'r,18's,24's,25's,28'r,29'r,32's)-4'',5,6'-trihydroxy-3',3'',4'',5,5''',5''',7',9',24'-nonamethyl-3'',3''a,6'',6''a-tetrahydrotrispiro[oxane-2,10'-[11]oxa-[21,35]diazanonacyclo[18.15.0.0³,¹⁸.0⁴,¹⁵.0⁷,¹⁴.0⁸,¹².0²²,³⁴.0²⁴,³².0²⁵,²⁹]pentatriacontane-28',5''-cyclopenta[b]furan-2'',2'''-oxolane]-1'(20'),13',21',34'-tetraen-27'-one

C54H76N2O8 (880.5601376000001)


   

3-hydroxy-n-(3-methyl-1-{[5,8,11,14-tetrahydroxy-9-(1-hydroxyethyl)-12-(hydroxymethyl)-16-methyl-3,6-bis(2-methylpropyl)-2-oxo-1-oxa-4,7,10,13-tetraazacyclohexadeca-4,7,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}butyl)hexadec-9-enimidic acid

3-hydroxy-n-(3-methyl-1-{[5,8,11,14-tetrahydroxy-9-(1-hydroxyethyl)-12-(hydroxymethyl)-16-methyl-3,6-bis(2-methylpropyl)-2-oxo-1-oxa-4,7,10,13-tetraazacyclohexadeca-4,7,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}butyl)hexadec-9-enimidic acid

C45H80N6O11 (880.5884770000001)


   

(2r,3's,3''s,3'as,4's,4''s,5'r,5'''s,6''r,6'as,8''r,9''s,10''s,12''r,15''r,18''s,24''s,25''s,29''r,32''s)-4',6''-dihydroxy-5'''-(hydroxymethyl)-3',3'',4',5,5,5''',7'',9'',24''-nonamethyl-3',3'a,6',6'a-tetrahydrotrispiro[oxolane-2,2'-cyclopenta[b]furan-5',28''-[11]oxa-[21,35]diazanonacyclo[18.15.0.0³,¹⁸.0⁴,¹⁵.0⁷,¹⁴.0⁸,¹².0²²,³⁴.0²⁴,³².0²⁵,²⁹]pentatriacontane-10'',2'''-oxolane]-1''(35''),13'',20'',22''(34'')-tetraen-27''-one

(2r,3's,3''s,3'as,4's,4''s,5'r,5'''s,6''r,6'as,8''r,9''s,10''s,12''r,15''r,18''s,24''s,25''s,29''r,32''s)-4',6''-dihydroxy-5'''-(hydroxymethyl)-3',3'',4',5,5,5''',7'',9'',24''-nonamethyl-3',3'a,6',6'a-tetrahydrotrispiro[oxolane-2,2'-cyclopenta[b]furan-5',28''-[11]oxa-[21,35]diazanonacyclo[18.15.0.0³,¹⁸.0⁴,¹⁵.0⁷,¹⁴.0⁸,¹².0²²,³⁴.0²⁴,³².0²⁵,²⁹]pentatriacontane-10'',2'''-oxolane]-1''(35''),13'',20'',22''(34'')-tetraen-27''-one

C54H76N2O8 (880.5601376000001)


   

[(1r,2r,6s,7s,8r,10s,11s,12r,14s,16s,17r,18s)-17-(acetyloxy)-6,7-dihydroxy-4,18-dimethyl-5-oxo-16-(prop-1-en-2-yl)-14-[(1e,3e)-trideca-1,3-dien-1-yl]-9,13,15,19-tetraoxahexacyclo[12.4.1.0¹,¹¹.0²,⁶.0⁸,¹⁰.0¹²,¹⁶]nonadec-3-en-8-yl]methyl hexadecanoate

[(1r,2r,6s,7s,8r,10s,11s,12r,14s,16s,17r,18s)-17-(acetyloxy)-6,7-dihydroxy-4,18-dimethyl-5-oxo-16-(prop-1-en-2-yl)-14-[(1e,3e)-trideca-1,3-dien-1-yl]-9,13,15,19-tetraoxahexacyclo[12.4.1.0¹,¹¹.0²,⁶.0⁸,¹⁰.0¹²,¹⁶]nonadec-3-en-8-yl]methyl hexadecanoate

C52H80O11 (880.5700330000001)