Exact Mass: 879.7468051999999
Exact Mass Matches: 879.7468051999999
Found 500 metabolites which its exact mass value is equals to given mass value 879.7468051999999
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
PC(O-22:1(13Z)/22:3(10Z,13Z,16Z))
C52H98NO7P (879.7080527999999)
PC(O-22:1(13Z)/22:3(10Z,13Z,16Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(O-22:1(13Z)/22:3(10Z,13Z,16Z)), in particular, consists of one chain of Erucyl alcohol at the C-1 position and one chain of (10Z,13Z,16Z-docosatrienoyl) at the C-2 position. The Erucyl alcohol moiety is derived from Rapeseed oil, while the (10Z,13Z,16Z-docosatrienoyl) moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(o-22:1(13Z)/22:3(10Z,13Z,16Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(o-22:1(13Z)/22:3(10Z,13Z,16Z)), in particular, consists of one chain of Erucyl alcohol at the C-1 position and one chain of (10Z,13Z,16Z-docosatrienoyl) at the C-2 position. The Erucyl alcohol moiety is derived from Rapeseed oil, while the (10Z,13Z,16Z-docosatrienoyl) moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PC(O-22:2(13Z,16Z)/22:2(13Z,16Z))
C52H98NO7P (879.7080527999999)
PC(O-22:2(13Z,16Z)/22:2(13Z,16Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(O-22:2(13Z,16Z)/22:2(13Z,16Z)), in particular, consists of one chain of Docosadienyl alcohol at the C-1 position and one chain of docosadienoic acid at the C-2 position. The Docosadienyl alcohol moiety is derived from animal fat, while the docosadienoic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(o-22:2(13Z,16Z)/22:2(13Z,16Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(o-22:2(13Z,16Z)/22:2(13Z,16Z)), in particular, consists of one chain of Docosadienyl alcohol at the C-1 position and one chain of docosadienoic acid at the C-2 position. The Docosadienyl alcohol moiety is derived from animal fat, while the docosadienoic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PC(O-24:0/20:4(8Z,11Z,14Z,17Z))
C52H98NO7P (879.7080527999999)
PC(O-24:0/20:4(8Z,11Z,14Z,17Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(O-24:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of Lignoceryl alcohol at the C-1 position and one chain of eicosatetraenoic acid at the C-2 position. The Lignoceryl alcohol moiety is derived from plant waxes and beeswax, while the eicosatetraenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(o-24:0/20:4(8Z,11Z,14Z,17Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(o-24:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of Lignoceryl alcohol at the C-1 position and one chain of eicosatetraenoic acid at the C-2 position. The Lignoceryl alcohol moiety is derived from plant waxes and beeswax, while the eicosatetraenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PC O-44:4
C52H98NO7P (879.7080527999999)