Exact Mass: 873.6094668

Exact Mass Matches: 873.6094668

Found 500 metabolites which its exact mass value is equals to given mass value 873.6094668, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/24:1(15Z))

(2-aminoethoxy)[(2R)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-2-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

C51H88NO8P (873.6247218)


PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/24:1(15Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/24:1(15Z)), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of nervonic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the nervonic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(24:1(15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

(2-aminoethoxy)[(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-3-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

C51H88NO8P (873.6247218)


PE(24:1(15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(24:1(15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The nervonic acid moiety is derived from fish oils, while the docosahexaenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PS(18:0/24:1(15Z))

(2S)-2-amino-3-{[hydroxy((2R)-3-(octadecanoyloxy)-2-[(15Z)-tetracos-15-enoyloxy]propoxy)phosphoryl]oxy}propanoic acid

C48H92NO10P (873.6458501999999)


PS(18:0/24:1(15Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(18:0/24:1(15Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of nervonic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(18:1(11Z)/24:0)

(2S)-2-amino-3-{[hydroxy((2R)-3-[(11Z)-octadec-11-enoyloxy]-2-(tetracosanoyloxy)propoxy)phosphoryl]oxy}propanoic acid

C48H92NO10P (873.6458501999999)


PS(18:1(11Z)/24:0) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(18:1(11Z)/24:0), in particular, consists of one chain of cis-vaccenic acid at the C-1 position and one chain of lignoceric acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(18:1(9Z)/24:0)

(2S)-2-amino-3-{[hydroxy((2R)-3-[(9Z)-octadec-9-enoyloxy]-2-(tetracosanoyloxy)propoxy)phosphoryl]oxy}propanoic acid

C48H92NO10P (873.6458501999999)


PS(18:1(9Z)/24:0) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(18:1(9Z)/24:0), in particular, consists of one chain of oleic acid at the C-1 position and one chain of lignoceric acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(20:0/22:1(13Z))

(2S)-2-amino-3-({[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-(icosanoyloxy)propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H92NO10P (873.6458501999999)


PS(20:0/22:1(13Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(20:0/22:1(13Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of erucic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(20:1(11Z)/22:0)

(2S)-2-amino-3-({[(2R)-2-(docosanoyloxy)-3-[(11Z)-icos-11-enoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H92NO10P (873.6458501999999)


PS(20:1(11Z)/22:0) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(20:1(11Z)/22:0), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of behenic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(22:0/20:1(11Z))

(2S)-2-amino-3-({[(2R)-3-(docosanoyloxy)-2-[(11Z)-icos-11-enoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H92NO10P (873.6458501999999)


PS(22:0/20:1(11Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(22:0/20:1(11Z)), in particular, consists of one chain of behenic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(22:1(13Z)/20:0)

(2S)-2-amino-3-({[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-(icosanoyloxy)propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C48H92NO10P (873.6458501999999)


PS(22:1(13Z)/20:0) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(22:1(13Z)/20:0), in particular, consists of one chain of erucic acid at the C-1 position and one chain of arachidic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(24:0/18:1(11Z))

(2S)-2-amino-3-{[hydroxy((2R)-2-[(11Z)-octadec-11-enoyloxy]-3-(tetracosanoyloxy)propoxy)phosphoryl]oxy}propanoic acid

C48H92NO10P (873.6458501999999)


PS(24:0/18:1(11Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(24:0/18:1(11Z)), in particular, consists of one chain of lignoceric acid at the C-1 position and one chain of cis-vaccenic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(24:0/18:1(9Z))

(2S)-2-amino-3-{[hydroxy((2R)-2-[(9Z)-octadec-9-enoyloxy]-3-(tetracosanoyloxy)propoxy)phosphoryl]oxy}propanoic acid

C48H92NO10P (873.6458501999999)


PS(24:0/18:1(9Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(24:0/18:1(9Z)), in particular, consists of one chain of lignoceric acid at the C-1 position and one chain of oleic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(24:1(15Z)/18:0)

(2S)-2-amino-3-{[hydroxy((2R)-2-(octadecanoyloxy)-3-[(15Z)-tetracos-15-enoyloxy]propoxy)phosphoryl]oxy}propanoic acid

C48H92NO10P (873.6458501999999)


PS(24:1(15Z)/18:0) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(24:1(15Z)/18:0), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of stearic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PE-NMe2(22:1(13Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

[2-(dimethylamino)ethoxy]({3-[(13Z)-docos-13-enoyloxy]-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]propoxy})phosphinic acid

C51H88NO8P (873.6247218)


PE-NMe2(22:1(13Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(22:1(13Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(22:2(13Z,16Z)/22:5(4Z,7Z,10Z,13Z,16Z))

[2-(dimethylamino)ethoxy]({3-[(13Z,16Z)-docosa-13,16-dienoyloxy]-2-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]propoxy})phosphinic acid

C51H88NO8P (873.6247218)


PE-NMe2(22:2(13Z,16Z)/22:5(4Z,7Z,10Z,13Z,16Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(22:2(13Z,16Z)/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of osbond acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(22:2(13Z,16Z)/22:5(7Z,10Z,13Z,16Z,19Z))

[2-(dimethylamino)ethoxy]({3-[(13Z,16Z)-docosa-13,16-dienoyloxy]-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]propoxy})phosphinic acid

C51H88NO8P (873.6247218)


PE-NMe2(22:2(13Z,16Z)/22:5(7Z,10Z,13Z,16Z,19Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(22:2(13Z,16Z)/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of clupanodonic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(22:5(4Z,7Z,10Z,13Z,16Z)/22:2(13Z,16Z))

[2-(dimethylamino)ethoxy]({2-[(13Z,16Z)-docosa-13,16-dienoyloxy]-3-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]propoxy})phosphinic acid

C51H88NO8P (873.6247218)


PE-NMe2(22:5(4Z,7Z,10Z,13Z,16Z)/22:2(13Z,16Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(22:5(4Z,7Z,10Z,13Z,16Z)/22:2(13Z,16Z)), in particular, consists of one chain of osbond acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(22:5(7Z,10Z,13Z,16Z,19Z)/22:2(13Z,16Z))

[2-(dimethylamino)ethoxy]({2-[(13Z,16Z)-docosa-13,16-dienoyloxy]-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]propoxy})phosphinic acid

C51H88NO8P (873.6247218)


PE-NMe2(22:5(7Z,10Z,13Z,16Z,19Z)/22:2(13Z,16Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(22:5(7Z,10Z,13Z,16Z,19Z)/22:2(13Z,16Z)), in particular, consists of one chain of clupanodonic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:1(13Z))

[2-(dimethylamino)ethoxy]({2-[(13Z)-docos-13-enoyloxy]-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]propoxy})phosphinic acid

C51H88NO8P (873.6247218)


PE-NMe2(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:1(13Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:1(13Z)), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of erucic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PS(20:0/20:3(8Z,11Z,14Z)-2OH(5,6))

(2S)-2-amino-3-({[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-(icosanoyloxy)propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C46H84NO12P (873.5730834)


PS(20:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one eicosanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:3(8Z,11Z,14Z)-2OH(5,6)/20:0)

(2S)-2-amino-3-({[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-(icosanoyloxy)propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C46H84NO12P (873.5730834)


PS(20:3(8Z,11Z,14Z)-2OH(5,6)/20:0) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:3(8Z,11Z,14Z)-2OH(5,6)/20:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of eicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(22:2(13Z,16Z)/18:1(12Z)-2OH(9,10))

(2S)-2-amino-3-({[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(13Z,16Z)-docosa-13,16-dienoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C46H84NO12P (873.5730834)


PS(22:2(13Z,16Z)/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(22:2(13Z,16Z)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 13Z,16Z-docosadienoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(18:1(12Z)-2OH(9,10)/22:2(13Z,16Z))

(2S)-2-amino-3-({[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(13Z,16Z)-docosa-13,16-dienoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C46H84NO12P (873.5730834)


PS(18:1(12Z)-2OH(9,10)/22:2(13Z,16Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(18:1(12Z)-2OH(9,10)/22:2(13Z,16Z)), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 13Z,16Z-docosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:0/PGF2alpha)

(2-aminoethoxy)[(2R)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-(docosanoyloxy)propoxy]phosphinic acid

C47H88NO11P (873.6094668)


PE(22:0/PGF2alpha) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:0/PGF2alpha), in particular, consists of one chain of one docosanoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(PGF2alpha/22:0)

(2-aminoethoxy)[(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-(docosanoyloxy)propoxy]phosphinic acid

C47H88NO11P (873.6094668)


PE(PGF2alpha/22:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(PGF2alpha/22:0), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of docosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:0/PGE1)

(2-aminoethoxy)[(2R)-3-(docosanoyloxy)-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propoxy]phosphinic acid

C47H88NO11P (873.6094668)


PE(22:0/PGE1) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:0/PGE1), in particular, consists of one chain of one docosanoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(PGE1/22:0)

(2-aminoethoxy)[(2R)-2-(docosanoyloxy)-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propoxy]phosphinic acid

C47H88NO11P (873.6094668)


PE(PGE1/22:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(PGE1/22:0), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of docosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:0/PGD1)

(2-aminoethoxy)[(2R)-3-(docosanoyloxy)-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propoxy]phosphinic acid

C47H88NO11P (873.6094668)


PE(22:0/PGD1) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:0/PGD1), in particular, consists of one chain of one docosanoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(PGD1/22:0)

(2-aminoethoxy)[(2R)-2-(docosanoyloxy)-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propoxy]phosphinic acid

C47H88NO11P (873.6094668)


PE(PGD1/22:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(PGD1/22:0), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of docosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:1(13Z)/PGF1alpha)

(2-aminoethoxy)[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-[(13Z)-docos-13-enoyloxy]propoxy]phosphinic acid

C47H88NO11P (873.6094668)


PE(22:1(13Z)/PGF1alpha) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:1(13Z)/PGF1alpha), in particular, consists of one chain of one 13Z-docosenoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(PGF1alpha/22:1(13Z))

(2-aminoethoxy)[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-2-[(13Z)-docos-13-enoyloxy]propoxy]phosphinic acid

C47H88NO11P (873.6094668)


PE(PGF1alpha/22:1(13Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(PGF1alpha/22:1(13Z)), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of 13Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(24:0/5-iso PGF2VI)

(2-aminoethoxy)[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-(tetracosanoyloxy)propoxy]phosphinic acid

C47H88NO11P (873.6094668)


PE(24:0/5-iso PGF2VI) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(24:0/5-iso PGF2VI), in particular, consists of one chain of one tetracosanoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(5-iso PGF2VI/24:0)

(2-aminoethoxy)[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-(tetracosanoyloxy)propoxy]phosphinic acid

C47H88NO11P (873.6094668)


PE(5-iso PGF2VI/24:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(5-iso PGF2VI/24:0), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of tetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PC(18:1(11Z)/6 keto-PGF1alpha)

(2-{[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-[(11Z)-octadec-11-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H84NO12P (873.5730834)


PC(18:1(11Z)/6 keto-PGF1alpha) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:1(11Z)/6 keto-PGF1alpha), in particular, consists of one chain of one 11Z-octadecenoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(6 keto-PGF1alpha/18:1(11Z))

(2-{[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-[(11Z)-octadec-11-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H84NO12P (873.5730834)


PC(6 keto-PGF1alpha/18:1(11Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(6 keto-PGF1alpha/18:1(11Z)), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:1(11Z)/TXB2)

(2-{[(2R)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-[(11Z)-octadec-11-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H84NO12P (873.5730834)


PC(18:1(11Z)/TXB2) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:1(11Z)/TXB2), in particular, consists of one chain of one 11Z-octadecenoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(TXB2/18:1(11Z))

(2-{[(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-[(11Z)-octadec-11-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H84NO12P (873.5730834)


PC(TXB2/18:1(11Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(TXB2/18:1(11Z)), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:1(9Z)/6 keto-PGF1alpha)

(2-{[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-[(9Z)-octadec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H84NO12P (873.5730834)


PC(18:1(9Z)/6 keto-PGF1alpha) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:1(9Z)/6 keto-PGF1alpha), in particular, consists of one chain of one 9Z-octadecenoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(6 keto-PGF1alpha/18:1(9Z))

(2-{[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-[(9Z)-octadec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H84NO12P (873.5730834)


PC(6 keto-PGF1alpha/18:1(9Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(6 keto-PGF1alpha/18:1(9Z)), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:1(9Z)/TXB2)

(2-{[(2R)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-[(9Z)-octadec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H84NO12P (873.5730834)


PC(18:1(9Z)/TXB2) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:1(9Z)/TXB2), in particular, consists of one chain of one 9Z-octadecenoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(TXB2/18:1(9Z))

(2-{[(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-[(9Z)-octadec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H84NO12P (873.5730834)


PC(TXB2/18:1(9Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(TXB2/18:1(9Z)), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:2(11Z,14Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

(2-{[(2R)-2-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(20:2(11Z,14Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:2(11Z,14Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one 11Z,14Z-eicosadienoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/20:2(11Z,14Z))

(2-{[(2R)-3-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/20:2(11Z,14Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/20:2(11Z,14Z)), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of 11Z,14Z-eicosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:2(11Z,14Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

(2-{[(2R)-2-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(20:2(11Z,14Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:2(11Z,14Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one 11Z,14Z-eicosadienoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/20:2(11Z,14Z))

(2-{[(2R)-3-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/20:2(11Z,14Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/20:2(11Z,14Z)), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of 11Z,14Z-eicosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:2(11Z,14Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

(2-{[(2R)-2-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(20:2(11Z,14Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:2(11Z,14Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one 11Z,14Z-eicosadienoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/20:2(11Z,14Z))

(2-{[(2R)-3-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/20:2(11Z,14Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/20:2(11Z,14Z)), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of 11Z,14Z-eicosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:2(11Z,14Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

(2-{[(2R)-2-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(20:2(11Z,14Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:2(11Z,14Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one 11Z,14Z-eicosadienoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/20:2(11Z,14Z))

(2-{[(2R)-3-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/20:2(11Z,14Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/20:2(11Z,14Z)), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of 11Z,14Z-eicosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:2(11Z,14Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

(2-{[(2R)-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]-2-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(20:2(11Z,14Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:2(11Z,14Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one 11Z,14Z-eicosadienoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/20:2(11Z,14Z))

(2-{[(2R)-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]-3-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/20:2(11Z,14Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/20:2(11Z,14Z)), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of 11Z,14Z-eicosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:1(13Z)/18:1(12Z)-2OH(9,10))

(2-{[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(13Z)-docos-13-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H92NO10P (873.6458501999999)


PC(22:1(13Z)/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:1(13Z)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 13Z-docosenoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:1(12Z)-2OH(9,10)/22:1(13Z))

(2-{[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(13Z)-docos-13-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C48H92NO10P (873.6458501999999)


PC(18:1(12Z)-2OH(9,10)/22:1(13Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:1(12Z)-2OH(9,10)/22:1(13Z)), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 13Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:4(7Z,10Z,13Z,16Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

(2-{[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(22:4(7Z,10Z,13Z,16Z)/20:3(5Z,8Z,11Z)-O(14R,15S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:4(7Z,10Z,13Z,16Z)/20:3(5Z,8Z,11Z)-O(14R,15S)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of 14,15-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(5Z,8Z,11Z)-O(14R,15S)/22:4(7Z,10Z,13Z,16Z))

(2-{[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(20:3(5Z,8Z,11Z)-O(14R,15S)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(5Z,8Z,11Z)-O(14R,15S)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 14,15-epoxyeicosatrienoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:4(7Z,10Z,13Z,16Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

(2-{[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(22:4(7Z,10Z,13Z,16Z)/20:3(5Z,8Z,14Z)-O(11S,12R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:4(7Z,10Z,13Z,16Z)/20:3(5Z,8Z,14Z)-O(11S,12R)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of 11,12-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(5Z,8Z,14Z)-O(11S,12R)/22:4(7Z,10Z,13Z,16Z))

(2-{[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(20:3(5Z,8Z,14Z)-O(11S,12R)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(5Z,8Z,14Z)-O(11S,12R)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 11,12-epoxyeicosatrienoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:4(7Z,10Z,13Z,16Z)/20:3(5Z,11Z,14Z)-O(8,9))

(2-{[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(22:4(7Z,10Z,13Z,16Z)/20:3(5Z,11Z,14Z)-O(8,9)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:4(7Z,10Z,13Z,16Z)/20:3(5Z,11Z,14Z)-O(8,9)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of 8,9--epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(5Z,11Z,14Z)-O(8,9)/22:4(7Z,10Z,13Z,16Z))

(2-{[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(20:3(5Z,11Z,14Z)-O(8,9)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(5Z,11Z,14Z)-O(8,9)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 8,9--epoxyeicosatrienoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:4(7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z)-O(5,6))

(2-{[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(22:4(7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z)-O(5,6)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:4(7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z)-O(5,6)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of 5,6-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(8Z,11Z,14Z)-O(5,6)/22:4(7Z,10Z,13Z,16Z))

(2-{[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(20:3(8Z,11Z,14Z)-O(5,6)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(8Z,11Z,14Z)-O(5,6)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 5,6-epoxyeicosatrienoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

(2-{[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(20)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(20)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of 20-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,14Z)-OH(20)/22:4(7Z,10Z,13Z,16Z))

(2-{[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(20:4(5Z,8Z,11Z,14Z)-OH(20)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,14Z)-OH(20)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 20-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:4(7Z,10Z,13Z,16Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

(2-{[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-{[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(22:4(7Z,10Z,13Z,16Z)/20:4(6E,8Z,11Z,14Z)-OH(5S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:4(7Z,10Z,13Z,16Z)/20:4(6E,8Z,11Z,14Z)-OH(5S)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of 5-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(6E,8Z,11Z,14Z)-OH(5S)/22:4(7Z,10Z,13Z,16Z))

(2-{[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-{[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(20:4(6E,8Z,11Z,14Z)-OH(5S)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(6E,8Z,11Z,14Z)-OH(5S)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 5-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

(2-{[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-{[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of 19-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,14Z)-OH(19S)/22:4(7Z,10Z,13Z,16Z))

(2-{[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-{[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(20:4(5Z,8Z,11Z,14Z)-OH(19S)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,14Z)-OH(19S)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 19-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

(2-{[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-{[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of 18-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,14Z)-OH(18R)/22:4(7Z,10Z,13Z,16Z))

(2-{[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-{[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(20:4(5Z,8Z,11Z,14Z)-OH(18R)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,14Z)-OH(18R)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 18-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

(2-{[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(17)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(17)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of 17-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,14Z)-OH(17)/22:4(7Z,10Z,13Z,16Z))

(2-{[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(20:4(5Z,8Z,11Z,14Z)-OH(17)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,14Z)-OH(17)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 17-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

(2-{[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-{[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of 16-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,14Z)-OH(16R)/22:4(7Z,10Z,13Z,16Z))

(2-{[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-{[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(20:4(5Z,8Z,11Z,14Z)-OH(16R)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,14Z)-OH(16R)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 16-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

(2-{[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-{[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,13E)-OH(15S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,13E)-OH(15S)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of 15-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,13E)-OH(15S)/22:4(7Z,10Z,13Z,16Z))

(2-{[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-{[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(20:4(5Z,8Z,11Z,13E)-OH(15S)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,13E)-OH(15S)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 15-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

(2-{[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-{[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,10E,14Z)-OH(12S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,10E,14Z)-OH(12S)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of 12-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,10E,14Z)-OH(12S)/22:4(7Z,10Z,13Z,16Z))

(2-{[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-{[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(20:4(5Z,8Z,10E,14Z)-OH(12S)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,10E,14Z)-OH(12S)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 12-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:4(7Z,10Z,13Z,16Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

(2-{[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-{[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(22:4(7Z,10Z,13Z,16Z)/20:4(5E,8Z,12Z,14Z)-OH(11R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:4(7Z,10Z,13Z,16Z)/20:4(5E,8Z,12Z,14Z)-OH(11R)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of 11-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5E,8Z,12Z,14Z)-OH(11R)/22:4(7Z,10Z,13Z,16Z))

(2-{[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-{[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(20:4(5E,8Z,12Z,14Z)-OH(11R)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5E,8Z,12Z,14Z)-OH(11R)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 11-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

(2-{[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,7E,11Z,14Z)-OH(9)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,7E,11Z,14Z)-OH(9)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of 9-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,7E,11Z,14Z)-OH(9)/22:4(7Z,10Z,13Z,16Z))

(2-{[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(20:4(5Z,7E,11Z,14Z)-OH(9)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,7E,11Z,14Z)-OH(9)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 9-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:5(4Z,7Z,10Z,13Z,16Z)/20:3(6,8,11)-OH(5))

(2-{[(2R)-3-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-2-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(22:5(4Z,7Z,10Z,13Z,16Z)/20:3(6,8,11)-OH(5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:5(4Z,7Z,10Z,13Z,16Z)/20:3(6,8,11)-OH(5)), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(6,8,11)-OH(5)/22:5(4Z,7Z,10Z,13Z,16Z))

(2-{[(2R)-2-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-3-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(20:3(6,8,11)-OH(5)/22:5(4Z,7Z,10Z,13Z,16Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(6,8,11)-OH(5)/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:5(7Z,10Z,13Z,16Z,19Z)/20:3(6,8,11)-OH(5))

(2-{[(2R)-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]-2-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(22:5(7Z,10Z,13Z,16Z,19Z)/20:3(6,8,11)-OH(5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:5(7Z,10Z,13Z,16Z,19Z)/20:3(6,8,11)-OH(5)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(6,8,11)-OH(5)/22:5(7Z,10Z,13Z,16Z,19Z))

(2-{[(2R)-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]-3-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C50H84NO9P (873.5883384)


PC(20:3(6,8,11)-OH(5)/22:5(7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(6,8,11)-OH(5)/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PE(46:7)

1-Nervonoyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine

C51H88NO8P (873.6247218)


   

PS(20:0/22:1(11Z))

1-eicosanoyl-2-(11Z-docosenoyl)-glycero-3-phosphoserine

C48H92NO10P (873.6458501999999)


   

PS(20:1(11Z)/22:0)

1-(11Z-eicosenoyl)-2-docosanoyl-glycero-3-phosphoserine

C48H92NO10P (873.6458501999999)


   

PS(22:1(11Z)/20:0)

1-(11Z-docosenoyl)-2-eicosanoyl-glycero-3-phosphoserine

C48H92NO10P (873.6458501999999)


   

PS(22:0/20:1(11Z))

1-docosanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphoserine

C48H92NO10P (873.6458501999999)


   

PS 42:1

1-docosanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphoserine

C48H92NO10P (873.6458501999999)


   
   
   
   
   
   
   
   
   

PE(22:1(13Z)/PGF1alpha)

PE(22:1(13Z)/PGF1alpha)

C47H88NO11P (873.6094668)


   

PE(PGF1alpha/22:1(13Z))

PE(PGF1alpha/22:1(13Z))

C47H88NO11P (873.6094668)


   
   
   
   
   

PC(18:1(9Z)/6 keto-PGF1alpha)

PC(18:1(9Z)/6 keto-PGF1alpha)

C46H84NO12P (873.5730834)


   

PC(6 keto-PGF1alpha/18:1(9Z))

PC(6 keto-PGF1alpha/18:1(9Z))

C46H84NO12P (873.5730834)


   

PC(18:1(11Z)/6 keto-PGF1alpha)

PC(18:1(11Z)/6 keto-PGF1alpha)

C46H84NO12P (873.5730834)


   

PC(6 keto-PGF1alpha/18:1(11Z))

PC(6 keto-PGF1alpha/18:1(11Z))

C46H84NO12P (873.5730834)


   

PS(20:0/20:3(8Z,11Z,14Z)-2OH(5,6))

PS(20:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C46H84NO12P (873.5730834)


   

PS(20:3(8Z,11Z,14Z)-2OH(5,6)/20:0)

PS(20:3(8Z,11Z,14Z)-2OH(5,6)/20:0)

C46H84NO12P (873.5730834)


   
   
   

PS(22:2(13Z,16Z)/18:1(12Z)-2OH(9,10))

PS(22:2(13Z,16Z)/18:1(12Z)-2OH(9,10))

C46H84NO12P (873.5730834)


   

PS(18:1(12Z)-2OH(9,10)/22:2(13Z,16Z))

PS(18:1(12Z)-2OH(9,10)/22:2(13Z,16Z))

C46H84NO12P (873.5730834)


   

PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

C50H84NO9P (873.5883384)


   

PC(20:4(5Z,7E,11Z,14Z)-OH(9)/22:4(7Z,10Z,13Z,16Z))

PC(20:4(5Z,7E,11Z,14Z)-OH(9)/22:4(7Z,10Z,13Z,16Z))

C50H84NO9P (873.5883384)


   

PC(22:5(4Z,7Z,10Z,13Z,16Z)/20:3(6,8,11)-OH(5))

PC(22:5(4Z,7Z,10Z,13Z,16Z)/20:3(6,8,11)-OH(5))

C50H84NO9P (873.5883384)


   

PC(20:3(6,8,11)-OH(5)/22:5(4Z,7Z,10Z,13Z,16Z))

PC(20:3(6,8,11)-OH(5)/22:5(4Z,7Z,10Z,13Z,16Z))

C50H84NO9P (873.5883384)


   

PC(20:2(11Z,14Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

PC(20:2(11Z,14Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

C50H84NO9P (873.5883384)


   

PC(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/20:2(11Z,14Z))

PC(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/20:2(11Z,14Z))

C50H84NO9P (873.5883384)


   

PC(20:2(11Z,14Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

PC(20:2(11Z,14Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

C50H84NO9P (873.5883384)


   

PC(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/20:2(11Z,14Z))

PC(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/20:2(11Z,14Z))

C50H84NO9P (873.5883384)


   

PC(20:2(11Z,14Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

PC(20:2(11Z,14Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

C50H84NO9P (873.5883384)


   

PC(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/20:2(11Z,14Z))

PC(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/20:2(11Z,14Z))

C50H84NO9P (873.5883384)


   

PC(20:2(11Z,14Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

PC(20:2(11Z,14Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

C50H84NO9P (873.5883384)


   

PC(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/20:2(11Z,14Z))

PC(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/20:2(11Z,14Z))

C50H84NO9P (873.5883384)


   

PC(20:2(11Z,14Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

PC(20:2(11Z,14Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

C50H84NO9P (873.5883384)


   

PC(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/20:2(11Z,14Z))

PC(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/20:2(11Z,14Z))

C50H84NO9P (873.5883384)


   

PC(22:4(7Z,10Z,13Z,16Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

PC(22:4(7Z,10Z,13Z,16Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

C50H84NO9P (873.5883384)


   

PC(20:3(5Z,8Z,11Z)-O(14R,15S)/22:4(7Z,10Z,13Z,16Z))

PC(20:3(5Z,8Z,11Z)-O(14R,15S)/22:4(7Z,10Z,13Z,16Z))

C50H84NO9P (873.5883384)


   

PC(22:4(7Z,10Z,13Z,16Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

PC(22:4(7Z,10Z,13Z,16Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

C50H84NO9P (873.5883384)


   

PC(20:3(5Z,8Z,14Z)-O(11S,12R)/22:4(7Z,10Z,13Z,16Z))

PC(20:3(5Z,8Z,14Z)-O(11S,12R)/22:4(7Z,10Z,13Z,16Z))

C50H84NO9P (873.5883384)


   

PC(22:4(7Z,10Z,13Z,16Z)/20:3(5Z,11Z,14Z)-O(8,9))

PC(22:4(7Z,10Z,13Z,16Z)/20:3(5Z,11Z,14Z)-O(8,9))

C50H84NO9P (873.5883384)


   

PC(20:3(5Z,11Z,14Z)-O(8,9)/22:4(7Z,10Z,13Z,16Z))

PC(20:3(5Z,11Z,14Z)-O(8,9)/22:4(7Z,10Z,13Z,16Z))

C50H84NO9P (873.5883384)


   

PC(22:4(7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z)-O(5,6))

PC(22:4(7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z)-O(5,6))

C50H84NO9P (873.5883384)


   

PC(20:3(8Z,11Z,14Z)-O(5,6)/22:4(7Z,10Z,13Z,16Z))

PC(20:3(8Z,11Z,14Z)-O(5,6)/22:4(7Z,10Z,13Z,16Z))

C50H84NO9P (873.5883384)


   

PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

C50H84NO9P (873.5883384)


   

PC(20:4(5Z,8Z,11Z,14Z)-OH(20)/22:4(7Z,10Z,13Z,16Z))

PC(20:4(5Z,8Z,11Z,14Z)-OH(20)/22:4(7Z,10Z,13Z,16Z))

C50H84NO9P (873.5883384)


   

PC(22:4(7Z,10Z,13Z,16Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

PC(22:4(7Z,10Z,13Z,16Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

C50H84NO9P (873.5883384)


   

PC(20:4(6E,8Z,11Z,14Z)-OH(5S)/22:4(7Z,10Z,13Z,16Z))

PC(20:4(6E,8Z,11Z,14Z)-OH(5S)/22:4(7Z,10Z,13Z,16Z))

C50H84NO9P (873.5883384)


   

PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C50H84NO9P (873.5883384)


   

PC(20:4(5Z,8Z,11Z,14Z)-OH(19S)/22:4(7Z,10Z,13Z,16Z))

PC(20:4(5Z,8Z,11Z,14Z)-OH(19S)/22:4(7Z,10Z,13Z,16Z))

C50H84NO9P (873.5883384)


   

PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C50H84NO9P (873.5883384)


   

PC(20:4(5Z,8Z,11Z,14Z)-OH(18R)/22:4(7Z,10Z,13Z,16Z))

PC(20:4(5Z,8Z,11Z,14Z)-OH(18R)/22:4(7Z,10Z,13Z,16Z))

C50H84NO9P (873.5883384)


   

PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

C50H84NO9P (873.5883384)


   

PC(20:4(5Z,8Z,11Z,14Z)-OH(17)/22:4(7Z,10Z,13Z,16Z))

PC(20:4(5Z,8Z,11Z,14Z)-OH(17)/22:4(7Z,10Z,13Z,16Z))

C50H84NO9P (873.5883384)


   

PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C50H84NO9P (873.5883384)


   

PC(20:4(5Z,8Z,11Z,14Z)-OH(16R)/22:4(7Z,10Z,13Z,16Z))

PC(20:4(5Z,8Z,11Z,14Z)-OH(16R)/22:4(7Z,10Z,13Z,16Z))

C50H84NO9P (873.5883384)


   

PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

C50H84NO9P (873.5883384)


   

PC(20:4(5Z,8Z,11Z,13E)-OH(15S)/22:4(7Z,10Z,13Z,16Z))

PC(20:4(5Z,8Z,11Z,13E)-OH(15S)/22:4(7Z,10Z,13Z,16Z))

C50H84NO9P (873.5883384)


   

PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

PC(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

C50H84NO9P (873.5883384)


   

PC(20:4(5Z,8Z,10E,14Z)-OH(12S)/22:4(7Z,10Z,13Z,16Z))

PC(20:4(5Z,8Z,10E,14Z)-OH(12S)/22:4(7Z,10Z,13Z,16Z))

C50H84NO9P (873.5883384)


   

PC(22:4(7Z,10Z,13Z,16Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

PC(22:4(7Z,10Z,13Z,16Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

C50H84NO9P (873.5883384)


   

PC(20:4(5E,8Z,12Z,14Z)-OH(11R)/22:4(7Z,10Z,13Z,16Z))

PC(20:4(5E,8Z,12Z,14Z)-OH(11R)/22:4(7Z,10Z,13Z,16Z))

C50H84NO9P (873.5883384)


   

PC(22:5(7Z,10Z,13Z,16Z,19Z)/20:3(6,8,11)-OH(5))

PC(22:5(7Z,10Z,13Z,16Z,19Z)/20:3(6,8,11)-OH(5))

C50H84NO9P (873.5883384)


   

PC(20:3(6,8,11)-OH(5)/22:5(7Z,10Z,13Z,16Z,19Z))

PC(20:3(6,8,11)-OH(5)/22:5(7Z,10Z,13Z,16Z,19Z))

C50H84NO9P (873.5883384)


   

2-amino-3-[hydroxy-[2-[(Z)-octadec-9-enoyl]oxy-3-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(Z)-octadec-9-enoyl]oxy-3-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

2-amino-3-[[3-heptacosanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-heptacosanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   
   

HexCer 16:3;2O/32:9

HexCer 16:3;2O/32:9

C54H83NO8 (873.6118358)


   

HexCer 14:3;2O/34:9

HexCer 14:3;2O/34:9

C54H83NO8 (873.6118358)


   

HexCer 8:1;2O/40:11

HexCer 8:1;2O/40:11

C54H83NO8 (873.6118358)


   

HexCer 12:2;2O/36:10

HexCer 12:2;2O/36:10

C54H83NO8 (873.6118358)


   

HexCer 14:3;2O/31:4;2O

HexCer 14:3;2O/31:4;2O

C51H87NO10 (873.6329642)


   

HexCer 15:3;2O/30:4;2O

HexCer 15:3;2O/30:4;2O

C51H87NO10 (873.6329642)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

2-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C54H83NO8 (873.6118358)


   

2-[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C54H83NO8 (873.6118358)


   

2-[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C54H83NO8 (873.6118358)


   

2-[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C54H83NO8 (873.6118358)


   

2-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C54H83NO8 (873.6118358)


   

HexCer 29:4;3O(FA 16:2)

HexCer 29:4;3O(FA 16:2)

C51H87NO10 (873.6329642)


   

HexCer 28:4;3O(FA 17:2)

HexCer 28:4;3O(FA 17:2)

C51H87NO10 (873.6329642)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

2-amino-3-[[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C50H84NO9P (873.5883384)


   

2-amino-3-[hydroxy-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propoxy]phosphoryl]oxypropanoic acid

C50H84NO9P (873.5883384)


   

2-amino-3-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propoxy]phosphoryl]oxypropanoic acid

C50H84NO9P (873.5883384)


   

2-amino-3-[hydroxy-[3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C50H84NO9P (873.5883384)


   

2-amino-3-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C50H84NO9P (873.5883384)


   

2-amino-3-[hydroxy-[3-[(11Z,14Z)-icosa-11,14-dienoxy]-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(11Z,14Z)-icosa-11,14-dienoxy]-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C50H84NO9P (873.5883384)


   

2-amino-3-[[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(Z)-octadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(Z)-octadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C50H84NO9P (873.5883384)


   

2-amino-3-[[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C50H84NO9P (873.5883384)


   

2-amino-3-[[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-2-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-2-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C50H84NO9P (873.5883384)


   

2-amino-3-[hydroxy-[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C50H84NO9P (873.5883384)


   

2-amino-3-[hydroxy-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propoxy]phosphoryl]oxypropanoic acid

C50H84NO9P (873.5883384)


   

2-amino-3-[[3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C50H84NO9P (873.5883384)


   

2-amino-3-[[2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C50H84NO9P (873.5883384)


   

2-amino-3-[[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C50H84NO9P (873.5883384)


   

2-amino-3-[[3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C50H84NO9P (873.5883384)


   

2-amino-3-[[3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C50H84NO9P (873.5883384)


   

2-amino-3-[hydroxy-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C50H84NO9P (873.5883384)


   

2-amino-3-[[3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C50H84NO9P (873.5883384)


   

2-amino-3-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C50H84NO9P (873.5883384)


   

2-amino-3-[[2-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C50H84NO9P (873.5883384)


   

2-amino-3-[[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C50H84NO9P (873.5883384)


   

2-amino-3-[hydroxy-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propoxy]phosphoryl]oxypropanoic acid

C50H84NO9P (873.5883384)


   

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C50H84NO9P (873.5883384)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-11,14,17,20,23,26,29-heptaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-11,14,17,20,23,26,29-heptaenoate

C51H88NO8P (873.6247218)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-icosanoyloxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-icosanoyloxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C51H88NO8P (873.6247218)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (17Z,20Z)-octacosa-17,20-dienoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (17Z,20Z)-octacosa-17,20-dienoate

C51H88NO8P (873.6247218)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoyl]oxypropan-2-yl] (10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoyl]oxypropan-2-yl] (10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoate

C51H88NO8P (873.6247218)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (16Z,19Z,22Z)-triaconta-16,19,22-trienoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (16Z,19Z,22Z)-triaconta-16,19,22-trienoate

C51H88NO8P (873.6247218)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (14Z,17Z,20Z)-octacosa-14,17,20-trienoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (14Z,17Z,20Z)-octacosa-14,17,20-trienoate

C51H88NO8P (873.6247218)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropan-2-yl] (12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropan-2-yl] (12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoate

C51H88NO8P (873.6247218)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoate

C51H88NO8P (873.6247218)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-docosa-13,16-dienoyl]oxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-docosa-13,16-dienoyl]oxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

C51H88NO8P (873.6247218)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-14,17,20,23,26,29-hexaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-14,17,20,23,26,29-hexaenoate

C51H88NO8P (873.6247218)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoate

C51H88NO8P (873.6247218)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoyl]oxypropan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoyl]oxypropan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate

C51H88NO8P (873.6247218)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropan-2-yl] (13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropan-2-yl] (13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoate

C51H88NO8P (873.6247218)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropyl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropyl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate

C51H88NO8P (873.6247218)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxypropyl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxypropyl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

C51H88NO8P (873.6247218)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropan-2-yl] (15Z,18Z,21Z,24Z,27Z)-triaconta-15,18,21,24,27-pentaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropan-2-yl] (15Z,18Z,21Z,24Z,27Z)-triaconta-15,18,21,24,27-pentaenoate

C51H88NO8P (873.6247218)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-13,16,19,22,25,28,31-heptaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-13,16,19,22,25,28,31-heptaenoate

C51H88NO8P (873.6247218)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropan-2-yl] (11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropan-2-yl] (11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoate

C51H88NO8P (873.6247218)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropan-2-yl] (18Z,21Z,24Z,27Z)-triaconta-18,21,24,27-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropan-2-yl] (18Z,21Z,24Z,27Z)-triaconta-18,21,24,27-tetraenoate

C51H88NO8P (873.6247218)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecanoyloxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecanoyloxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate

C51H88NO8P (873.6247218)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decanoyloxypropan-2-yl] (15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-15,18,21,24,27,30,33-heptaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decanoyloxypropan-2-yl] (15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-15,18,21,24,27,30,33-heptaenoate

C51H88NO8P (873.6247218)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-docos-13-enoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-docos-13-enoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

C51H88NO8P (873.6247218)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[2-[(Z)-7-[4,6-dihydroxy-2-[(E)-3-hydroxyoct-1-enyl]oxan-3-yl]hept-5-enoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-7-[4,6-dihydroxy-2-[(E)-3-hydroxyoct-1-enyl]oxan-3-yl]hept-5-enoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO12P (873.5730834)


   

[3-nonanoyloxy-2-[(13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-13,16,19,22,25,28,31-heptaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-nonanoyloxy-2-[(13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-13,16,19,22,25,28,31-heptaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C51H88NO8P (873.6247218)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-17,20,23,26,29,32,35-heptaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-17,20,23,26,29,32,35-heptaenoate

C51H88NO8P (873.6247218)


   

2-amino-3-[[3-henicosanoyloxy-2-[(Z)-henicos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-henicosanoyloxy-2-[(Z)-henicos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

2-amino-3-[hydroxy-[3-octadecanoyloxy-2-[(Z)-tetracos-13-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-octadecanoyloxy-2-[(Z)-tetracos-13-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

2-amino-3-[[2-[(Z)-heptadec-9-enoyl]oxy-3-pentacosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(Z)-heptadec-9-enoyl]oxy-3-pentacosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (15Z,18Z)-hexacosa-15,18-dienoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (15Z,18Z)-hexacosa-15,18-dienoate

C51H88NO8P (873.6247218)


   

2-amino-3-[[2-[(Z)-docos-13-enoyl]oxy-3-icosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(Z)-docos-13-enoyl]oxy-3-icosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

2-amino-3-[[3-docosanoyloxy-2-[(Z)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-docosanoyloxy-2-[(Z)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C51H88NO8P (873.6247218)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C51H88NO8P (873.6247218)


   

2-amino-3-[[2-[(Z)-hexacos-15-enoyl]oxy-3-hexadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(Z)-hexacos-15-enoyl]oxy-3-hexadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropyl] (Z)-tetracos-13-enoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropyl] (Z)-tetracos-13-enoate

C51H88NO8P (873.6247218)


   

2-amino-3-[[3-hexacosanoyloxy-2-[(Z)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-hexacosanoyloxy-2-[(Z)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxypropyl] (13Z,16Z)-tetracosa-13,16-dienoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxypropyl] (13Z,16Z)-tetracosa-13,16-dienoate

C51H88NO8P (873.6247218)


   

2-amino-3-[hydroxy-[2-[(Z)-nonadec-9-enoyl]oxy-3-tricosanoyloxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(Z)-nonadec-9-enoyl]oxy-3-tricosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

[2-[(9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C51H88NO8P (873.6247218)


   

[3-[(Z)-nonadec-9-enoyl]oxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-nonadec-9-enoyl]oxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C51H88NO8P (873.6247218)


   

[3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C51H88NO8P (873.6247218)


   

[2-[(11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-11,14,17,20,23,26,29-heptaenoyl]oxy-3-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-11,14,17,20,23,26,29-heptaenoyl]oxy-3-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C51H88NO8P (873.6247218)


   

[2-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C51H88NO8P (873.6247218)


   

[2-[(12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C51H88NO8P (873.6247218)


   

[3-[(Z)-heptadec-9-enoyl]oxy-2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-heptadec-9-enoyl]oxy-2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C51H88NO8P (873.6247218)


   

[2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]oxy-3-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]oxy-3-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C51H88NO8P (873.6247218)


   

[3-heptadecanoyloxy-2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-heptadecanoyloxy-2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C51H88NO8P (873.6247218)


   

[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C51H88NO8P (873.6247218)


   

[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C51H88NO8P (873.6247218)


   

[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-henicos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-henicos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C51H88NO8P (873.6247218)


   

[2-[(Z)-7-[4,6-dihydroxy-2-[(1E,5Z)-3-hydroxyocta-1,5-dienyl]oxan-3-yl]hept-5-enoyl]oxy-3-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-7-[4,6-dihydroxy-2-[(1E,5Z)-3-hydroxyocta-1,5-dienyl]oxan-3-yl]hept-5-enoyl]oxy-3-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO12P (873.5730834)


   

(11Z,14Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradecan-2-yl]henicosa-11,14-dienamide

(11Z,14Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradecan-2-yl]henicosa-11,14-dienamide

C47H87NO13 (873.6177091999999)


   

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyheptacosa-4,8-dien-2-yl]octanamide

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyheptacosa-4,8-dien-2-yl]octanamide

C47H87NO13 (873.6177091999999)


   

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctacosa-4,8-dien-2-yl]heptanamide

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctacosa-4,8-dien-2-yl]heptanamide

C47H87NO13 (873.6177091999999)


   

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytritriaconta-4,8-dien-2-yl]acetamide

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytritriaconta-4,8-dien-2-yl]acetamide

C47H87NO13 (873.6177091999999)


   

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydotriaconta-4,8-dien-2-yl]propanamide

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydotriaconta-4,8-dien-2-yl]propanamide

C47H87NO13 (873.6177091999999)


   

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhenicosa-4,8-dien-2-yl]tetradecanamide

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhenicosa-4,8-dien-2-yl]tetradecanamide

C47H87NO13 (873.6177091999999)


   

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhentriaconta-4,8-dien-2-yl]butanamide

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhentriaconta-4,8-dien-2-yl]butanamide

C47H87NO13 (873.6177091999999)


   

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydocosa-4,8-dien-2-yl]tridecanamide

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydocosa-4,8-dien-2-yl]tridecanamide

C47H87NO13 (873.6177091999999)


   

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodeca-4,8-dien-2-yl]tricosanamide

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodeca-4,8-dien-2-yl]tricosanamide

C47H87NO13 (873.6177091999999)


   

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxypentadeca-4,8-dien-2-yl]icosanamide

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxypentadeca-4,8-dien-2-yl]icosanamide

C47H87NO13 (873.6177091999999)


   

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxynonacosa-4,8-dien-2-yl]hexanamide

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxynonacosa-4,8-dien-2-yl]hexanamide

C47H87NO13 (873.6177091999999)


   

(15Z,18Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxynonan-2-yl]hexacosa-15,18-dienamide

(15Z,18Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxynonan-2-yl]hexacosa-15,18-dienamide

C47H87NO13 (873.6177091999999)


   

(Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxypentadec-4-en-2-yl]icos-11-enamide

(Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxypentadec-4-en-2-yl]icos-11-enamide

C47H87NO13 (873.6177091999999)


   

(Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradec-4-en-2-yl]henicos-11-enamide

(Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradec-4-en-2-yl]henicos-11-enamide

C47H87NO13 (873.6177091999999)


   

(11Z,14Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxypentadecan-2-yl]icosa-11,14-dienamide

(11Z,14Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxypentadecan-2-yl]icosa-11,14-dienamide

C47H87NO13 (873.6177091999999)


   

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetracosa-4,8-dien-2-yl]undecanamide

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetracosa-4,8-dien-2-yl]undecanamide

C47H87NO13 (873.6177091999999)


   

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxypentacosa-4,8-dien-2-yl]decanamide

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxypentacosa-4,8-dien-2-yl]decanamide

C47H87NO13 (873.6177091999999)


   

(Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyundec-4-en-2-yl]tetracos-13-enamide

(Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyundec-4-en-2-yl]tetracos-13-enamide

C47H87NO13 (873.6177091999999)


   

(Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhenicos-4-en-2-yl]tetradec-9-enamide

(Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhenicos-4-en-2-yl]tetradec-9-enamide

C47H87NO13 (873.6177091999999)


   

(13Z,16Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytridecan-2-yl]docosa-13,16-dienamide

(13Z,16Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytridecan-2-yl]docosa-13,16-dienamide

C47H87NO13 (873.6177091999999)


   

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradeca-4,8-dien-2-yl]henicosanamide

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradeca-4,8-dien-2-yl]henicosanamide

C47H87NO13 (873.6177091999999)


   

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhexacosa-4,8-dien-2-yl]nonanamide

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhexacosa-4,8-dien-2-yl]nonanamide

C47H87NO13 (873.6177091999999)


   

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytriaconta-4,8-dien-2-yl]pentanamide

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytriaconta-4,8-dien-2-yl]pentanamide

C47H87NO13 (873.6177091999999)


   

(13Z,16Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyundecan-2-yl]tetracosa-13,16-dienamide

(13Z,16Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyundecan-2-yl]tetracosa-13,16-dienamide

C47H87NO13 (873.6177091999999)


   

(Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxynon-4-en-2-yl]hexacos-15-enamide

(Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxynon-4-en-2-yl]hexacos-15-enamide

C47H87NO13 (873.6177091999999)


   

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytrideca-4,8-dien-2-yl]docosanamide

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytrideca-4,8-dien-2-yl]docosanamide

C47H87NO13 (873.6177091999999)


   

(Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytridec-4-en-2-yl]docos-13-enamide

(Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytridec-4-en-2-yl]docos-13-enamide

C47H87NO13 (873.6177091999999)


   

(Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydocos-4-en-2-yl]tridec-9-enamide

(Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydocos-4-en-2-yl]tridec-9-enamide

C47H87NO13 (873.6177091999999)


   

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytricosa-4,8-dien-2-yl]dodecanamide

N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytricosa-4,8-dien-2-yl]dodecanamide

C47H87NO13 (873.6177091999999)


   

(2S)-2-amino-3-[[(2S)-3-[(E)-heptadec-9-enoyl]oxy-2-pentacosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2S)-3-[(E)-heptadec-9-enoyl]oxy-2-pentacosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

(2S)-2-amino-3-[hydroxy-[(2S)-3-[(E)-octadec-6-enoyl]oxy-2-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-3-[(E)-octadec-6-enoyl]oxy-2-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

(2S)-2-amino-3-[hydroxy-[(2S)-2-[(E)-octadec-11-enoyl]oxy-3-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-2-[(E)-octadec-11-enoyl]oxy-3-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

(2S)-2-amino-3-[hydroxy-[(2S)-2-octadec-17-enoyloxy-3-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-2-octadec-17-enoyloxy-3-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

(2S)-2-amino-3-[hydroxy-[(2S)-3-octadec-17-enoyloxy-2-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-3-octadec-17-enoyloxy-2-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

(2S)-2-amino-3-[[(2R)-2-docosanoyloxy-3-[(E)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-2-docosanoyloxy-3-[(E)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

(2S)-2-amino-3-[hydroxy-[(2S)-2-[(E)-octadec-7-enoyl]oxy-3-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-2-[(E)-octadec-7-enoyl]oxy-3-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

(2S)-2-amino-3-[hydroxy-[(2S)-2-octadecanoyloxy-3-[(E)-tetracos-15-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-2-octadecanoyloxy-3-[(E)-tetracos-15-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

(2S)-2-amino-3-[hydroxy-[(2S)-3-[(E)-octadec-7-enoyl]oxy-2-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-3-[(E)-octadec-7-enoyl]oxy-2-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

(2S)-2-amino-3-[[(2S)-2-[(E)-hexacos-5-enoyl]oxy-3-hexadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2S)-2-[(E)-hexacos-5-enoyl]oxy-3-hexadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

(2R)-2-amino-3-[[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-pentacosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2R)-2-amino-3-[[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-pentacosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

(2S)-2-amino-3-[hydroxy-[(2S)-2-[(E)-octadec-9-enoyl]oxy-3-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-2-[(E)-octadec-9-enoyl]oxy-3-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

(2S)-2-amino-3-[[(2S)-2-hexacosanoyloxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2S)-2-hexacosanoyloxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

(2S)-2-amino-3-[hydroxy-[(2S)-3-[(E)-octadec-13-enoyl]oxy-2-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-3-[(E)-octadec-13-enoyl]oxy-2-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

(2S)-2-amino-3-[[(2R)-3-[(E)-docos-13-enoyl]oxy-2-icosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-3-[(E)-docos-13-enoyl]oxy-2-icosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

(2S)-2-amino-3-[[(2R)-2-[(E)-docos-13-enoyl]oxy-3-icosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-2-[(E)-docos-13-enoyl]oxy-3-icosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

(2S)-2-amino-3-[hydroxy-[(2S)-3-[(E)-octadec-9-enoyl]oxy-2-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-3-[(E)-octadec-9-enoyl]oxy-2-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (5E,9E)-hexacosa-5,9-dienoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (5E,9E)-hexacosa-5,9-dienoate

C51H88NO8P (873.6247218)


   

(2S)-2-amino-3-[[(2R)-3-docosanoyloxy-2-[(E)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-3-docosanoyloxy-2-[(E)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

(2S)-2-amino-3-[[(2S)-2-hexacosanoyloxy-3-[(E)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2S)-2-hexacosanoyloxy-3-[(E)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

(2S)-2-amino-3-[hydroxy-[(2S)-2-[(E)-octadec-13-enoyl]oxy-3-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-2-[(E)-octadec-13-enoyl]oxy-3-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropan-2-yl] (E)-tetracos-15-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropan-2-yl] (E)-tetracos-15-enoate

C51H88NO8P (873.6247218)


   

(2S)-2-amino-3-[hydroxy-[(2S)-3-[(E)-octadec-4-enoyl]oxy-2-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-3-[(E)-octadec-4-enoyl]oxy-2-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

(2S)-2-amino-3-[hydroxy-[(2S)-3-[(E)-octadec-11-enoyl]oxy-2-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-3-[(E)-octadec-11-enoyl]oxy-2-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

(2S)-2-amino-3-[hydroxy-[(2S)-3-octadecanoyloxy-2-[(E)-tetracos-15-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-3-octadecanoyloxy-2-[(E)-tetracos-15-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

(2S)-2-amino-3-[[(2R)-3-docosanoyloxy-2-[(E)-icos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-3-docosanoyloxy-2-[(E)-icos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropyl] (E)-tetracos-15-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropyl] (E)-tetracos-15-enoate

C51H88NO8P (873.6247218)


   

(2S)-2-amino-3-[[(2R)-2-docosanoyloxy-3-[(E)-icos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-2-docosanoyloxy-3-[(E)-icos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

(2S)-2-amino-3-[hydroxy-[(2S)-2-[(E)-octadec-4-enoyl]oxy-3-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-2-[(E)-octadec-4-enoyl]oxy-3-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

(2S)-2-amino-3-[hydroxy-[(2S)-2-[(E)-octadec-6-enoyl]oxy-3-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-2-[(E)-octadec-6-enoyl]oxy-3-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (5E,9E)-hexacosa-5,9-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (5E,9E)-hexacosa-5,9-dienoate

C51H88NO8P (873.6247218)


   

1-(11Z-eicosenoyl)-2-docosanoyl-glycero-3-phosphoserine

1-(11Z-eicosenoyl)-2-docosanoyl-glycero-3-phosphoserine

C48H92NO10P (873.6458501999999)


   

1-docosanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphoserine

1-docosanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphoserine

C48H92NO10P (873.6458501999999)


   

PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/24:1(15Z))

PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/24:1(15Z))

C51H88NO8P (873.6247218)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(Z)-octadec-11-enoyl]oxy-2-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(Z)-octadec-11-enoyl]oxy-2-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C48H92NO10P (873.6458501999999)


   

phosphatidylserine 42:1

phosphatidylserine 42:1

C48H92NO10P (873.6458501999999)


A 3-sn-phosphatidyl-L-serine in which the two acyl groups contain a total of 42 carbon atoms and 1 double bond.

   

MePC(42:7)

MePC(20:1_22:6)

C51H88NO8P (873.6247218)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

PC(43:7)

PC(22:6_21:1)

C51H88NO8P (873.6247218)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PS P-22:1/22:6 or PS O-22:2/22:6

PS P-22:1/22:6 or PS O-22:2/22:6

C50H84NO9P (873.5883384)


   
   

PS P-44:7 or PS O-44:8

PS P-44:7 or PS O-44:8

C50H84NO9P (873.5883384)


   
   
   
   
   

Hex2Cer 14:2;O2/20:1;O

Hex2Cer 14:2;O2/20:1;O

C46H83NO14 (873.5813258)


   
   
   
   
   

Hex2Cer 16:2;O2/18:1;O

Hex2Cer 16:2;O2/18:1;O

C46H83NO14 (873.5813258)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

LacCer 14:2;O2/20:1;O

LacCer 14:2;O2/20:1;O

C46H83NO14 (873.5813258)


   
   
   
   
   

LacCer 16:2;O2/18:1;O

LacCer 16:2;O2/18:1;O

C46H83NO14 (873.5813258)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

HexCer 8:1;O2/40:11

HexCer 8:1;O2/40:11

C54H83NO8 (873.6118358)