Exact Mass: 872.4419

Exact Mass Matches: 872.4419

Found 161 metabolites which its exact mass value is equals to given mass value 872.4419, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Thevetin A

3beta-(beta-D-glucopyranosyl-(1-6)-beta-D-glucopyranosyl-(1-4)-6-deoxy-3-O-methyl-alpha-L-glucopyranosyloxy)-14-hydroxy-19-oxo-5beta-card-20(22)-enolide

C42H64O19 (872.4042)


   

K-strophanthoside

Strophanthidin 3-diglucosylcymarose

C42H64O19 (872.4042)


   

Pectenotoxin 3

(8E,10E)-14-(2,3-dihydroxy-4-methyloxan-2-yl)-28-hydroxy-5,7,9,19,29-pentamethyl-18,31-dioxo-13,17,38,39,40,41,42,43-octaoxaoctacyclo[31.4.1.1¹,³⁵.1²,⁵.1²⁰,²⁴.1²⁴,²⁷.1²⁹,³².0¹²,¹⁶]tritetraconta-8,10-diene-35-carbaldehyde

C47H68O15 (872.4558)


Pectenotoxin 3 is found in mollusks. Pectenotoxin 3 is a metabolite of Dinophysis acuminata. Shellfish toxin. Metabolite of Dinophysis acuminata. Shellfish toxin. Pectenotoxin 3 is found in mollusks.

   

Sarsasapogenin 3-[4'-glucosyl-6'-arabinosylglucoside]

2-[(4,5-dihydroxy-6-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}-2-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C44H72O17 (872.4769)


Sarsasapogenin 3-[4-glucosyl-6-arabinosylglucoside] is found in herbs and spices. Sarsasapogenin 3-[4-glucosyl-6-arabinosylglucoside] is a constituent of sarsaparilla root (Smilax officinalis)

   

Sarsasapogenin 3-O-[beta-D-Glucopyranosyl-(1->2)-[beta-D-xylopyranosyl-(1->4)]-beta-D-glucopyranoside]

2-{[4-hydroxy-6-(hydroxymethyl)-2-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C44H72O17 (872.4769)


Sarsasapogenin 3-O-[beta-D-Glucopyranosyl-(1->2)-[beta-D-xylopyranosyl-(1->4)]-beta-D-glucopyranoside] is found in green vegetables. Sarsasapogenin 3-O-[beta-D-Glucopyranosyl-(1->2)-[beta-D-xylopyranosyl-(1->4)]-beta-D-glucopyranoside] is a constituent of Asparagus officinalis (asparagus) Constituent of Asparagus officinalis (asparagus). Sarsasapogenin 3-[2-glucosyl-4-xylosylglucoside] is found in green vegetables.

   

Schidigerasaponin D1

2-{[5-hydroxy-6-(hydroxymethyl)-2-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C44H72O17 (872.4769)


Schidigerasaponin D2 is a constituent of Yucca schidigera (Mojave yucca) Constituent of Yucca schidigera (Mojave yucca)

   

Smilagenin 3-[2'-glucosyl-6'-arabinosylglucoside]

2-[(4,5-dihydroxy-2-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C44H72O17 (872.4769)


Smilagenin 3-[2-glucosyl-6-arabinosylglucoside] is found in green vegetables. Smilagenin 3-[2-glucosyl-6-arabinosylglucoside] is a constituent of the wild asparagus (Asparagus africanus)

   

PGP(16:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

[(2S)-3-({[(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-3-[(9Z)-hexadec-9-enoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C44H74O13P2 (872.4604)


PGP(16:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidylglycerolphosphate or glycerophospholipid (PGP or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(16:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the docosahexaenoic acid moiety is derived from fish oils. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of Phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PGPs have a net charge of -1 at physiological pH and are found in high concentration in mitochondrial membranes and as components of pulmonary surfactant. PGP also serves as a precursor for the synthesis of cardiolipin. PGP is synthesized from CDP-diacylglycerol and glycerol-3-phosphate. PGP(16:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidylglycerolphosphate or glycerophospholipid (PGP or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(16:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the docosahexaenoic acid moiety is derived from fish oils. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of Phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases.

   

PGP(18:3(6Z,9Z,12Z)/20:4(5Z,8Z,11Z,14Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H74O13P2 (872.4604)


PGP(18:3(6Z,9Z,12Z)/20:4(5Z,8Z,11Z,14Z)) is a phosphatidylglycerolphosphate or glycerophospholipid (PGP or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(18:3(6Z,9Z,12Z)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the arachidonic acid moiety is derived from animal fats and eggs. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of Phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PGPs have a net charge of -1 at physiological pH and are found in high concentration in mitochondrial membranes and as components of pulmonary surfactant. PGP also serves as a precursor for the synthesis of cardiolipin. PGP is synthesized from CDP-diacylglycerol and glycerol-3-phosphate. PGP(18:3(6Z,9Z,12Z)/20:4(5Z,8Z,11Z,14Z)) is a phosphatidylglycerolphosphate or glycerophospholipid (PGP or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(18:3(6Z,9Z,12Z)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the arachidonic acid moiety is derived from animal fats and eggs. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of Phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases.

   

PGP(18:3(9Z,12Z,15Z)/20:4(5Z,8Z,11Z,14Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C44H74O13P2 (872.4604)


PGP(18:3(9Z,12Z,15Z)/20:4(5Z,8Z,11Z,14Z)) is a phosphatidylglycerolphosphate or glycerophospholipid (PGP or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(18:3(9Z,12Z,15Z)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the arachidonic acid moiety is derived from animal fats and eggs. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of Phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PGPs have a net charge of -1 at physiological pH and are found in high concentration in mitochondrial membranes and as components of pulmonary surfactant. PGP also serves as a precursor for the synthesis of cardiolipin. PGP is synthesized from CDP-diacylglycerol and glycerol-3-phosphate. PGP(18:3(9Z,12Z,15Z)/20:4(5Z,8Z,11Z,14Z)) is a phosphatidylglycerolphosphate or glycerophospholipid (PGP or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(18:3(9Z,12Z,15Z)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the arachidonic acid moiety is derived from animal fats and eggs. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of Phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases.

   

Capsicoside C2

2-[(2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}oxan-3-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl)oxy]oxane-3,4,5-triol

C44H72O17 (872.4769)


Constituent of bell pepper (Capsicum annuum) roots. Capsicoside C2 is found in many foods, some of which are yellow bell pepper, green bell pepper, italian sweet red pepper, and red bell pepper. Capsicoside C2 is found in herbs and spices. Capsicoside C2 is a constituent of bell pepper (Capsicum annuum) roots.

   

PGP(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:1(9Z))

[(2S)-3-({[(2R)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-2-[(9Z)-hexadec-9-enoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C44H74O13P2 (872.4604)


PGP(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:1(9Z)) is a phosphatidylglycerophosphate (PGP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for cardiolipin synthesis. As is the case with diacylglycerols, phosphatidylglycerophosphates can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:1(9Z)), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. They are synthesized by the addition of glycerol 3-phosphate to a CDP-diacylglycerol. In turn, PGPs are dephosphorylated to phosphatidylglycerols (PGs). While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes.

   

(D-Ala7)-Angiotensin I/II (1-7)

3-amino-3-{[1-({1-[(1-{[1-({1-[(1-carboxyethyl)carbamoyl]-2-(1H-imidazol-5-yl)ethyl}carbamoyl)-2-methylbutyl]carbamoyl}-2-(4-hydroxyphenyl)ethyl)carbamoyl]-2-methylpropyl}carbamoyl)-4-[(diaminomethylidene)amino]butyl]carbamoyl}propanoic acid

C39H60N12O11 (872.4504)


   

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/PGJ2)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-2-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}propoxy]phosphinic acid

C48H73O12P (872.4839)


PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/PGJ2) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/PGJ2), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGJ2/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-3-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}propoxy]phosphinic acid

C48H73O12P (872.4839)


PG(PGJ2/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGJ2/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PGP(16:0/5-iso PGF2VI)

PGP(16:0/5-iso PGF2VI)

C40H74O16P2 (872.4452)


PGP(16:0/5-iso PGF2VI) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:0/5-iso PGF2VI), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(5-iso PGF2VI/16:0)

[(2S)-3-({[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-(hexadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C40H74O16P2 (872.4452)


PGP(5-iso PGF2VI/16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(5-iso PGF2VI/16:0), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-14:0/PGF2alpha)

[(2S)-3-({[(2R)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-[(12-methyltridecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C40H74O16P2 (872.4452)


PGP(i-14:0/PGF2alpha) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-14:0/PGF2alpha), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(PGF2alpha/i-14:0)

[(2S)-3-({[(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-[(12-methyltridecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C40H74O16P2 (872.4452)


PGP(PGF2alpha/i-14:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGF2alpha/i-14:0), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-14:0/PGE1)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-3-[(12-methyltridecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C40H74O16P2 (872.4452)


PGP(i-14:0/PGE1) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-14:0/PGE1), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(PGE1/i-14:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-2-[(12-methyltridecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C40H74O16P2 (872.4452)


PGP(PGE1/i-14:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGE1/i-14:0), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-14:0/PGD1)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-3-[(12-methyltridecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C40H74O16P2 (872.4452)


PGP(i-14:0/PGD1) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-14:0/PGD1), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(PGD1/i-14:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-2-[(12-methyltridecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C40H74O16P2 (872.4452)


PGP(PGD1/i-14:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGD1/i-14:0), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-16:0/5-iso PGF2VI)

[(2S)-3-({[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-[(14-methylpentadecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C40H74O16P2 (872.4452)


PGP(i-16:0/5-iso PGF2VI) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-16:0/5-iso PGF2VI), in particular, consists of one chain of one 14-methylpentadecanoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(5-iso PGF2VI/i-16:0)

[(2S)-3-({[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-[(14-methylpentadecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C40H74O16P2 (872.4452)


PGP(5-iso PGF2VI/i-16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(5-iso PGF2VI/i-16:0), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   
   

Saundersioside H

Saundersioside H

C47H68O15 (872.4558)


   
   

Aspaoligonin B

Aspaoligonin B

C44H72O17 (872.4769)


   

Scammonic acid A

Scammonic acid A

C40H72O20 (872.4617)


   
   

Secohalichondramide

Secohalichondramide

C44H64N4O14 (872.4419)


   

DTXSID601002499

DTXSID601002499

C42H64O19 (872.4042)


   

OSW 1;OSW1;Orsaponin

OSW 1;OSW1;Orsaponin

C47H68O15 (872.4558)


   

3-O-[??-D-Xylopyranosyl(1鈥樏傗垎4)-??-D-glucopyranosyl(1鈥樏傗垎2)-??-D-glucopyranosyl]-(25S)-5??-spirostan-3??-ol

3-O-[??-D-Xylopyranosyl(1鈥樏傗垎4)-??-D-glucopyranosyl(1鈥樏傗垎2)-??-D-glucopyranosyl]-(25S)-5??-spirostan-3??-ol

C44H72O17 (872.4769)


   
   

3beta-[O2-(O6-beta-D-glucopyranosyl-beta-D-glucopyranosyl)-O3-methyl-6-deoxy-alpha-L-glucopyranosyloxy]-14-hydroxy-19-oxo-5beta,14beta-card-20(22)-enolide|3beta-[O2-(O6-beta-D-Glucopyranosyl-beta-D-glucopyranosyl)-O3-methyl-6-desoxy-alpha-L-glucopyranosyloxy]-14-hydroxy-19-oxo-5beta,14beta-card-20(22)-enolid

3beta-[O2-(O6-beta-D-glucopyranosyl-beta-D-glucopyranosyl)-O3-methyl-6-deoxy-alpha-L-glucopyranosyloxy]-14-hydroxy-19-oxo-5beta,14beta-card-20(22)-enolide|3beta-[O2-(O6-beta-D-Glucopyranosyl-beta-D-glucopyranosyl)-O3-methyl-6-desoxy-alpha-L-glucopyranosyloxy]-14-hydroxy-19-oxo-5beta,14beta-card-20(22)-enolid

C42H64O19 (872.4042)


   

3-O-[alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranosyl]-16-O-hydroxyacetoxy-3beta,6alpha,16beta,23alpha,25-pentahydroxy-20(R),24(S)-epoxycycloartane

3-O-[alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranosyl]-16-O-hydroxyacetoxy-3beta,6alpha,16beta,23alpha,25-pentahydroxy-20(R),24(S)-epoxycycloartane

C44H72O17 (872.4769)


   
   

(25R)-furost-5(6)-en-1beta,3beta,22alpha,26-tetraol 1-O-alpha-L-rhamnopyranosyl-(1?2)-O-beta-D-xylopyranosyl 26-O-alpha-L-rhamnopyranoside|vaviloside B1

(25R)-furost-5(6)-en-1beta,3beta,22alpha,26-tetraol 1-O-alpha-L-rhamnopyranosyl-(1?2)-O-beta-D-xylopyranosyl 26-O-alpha-L-rhamnopyranoside|vaviloside B1

C44H72O17 (872.4769)


   

timosaponin BIII

timosaponin BIII

C44H72O17 (872.4769)


   

(5beta,25S)-26-O-beta-D-glucopyranosyl-furost-20(22)-ene-1beta,3beta,26-triol 1-O-beta-D-arabinopyranoside 3-O-alpha-L-rhamnopyranoside|reinocarnoside C

(5beta,25S)-26-O-beta-D-glucopyranosyl-furost-20(22)-ene-1beta,3beta,26-triol 1-O-beta-D-arabinopyranoside 3-O-alpha-L-rhamnopyranoside|reinocarnoside C

C44H72O17 (872.4769)


   

cyclo(Pro1-Gly2-Tyr3-Val4-Tyr5-Pro6-Pro7-Val8-)|cyclosenegalin B

cyclo(Pro1-Gly2-Tyr3-Val4-Tyr5-Pro6-Pro7-Val8-)|cyclosenegalin B

C45H60N8O10 (872.4432)


   

Operculinic acid E

Operculinic acid E

C40H72O20 (872.4617)


   

Polyphyllin D

Polyphyllin D

C44H72O17 (872.4769)


   

26-O-beta-D-glucopyranosyl-25(S)-furost-22(20)-en-3beta,6beta,26-triol 6-O-[beta-D-xylopyranosyl-(1->3)-beta-D-quinovopyranoside]|torvoside P

26-O-beta-D-glucopyranosyl-25(S)-furost-22(20)-en-3beta,6beta,26-triol 6-O-[beta-D-xylopyranosyl-(1->3)-beta-D-quinovopyranoside]|torvoside P

C44H72O17 (872.4769)


   

(23S,24S,25S)-spirost-5-ene-1beta,3beta,23,24-tetrol 1-O-[O-alpha-L-rhamnopyranosyl-(1->2)-O-(beta-D-xylopyranosyl)-(1->3)-alpha-L-arabinopyranoside]

(23S,24S,25S)-spirost-5-ene-1beta,3beta,23,24-tetrol 1-O-[O-alpha-L-rhamnopyranosyl-(1->2)-O-(beta-D-xylopyranosyl)-(1->3)-alpha-L-arabinopyranoside]

C43H68O18 (872.4405)


   

OSW-1

[(2S,3R,4S,5R)-2-[(2S,3R,4S,5S)-3-acetyloxy-2-[[(3R,8S,9R,10R,13S,14R,16R,17S)-3,17-dihydroxy-10,13-dimethyl-17-[(2S)-6-methyl-3-oxoheptan-2-yl]-1,2,3,4,7,8,9,11,12,14,15,16-dodecahydrocyclopenta[a]phenanthren-16-yl]oxy]-5-hydroxyoxan-4-yl]oxy-4,5-dihydroxyoxan-3-yl] 4-methoxybenzoate

C47H68O15 (872.4558)


   

C42H64O19_(3beta,5alpha,9xi)-3-{[beta-D-Glucopyranosyl-(1->6)-beta-D-glucopyranosyl-(1->4)-6-deoxy-3-O-methyl-beta-L-idopyranosyl]oxy}-14-hydroxy-19-oxocard-20(22)-enolide

NCGC00384513-01_C42H64O19_(3beta,5alpha,9xi)-3-{[beta-D-Glucopyranosyl-(1->6)-beta-D-glucopyranosyl-(1->4)-6-deoxy-3-O-methyl-beta-L-idopyranosyl]oxy}-14-hydroxy-19-oxocard-20(22)-enolide

C42H64O19 (872.4042)


   

(3S,5S,8R,10R,13R,14S,17R)-14-hydroxy-3-[(2S,3R,4R,5R,6S)-3-hydroxy-4-methoxy-6-methyl-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxyoxan-2-yl]oxy-13-methyl-17-(5-oxo-2H-furan-3-yl)-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthrene-10-carbaldehyde

(3S,5S,8R,10R,13R,14S,17R)-14-hydroxy-3-[(2S,3R,4R,5R,6S)-3-hydroxy-4-methoxy-6-methyl-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxyoxan-2-yl]oxy-13-methyl-17-(5-oxo-2H-furan-3-yl)-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthrene-10-carbaldehyde

C42H64O19 (872.4042)


   

(3S,5S,8R,10R,13R,14S,17R)-14-hydroxy-3-[(2S,3R,4R,5R,6S)-3-hydroxy-4-methoxy-6-methyl-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxyoxan-2-yl]oxy-13-methyl-17-(5-oxo-2H-furan-3-yl)-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthrene-10-carbaldehyde_major

(3S,5S,8R,10R,13R,14S,17R)-14-hydroxy-3-[(2S,3R,4R,5R,6S)-3-hydroxy-4-methoxy-6-methyl-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxyoxan-2-yl]oxy-13-methyl-17-(5-oxo-2H-furan-3-yl)-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthrene-10-carbaldehyde_major

C42H64O19 (872.4042)


   

Sarsasapogenin 3-[4''-glucosyl-6''-arabinosylglucoside]

2-[(4,5-dihydroxy-6-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0^{2,9}.0^{4,8}.0^{13,18}]icosane]oxy}-2-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C44H72O17 (872.4769)


   

Pectenotoxin 3

14-(2,3-dihydroxy-4-methyloxan-2-yl)-28-hydroxy-5,7,9,19,29-pentamethyl-18,31-dioxo-13,17,38,39,40,41,42,43-octaoxaoctacyclo[31.4.1.1^{1,35}.1^{2,5}.1^{20,24}.1^{24,27}.1^{29,32}.0^{12,16}]tritetraconta-8,10-diene-35-carbaldehyde

C47H68O15 (872.4558)


   

Smilagenin 3-[2''-glucosyl-6''-arabinosylglucoside]

2-[(4,5-dihydroxy-2-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0^{2,9}.0^{4,8}.0^{13,18}]icosane]oxy}-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C44H72O17 (872.4769)


   

AS 1

2-{[4-hydroxy-6-(hydroxymethyl)-2-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0^{2,9}.0^{4,8}.0^{13,18}]icosane]oxy}-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C44H72O17 (872.4769)


   

Schidigerasaponin D1

2-{[5-hydroxy-6-(hydroxymethyl)-2-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0^{2,9}.0^{4,8}.0^{13,18}]icosane]oxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C44H72O17 (872.4769)


   

Capsicoside C2

2-[(2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0^{2,9}.0^{4,8}.0^{13,18}]icosane]oxy}oxan-3-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl)oxy]oxane-3,4,5-triol

C44H72O17 (872.4769)


   

lycogaride C

1,2-(8R,9R-epoxy-17E-octadecen-4,6-diynoyl)-3-(8R,9R-epoxy-heptadec-4,6,16-triynoyl)-sn-glycerol

C55H68O9 (872.4863)


   
   

PGP(i-14:0/PGF2alpha)

PGP(i-14:0/PGF2alpha)

C40H74O16P2 (872.4452)


   

PGP(PGF2alpha/i-14:0)

PGP(PGF2alpha/i-14:0)

C40H74O16P2 (872.4452)


   
   
   
   
   

PGP(16:0/5-iso PGF2VI)

PGP(16:0/5-iso PGF2VI)

C40H74O16P2 (872.4452)


   

PGP(5-iso PGF2VI/16:0)

PGP(5-iso PGF2VI/16:0)

C40H74O16P2 (872.4452)


   

PGP(i-16:0/5-iso PGF2VI)

PGP(i-16:0/5-iso PGF2VI)

C40H74O16P2 (872.4452)


   

PGP(5-iso PGF2VI/i-16:0)

PGP(5-iso PGF2VI/i-16:0)

C40H74O16P2 (872.4452)


   

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/PGJ2)

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/PGJ2)

C48H73O12P (872.4839)


   

PG(PGJ2/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

PG(PGJ2/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

C48H73O12P (872.4839)


   
   
   

[3-[[3-[[3-[(Z)-hexadec-7-enoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (Z)-hexadec-7-enoate

[3-[[3-[[3-[(Z)-hexadec-7-enoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (Z)-hexadec-7-enoate

C41H78O15P2 (872.4816)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (Z)-octadec-11-enoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (Z)-octadec-11-enoate

C41H78O15P2 (872.4816)


   

[3-[[3-[[3-[(4E,7Z)-hexadeca-4,7-dienoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] hexadecanoate

[3-[[3-[[3-[(4E,7Z)-hexadeca-4,7-dienoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] hexadecanoate

C41H78O15P2 (872.4816)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-(2-hydroxy-3-tetradecanoyloxypropoxy)phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (10E,12E)-octadeca-10,12-dienoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-(2-hydroxy-3-tetradecanoyloxypropoxy)phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (10E,12E)-octadeca-10,12-dienoate

C41H78O15P2 (872.4816)


   
   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

C47H68O15 (872.4558)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C47H69O13P (872.4476)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoate

C47H69O13P (872.4476)


   

[(2S,3S,6S)-6-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C48H72O12S (872.4744)


   

[(2S,3S,6S)-6-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C48H72O12S (872.4744)


   

Strophanthidin 3-diglucosylcymarose

Strophanthidin 3-diglucosylcymarose

C42H64O19 (872.4042)


   

neurotensin (1-7)(1-)

neurotensin (1-7)(1-)

C40H58N9O13 (872.4154)


A peptide anion of neurotensin (1-7) resulting from the deprotonation of the carboxy groups of L-alpha-glutamyl and L-proline residues, and protonation of the side chain of L-lysyl group. It is the major species at pH 7.3.

   

DLCL(32:2)

DLCL(16:1_16:1)

C41H78O15P2 (872.4816)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   

PG 20:5/22:6;O2

PG 20:5/22:6;O2

C48H73O12P (872.4839)


   

PG 22:5/20:6;O2

PG 22:5/20:6;O2

C48H73O12P (872.4839)


   

PG 22:6/20:5;O2

PG 22:6/20:5;O2

C48H73O12P (872.4839)


   
   
   

PI 22:2/13:4;O2

PI 22:2/13:4;O2

C44H73O15P (872.4687)


   

PI 22:4/12:3;O3

PI 22:4/12:3;O3

C43H69O16P (872.4323)


   

PI 22:5/12:2;O3

PI 22:5/12:2;O3

C43H69O16P (872.4323)


   
   
   

A 779

A 779

C39H60N12O11 (872.4504)


A 779 is a specific antagonist of G-protein coupled receptor (Mas receptor), which is an Ang1-7 receptor distinct from the classical AngII. A 779 is a specific antagonist of G-protein coupled receptor (Mas receptor), which is an Ang1-7 receptor distinct from the classical AngII.

   

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4r,5r,6r)-3-{[(2s,3s,4s,5s)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-5-hydroxy-6-{[(1s,2s,4s,6r,7s,8r,9s,12s,13r,16s)-6-hydroxy-6-[(3r)-4-hydroxy-3-methylbutyl]-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-16-yl]oxy}-2-(hydroxymethyl)oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4r,5r,6r)-3-{[(2s,3s,4s,5s)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-5-hydroxy-6-{[(1s,2s,4s,6r,7s,8r,9s,12s,13r,16s)-6-hydroxy-6-[(3r)-4-hydroxy-3-methylbutyl]-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-16-yl]oxy}-2-(hydroxymethyl)oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol

C44H72O17 (872.4769)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3s,4r,5r,6r)-4,5-dihydroxy-6-[(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-2-({[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3s,4r,5r,6r)-4,5-dihydroxy-6-[(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-2-({[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C44H72O17 (872.4769)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3s,4r,5r,6r)-4,5-dihydroxy-6-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-2-({[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3s,4r,5r,6r)-4,5-dihydroxy-6-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-2-({[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C44H72O17 (872.4769)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-4-hydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-4-hydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C44H72O17 (872.4769)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-5-hydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-5-hydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C44H72O17 (872.4769)


   

6-[(4,5-dihydroxy-2-{[6-hydroxy-10-(hydroxymethyl)-8,14-dimethyl-7-(2-methylprop-1-en-1-yl)-5-oxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicos-19-en-17-yl]oxy}-6-(hydroxymethyl)oxan-3-yl)oxy]-4,5-dihydroxy-2-methyloxan-3-yl 4-methoxybenzoate

6-[(4,5-dihydroxy-2-{[6-hydroxy-10-(hydroxymethyl)-8,14-dimethyl-7-(2-methylprop-1-en-1-yl)-5-oxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicos-19-en-17-yl]oxy}-6-(hydroxymethyl)oxan-3-yl)oxy]-4,5-dihydroxy-2-methyloxan-3-yl 4-methoxybenzoate

C47H68O15 (872.4558)


   

(1's,2s,2's,3s,4s,4's,5s,7's,8'r,9's,12's,13'r,14'r,16'r)-14'-{[(2s,3r,4s,5s)-5-hydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-3,4,16'-triol

(1's,2s,2's,3s,4s,4's,5s,7's,8'r,9's,12's,13'r,14'r,16'r)-14'-{[(2s,3r,4s,5s)-5-hydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-3,4,16'-triol

C43H68O18 (872.4405)


   

11-[(3-{[3-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl)oxy]hexadecanoic acid

11-[(3-{[3-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl)oxy]hexadecanoic acid

C40H72O20 (872.4617)


   

3a,5a-dihydroxy-7-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde

3a,5a-dihydroxy-7-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde

C42H64O19 (872.4042)


   

(2s,3r,4s,5r)-2-{[(2s,3r,4s,5s)-2-{[(1s,2s,3as,3br,7s,9ar,9bs,11as)-1,7-dihydroxy-9a,11a-dimethyl-1-[(2s)-6-methyl-3-oxoheptan-2-yl]-2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl]oxy}-3-(acetyloxy)-5-hydroxyoxan-4-yl]oxy}-4,5-dihydroxyoxan-3-yl 4-methoxybenzoate

(2s,3r,4s,5r)-2-{[(2s,3r,4s,5s)-2-{[(1s,2s,3as,3br,7s,9ar,9bs,11as)-1,7-dihydroxy-9a,11a-dimethyl-1-[(2s)-6-methyl-3-oxoheptan-2-yl]-2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl]oxy}-3-(acetyloxy)-5-hydroxyoxan-4-yl]oxy}-4,5-dihydroxyoxan-3-yl 4-methoxybenzoate

C47H68O15 (872.4558)


   

3-o-[β-d-xylopyranosyl(1→4)-β-d-glucopy-ranosyl(1→2)-β-d-glucopyranosyl]-(25s)-5β-spirostan-3β-ol

NA

C44H72O17 (872.4769)


{"Ingredient_id": "HBIN009256","Ingredient_name": "3-o-[\u03b2-d-xylopyranosyl(1\u21924)-\u03b2-d-glucopy-ranosyl(1\u21922)-\u03b2-d-glucopyranosyl]-(25s)-5\u03b2-spirostan-3\u03b2-ol","Alias": "NA","Ingredient_formula": "C44H72O17","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "22812","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

as-1 a

NA

C44H72O17 (872.4769)


{"Ingredient_id": "HBIN017019","Ingredient_name": "as-1 a","Alias": "NA","Ingredient_formula": "C44H72O17","Ingredient_Smile": "CC1CCC2(C(C3C(O2)CC4C3(CCC5C4CCC6C5(CCC(C6)OC7C(C(C(C(O7)CO)O)O)OC8C(C(C(CO8)OC9C(C(C(C(O9)CO)O)O)O)O)O)C)C)C)OC1","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "1830","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

(1r,3as,3br,5as,7s,9as,9bs,11ar)-3a,5a-dihydroxy-7-{[(2r,4s,5r,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde

(1r,3as,3br,5as,7s,9as,9bs,11ar)-3a,5a-dihydroxy-7-{[(2r,4s,5r,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde

C42H64O19 (872.4042)


   

(1r,2s,5s,7s,8z,10e,12s,14r,16s,19s,20r,24r,27r,28r,29s,32s,33s,35r)-14-[(2r,3s,4s)-2,3-dihydroxy-4-methyloxan-2-yl]-28-hydroxy-5,7,9,19,29-pentamethyl-18,31-dioxo-13,17,38,39,40,41,42,43-octaoxaoctacyclo[31.4.1.1¹,³⁵.1²,⁵.1²⁰,²⁴.1²⁴,²⁷.1²⁹,³².0¹²,¹⁶]tritetraconta-8,10-diene-35-carbaldehyde

(1r,2s,5s,7s,8z,10e,12s,14r,16s,19s,20r,24r,27r,28r,29s,32s,33s,35r)-14-[(2r,3s,4s)-2,3-dihydroxy-4-methyloxan-2-yl]-28-hydroxy-5,7,9,19,29-pentamethyl-18,31-dioxo-13,17,38,39,40,41,42,43-octaoxaoctacyclo[31.4.1.1¹,³⁵.1²,⁵.1²⁰,²⁴.1²⁴,²⁷.1²⁹,³².0¹²,¹⁶]tritetraconta-8,10-diene-35-carbaldehyde

C47H68O15 (872.4558)


   

(1r,3as,3br,5as,7s,9as,9bs,11ar)-3a,5a-dihydroxy-7-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde

(1r,3as,3br,5as,7s,9as,9bs,11ar)-3a,5a-dihydroxy-7-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde

C42H64O19 (872.4042)


   

(2r,3r,4s,5s,6r)-2-[(2s)-4-[(1r,2s,4s,8s,9s,12s,13s,16s,18r)-16-{[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-6-en-6-yl]-2-methylbutoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-[(2s)-4-[(1r,2s,4s,8s,9s,12s,13s,16s,18r)-16-{[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-6-en-6-yl]-2-methylbutoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C44H72O17 (872.4769)


   

(2r,3s,5e,8s)-10-{[(1e,5s,6s,8r,9r,13r,14s,16e)-8,14-dimethoxy-1-{4-[4-(methoxycarbonyl)-1,3-oxazol-2-yl]-1,3-oxazol-2-yl}-5,9,13-trimethyl-17-(n-methylformamido)-12-oxoheptadeca-1,16-dien-6-yl]oxy}-8-hydroxy-2-methoxy-3-methyl-4,10-dioxodec-5-enimidic acid

(2r,3s,5e,8s)-10-{[(1e,5s,6s,8r,9r,13r,14s,16e)-8,14-dimethoxy-1-{4-[4-(methoxycarbonyl)-1,3-oxazol-2-yl]-1,3-oxazol-2-yl}-5,9,13-trimethyl-17-(n-methylformamido)-12-oxoheptadeca-1,16-dien-6-yl]oxy}-8-hydroxy-2-methoxy-3-methyl-4,10-dioxodec-5-enimidic acid

C44H64N4O14 (872.4419)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3s,4r,5r,6r)-4,5-dihydroxy-6-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-2-({[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3s,4r,5r,6r)-4,5-dihydroxy-6-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-2-({[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C44H72O17 (872.4769)


   

2-[(4,5-dihydroxy-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}-2-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

2-[(4,5-dihydroxy-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}-2-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C44H72O17 (872.4769)


   

methyl 2-[(1e,5r,6s,8s,9s,13r,14r,16e)-6-{[(3r,5e,8r,9s)-9-(2-carbamoyl-1,3-oxazol-4-yl)-3-hydroxy-9-methoxy-8-methyl-7-oxonon-5-enoyl]oxy}-8,14-dimethoxy-5,9,13-trimethyl-17-(n-methylformamido)-12-oxoheptadeca-1,16-dien-1-yl]-1,3-oxazole-4-carboxylate

methyl 2-[(1e,5r,6s,8s,9s,13r,14r,16e)-6-{[(3r,5e,8r,9s)-9-(2-carbamoyl-1,3-oxazol-4-yl)-3-hydroxy-9-methoxy-8-methyl-7-oxonon-5-enoyl]oxy}-8,14-dimethoxy-5,9,13-trimethyl-17-(n-methylformamido)-12-oxoheptadeca-1,16-dien-1-yl]-1,3-oxazole-4-carboxylate

C44H64N4O14 (872.4419)


   

2-[(3-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-5-hydroxy-6-{[6-hydroxy-6-(4-hydroxy-3-methylbutyl)-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-16-yl]oxy}-2-(hydroxymethyl)oxan-4-yl)oxy]-6-methyloxane-3,4,5-triol

2-[(3-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-5-hydroxy-6-{[6-hydroxy-6-(4-hydroxy-3-methylbutyl)-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-16-yl]oxy}-2-(hydroxymethyl)oxan-4-yl)oxy]-6-methyloxane-3,4,5-triol

C44H72O17 (872.4769)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C44H72O17 (872.4769)


   

2-{[5-hydroxy-6-(hydroxymethyl)-2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[5-hydroxy-6-(hydroxymethyl)-2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C44H72O17 (872.4769)


   

(2s,3r,4s,5r,6s)-6-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-2-{[(1r,2s,4s,6r,7s,8s,9r,10r,13s,14r,17s)-6-hydroxy-10-(hydroxymethyl)-8,14-dimethyl-7-(2-methylprop-1-en-1-yl)-5-oxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicos-19-en-17-yl]oxy}-6-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl 4-methoxybenzoate

(2s,3r,4s,5r,6s)-6-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-2-{[(1r,2s,4s,6r,7s,8s,9r,10r,13s,14r,17s)-6-hydroxy-10-(hydroxymethyl)-8,14-dimethyl-7-(2-methylprop-1-en-1-yl)-5-oxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicos-19-en-17-yl]oxy}-6-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl 4-methoxybenzoate

C47H68O15 (872.4558)


   

3-[(3r,6r,9r,18s,25r)-6-benzyl-3-[(2s)-butan-2-yl]-5,8,17,20,21,24-hexahydroxy-2,14-dioxo-22-(5-phenylpentyl)-1,4,7,13,16,19,23-heptaazatricyclo[23.3.0.0⁹,¹³]octacosa-4,7,16,19,23-pentaen-18-yl]propanimidic acid

3-[(3r,6r,9r,18s,25r)-6-benzyl-3-[(2s)-butan-2-yl]-5,8,17,20,21,24-hexahydroxy-2,14-dioxo-22-(5-phenylpentyl)-1,4,7,13,16,19,23-heptaazatricyclo[23.3.0.0⁹,¹³]octacosa-4,7,16,19,23-pentaen-18-yl]propanimidic acid

C46H64N8O9 (872.4796)


   

(1r,3as,3br,5as,7s,9as,9bs,11ar)-3a,5a-dihydroxy-7-{[(2s,4r,5s,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde

(1r,3as,3br,5as,7s,9as,9bs,11ar)-3a,5a-dihydroxy-7-{[(2s,4r,5s,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde

C42H64O19 (872.4042)


   

(2r,3r,4s,5s,6r)-2-[(2s)-4-[(1r,2s,4s,8s,9s,12s,13r,16s,18s,19s)-19-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-16-hydroxy-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-6-en-6-yl]-2-methylbutoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-[(2s)-4-[(1r,2s,4s,8s,9s,12s,13r,16s,18s,19s)-19-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-16-hydroxy-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-6-en-6-yl]-2-methylbutoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C44H72O17 (872.4769)


   

(1r,3as,3br,5ar,7s,9ar,9bs,11ar)-3a-hydroxy-7-{[(2r,3r,4s,5s,6s)-3-hydroxy-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-11a-methyl-1-(5-oxo-2h-furan-3-yl)-tetradecahydrocyclopenta[a]phenanthrene-9a-carbaldehyde

(1r,3as,3br,5ar,7s,9ar,9bs,11ar)-3a-hydroxy-7-{[(2r,3r,4s,5s,6s)-3-hydroxy-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-11a-methyl-1-(5-oxo-2h-furan-3-yl)-tetradecahydrocyclopenta[a]phenanthrene-9a-carbaldehyde

C42H64O19 (872.4042)


   

(1s,7s,10s,16s,22s,25s,28s)-8,17,20,23,26-pentahydroxy-22,28-bis[(4-hydroxyphenyl)methyl]-10,25-diisopropyl-3,9,12,18,21,24,27,30-octaazatetracyclo[28.3.0.0³,⁷.0¹²,¹⁶]tritriaconta-8,17,20,23,26-pentaene-2,11,29-trione

(1s,7s,10s,16s,22s,25s,28s)-8,17,20,23,26-pentahydroxy-22,28-bis[(4-hydroxyphenyl)methyl]-10,25-diisopropyl-3,9,12,18,21,24,27,30-octaazatetracyclo[28.3.0.0³,⁷.0¹²,¹⁶]tritriaconta-8,17,20,23,26-pentaene-2,11,29-trione

C45H60N8O10 (872.4432)


   

3a-hydroxy-7-[(3-hydroxy-4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-11a-methyl-1-(5-oxo-2h-furan-3-yl)-tetradecahydrocyclopenta[a]phenanthrene-9a-carbaldehyde

3a-hydroxy-7-[(3-hydroxy-4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-11a-methyl-1-(5-oxo-2h-furan-3-yl)-tetradecahydrocyclopenta[a]phenanthrene-9a-carbaldehyde

C42H64O19 (872.4042)


   

2-{[4-hydroxy-6-(hydroxymethyl)-2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[4-hydroxy-6-(hydroxymethyl)-2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C44H72O17 (872.4769)


   

methyl 2-[(1e,5s,6s,8s,9s,13s,14r,16e)-6-{[(3s,5e,8r,9r)-9-(2-carbamoyl-1,3-oxazol-4-yl)-3-hydroxy-9-methoxy-8-methyl-7-oxonon-5-enoyl]oxy}-8,14-dimethoxy-5,9,13-trimethyl-17-(n-methylformamido)-12-oxoheptadeca-1,16-dien-1-yl]-1,3-oxazole-4-carboxylate

methyl 2-[(1e,5s,6s,8s,9s,13s,14r,16e)-6-{[(3s,5e,8r,9r)-9-(2-carbamoyl-1,3-oxazol-4-yl)-3-hydroxy-9-methoxy-8-methyl-7-oxonon-5-enoyl]oxy}-8,14-dimethoxy-5,9,13-trimethyl-17-(n-methylformamido)-12-oxoheptadeca-1,16-dien-1-yl]-1,3-oxazole-4-carboxylate

C44H64N4O14 (872.4419)


   

(1s,3as,3br,5as,7s,9as,9bs,11ar)-3a,5a-dihydroxy-7-{[(2s,4r,5s,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde

(1s,3as,3br,5as,7s,9as,9bs,11ar)-3a,5a-dihydroxy-7-{[(2s,4r,5s,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde

C42H64O19 (872.4042)


   

(2s,3r,4s,5r)-2-{[(2s,3r,4s,5s)-2-{[(1s,2s,7s,9ar,11as)-1,7-dihydroxy-9a,11a-dimethyl-1-[(2s)-6-methyl-3-oxoheptan-2-yl]-2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl]oxy}-3-(acetyloxy)-5-hydroxyoxan-4-yl]oxy}-4,5-dihydroxyoxan-3-yl 4-methoxybenzoate

(2s,3r,4s,5r)-2-{[(2s,3r,4s,5s)-2-{[(1s,2s,7s,9ar,11as)-1,7-dihydroxy-9a,11a-dimethyl-1-[(2s)-6-methyl-3-oxoheptan-2-yl]-2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl]oxy}-3-(acetyloxy)-5-hydroxyoxan-4-yl]oxy}-4,5-dihydroxyoxan-3-yl 4-methoxybenzoate

C47H68O15 (872.4558)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-4-hydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-5-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-4-hydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-5-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C44H72O17 (872.4769)


   

1-({7-[(2r,3r)-3-(non-8-en-1-yl)oxiran-2-yl]hepta-4,6-diynoyl}oxy)-2-({7-[(2r,3r)-3-(oct-7-yn-1-yl)oxiran-2-yl]hepta-4,6-diynoyl}oxy)ethyl 7-[(2r,3r)-3-(non-8-en-1-yl)oxiran-2-yl]hepta-4,6-diynoate

1-({7-[(2r,3r)-3-(non-8-en-1-yl)oxiran-2-yl]hepta-4,6-diynoyl}oxy)-2-({7-[(2r,3r)-3-(oct-7-yn-1-yl)oxiran-2-yl]hepta-4,6-diynoyl}oxy)ethyl 7-[(2r,3r)-3-(non-8-en-1-yl)oxiran-2-yl]hepta-4,6-diynoate

C55H68O9 (872.4863)


   

(5e)-10-{[(1e,16e)-8,14-dimethoxy-1-{4-[4-(methoxycarbonyl)-1,3-oxazol-2-yl]-1,3-oxazol-2-yl}-5,9,13-trimethyl-17-(n-methylformamido)-12-oxoheptadeca-1,16-dien-6-yl]oxy}-8-hydroxy-2-methoxy-3-methyl-4,10-dioxodec-5-enimidic acid

(5e)-10-{[(1e,16e)-8,14-dimethoxy-1-{4-[4-(methoxycarbonyl)-1,3-oxazol-2-yl]-1,3-oxazol-2-yl}-5,9,13-trimethyl-17-(n-methylformamido)-12-oxoheptadeca-1,16-dien-6-yl]oxy}-8-hydroxy-2-methoxy-3-methyl-4,10-dioxodec-5-enimidic acid

C44H64N4O14 (872.4419)


   

(11s)-11-{[(2r,3r,4s,5s,6r)-3-{[(2s,3r,4s,5r,6s)-5-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hexadecanoic acid

(11s)-11-{[(2r,3r,4s,5s,6r)-3-{[(2s,3r,4s,5r,6s)-5-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hexadecanoic acid

C40H72O20 (872.4617)


   

methyl 2-[(1e,16e)-6-{[(5e)-9-(2-carbamoyl-1,3-oxazol-4-yl)-3-hydroxy-9-methoxy-8-methyl-7-oxonon-5-enoyl]oxy}-8,14-dimethoxy-5,9,13-trimethyl-17-(n-methylformamido)-12-oxoheptadeca-1,16-dien-1-yl]-1,3-oxazole-4-carboxylate

methyl 2-[(1e,16e)-6-{[(5e)-9-(2-carbamoyl-1,3-oxazol-4-yl)-3-hydroxy-9-methoxy-8-methyl-7-oxonon-5-enoyl]oxy}-8,14-dimethoxy-5,9,13-trimethyl-17-(n-methylformamido)-12-oxoheptadeca-1,16-dien-1-yl]-1,3-oxazole-4-carboxylate

C44H64N4O14 (872.4419)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-2-[(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-6-({[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-2-[(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-6-({[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C44H72O17 (872.4769)


   

(1r,2s,5s,7s,8e,10z,12s,14r,16s,19s,20r,27r,28r,29s,32s,33s,35r)-14-[(2r,3s,4s)-2,3-dihydroxy-4-methyloxan-2-yl]-28-hydroxy-5,7,9,19,29-pentamethyl-18,31-dioxo-13,17,38,39,40,41,42,43-octaoxaoctacyclo[31.4.1.1¹,³⁵.1²,⁵.1²⁰,²⁴.1²⁴,²⁷.1²⁹,³².0¹²,¹⁶]tritetraconta-8,10-diene-35-carbaldehyde

(1r,2s,5s,7s,8e,10z,12s,14r,16s,19s,20r,27r,28r,29s,32s,33s,35r)-14-[(2r,3s,4s)-2,3-dihydroxy-4-methyloxan-2-yl]-28-hydroxy-5,7,9,19,29-pentamethyl-18,31-dioxo-13,17,38,39,40,41,42,43-octaoxaoctacyclo[31.4.1.1¹,³⁵.1²,⁵.1²⁰,²⁴.1²⁴,²⁷.1²⁹,³².0¹²,¹⁶]tritetraconta-8,10-diene-35-carbaldehyde

C47H68O15 (872.4558)


   

(2e,6s,7s,9s,10r,14s,15r,17e)-7-{[(3s,5e,8r,9r)-3-hydroxy-9-methoxy-9-{2-[2-(methoxycarbonyl)-1,3-oxazol-4-yl]-1,3-oxazol-4-yl}-8-methyl-7-oxonon-5-enoyl]oxy}-9,15-dimethoxy-6,10,14-trimethyl-18-(n-methylformamido)-13-oxooctadeca-2,17-dienimidic acid

(2e,6s,7s,9s,10r,14s,15r,17e)-7-{[(3s,5e,8r,9r)-3-hydroxy-9-methoxy-9-{2-[2-(methoxycarbonyl)-1,3-oxazol-4-yl]-1,3-oxazol-4-yl}-8-methyl-7-oxonon-5-enoyl]oxy}-9,15-dimethoxy-6,10,14-trimethyl-18-(n-methylformamido)-13-oxooctadeca-2,17-dienimidic acid

C44H64N4O14 (872.4419)


   

2-[4-(16-{[3,4-dihydroxy-6-(hydroxymethyl)-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-6-en-6-yl)-2-methylbutoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

2-[4-(16-{[3,4-dihydroxy-6-(hydroxymethyl)-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-6-en-6-yl)-2-methylbutoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C44H72O17 (872.4769)


   

(2r,3s,4r,5s,6s)-2-{[(2s,3s,4r,5r,6s)-4,5-dihydroxy-2-{[(1s,2r,4s,6s,7r,8r,9s,10s,13s,14r,17r)-6-hydroxy-10-(hydroxymethyl)-8,14-dimethyl-7-(2-methylprop-1-en-1-yl)-5-oxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicos-19-en-17-yl]oxy}-6-(hydroxymethyl)oxan-3-yl]oxy}-3,5-dihydroxy-6-methyloxan-4-yl 4-methoxybenzoate

(2r,3s,4r,5s,6s)-2-{[(2s,3s,4r,5r,6s)-4,5-dihydroxy-2-{[(1s,2r,4s,6s,7r,8r,9s,10s,13s,14r,17r)-6-hydroxy-10-(hydroxymethyl)-8,14-dimethyl-7-(2-methylprop-1-en-1-yl)-5-oxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicos-19-en-17-yl]oxy}-6-(hydroxymethyl)oxan-3-yl]oxy}-3,5-dihydroxy-6-methyloxan-4-yl 4-methoxybenzoate

C47H68O15 (872.4558)


   

(11s)-11-{[(2r,3r,4s,5s,6r)-3-{[(2s,3r,4s,5r,6r)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl]oxy}hexadecanoic acid

(11s)-11-{[(2r,3r,4s,5s,6r)-3-{[(2s,3r,4s,5r,6r)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl]oxy}hexadecanoic acid

C40H72O20 (872.4617)


   

(11s)-11-{[(2r,3r,4s,5s,6r)-3-{[(2s,3r,4s,5s,6r)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl]oxy}hexadecanoic acid

(11s)-11-{[(2r,3r,4s,5s,6r)-3-{[(2s,3r,4s,5s,6r)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl]oxy}hexadecanoic acid

C40H72O20 (872.4617)


   

14-(2,3-dihydroxy-4-methyloxan-2-yl)-28-hydroxy-5,7,9,19,29-pentamethyl-18,31-dioxo-13,17,38,39,40,41,42,43-octaoxaoctacyclo[31.4.1.1¹,³⁵.1²,⁵.1²⁰,²⁴.1²⁴,²⁷.1²⁹,³².0¹²,¹⁶]tritetraconta-8,10-diene-35-carbaldehyde

14-(2,3-dihydroxy-4-methyloxan-2-yl)-28-hydroxy-5,7,9,19,29-pentamethyl-18,31-dioxo-13,17,38,39,40,41,42,43-octaoxaoctacyclo[31.4.1.1¹,³⁵.1²,⁵.1²⁰,²⁴.1²⁴,²⁷.1²⁹,³².0¹²,¹⁶]tritetraconta-8,10-diene-35-carbaldehyde

C47H68O15 (872.4558)


   

14'-({5-hydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-3,4,16'-triol

14'-({5-hydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-3,4,16'-triol

C43H68O18 (872.4405)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-4-hydroxy-6-(hydroxymethyl)-2-[(1's,2r,2's,4'r,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-4-hydroxy-6-(hydroxymethyl)-2-[(1's,2r,2's,4'r,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C44H72O17 (872.4769)


   

2-{[3-(acetyloxy)-2-{[1,7-dihydroxy-9a,11a-dimethyl-1-(6-methyl-3-oxoheptan-2-yl)-2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl]oxy}-5-hydroxyoxan-4-yl]oxy}-4,5-dihydroxyoxan-3-yl 4-methoxybenzoate

2-{[3-(acetyloxy)-2-{[1,7-dihydroxy-9a,11a-dimethyl-1-(6-methyl-3-oxoheptan-2-yl)-2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl]oxy}-5-hydroxyoxan-4-yl]oxy}-4,5-dihydroxyoxan-3-yl 4-methoxybenzoate

C47H68O15 (872.4558)


   

methyl 2-(6-{[9-(2-carbamoyl-1,3-oxazol-4-yl)-3-hydroxy-9-methoxy-8-methyl-7-oxonon-5-enoyl]oxy}-8,14-dimethoxy-5,9,13-trimethyl-17-(n-methylformamido)-12-oxoheptadeca-1,16-dien-1-yl)-1,3-oxazole-4-carboxylate

methyl 2-(6-{[9-(2-carbamoyl-1,3-oxazol-4-yl)-3-hydroxy-9-methoxy-8-methyl-7-oxonon-5-enoyl]oxy}-8,14-dimethoxy-5,9,13-trimethyl-17-(n-methylformamido)-12-oxoheptadeca-1,16-dien-1-yl)-1,3-oxazole-4-carboxylate

C44H64N4O14 (872.4419)


   

(1s,3as,3bs,5as,7s,9as,9bs,11ar)-3a,5a-dihydroxy-7-{[(2s,4r,5s,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde

(1s,3as,3bs,5as,7s,9as,9bs,11ar)-3a,5a-dihydroxy-7-{[(2s,4r,5s,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde

C42H64O19 (872.4042)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-5-hydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-5-hydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C44H72O17 (872.4769)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5s,7's,8's,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-8'-oloxy]-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5s,7's,8's,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-8'-oloxy]-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C44H72O17 (872.4769)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-5-hydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-5-hydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C44H72O17 (872.4769)


   

2-[(4,5-dihydroxy-2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

2-[(4,5-dihydroxy-2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C44H72O17 (872.4769)


   

(2s,3r,4s,5r,6s)-6-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-2-{[(1r,2s,4s,6r,7s,8s,9r,10r,13s,14r,17s)-6-hydroxy-10-(hydroxymethyl)-8,14-dimethyl-7-(2-methylprop-1-en-1-yl)-5-oxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicos-19-en-17-yl]oxy}-6-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl 4-methoxybenzoate

(2s,3r,4s,5r,6s)-6-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-2-{[(1r,2s,4s,6r,7s,8s,9r,10r,13s,14r,17s)-6-hydroxy-10-(hydroxymethyl)-8,14-dimethyl-7-(2-methylprop-1-en-1-yl)-5-oxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicos-19-en-17-yl]oxy}-6-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl 4-methoxybenzoate

C47H68O15 (872.4558)


   

2-[(4,5-dihydroxy-2-{[6-hydroxy-10-(hydroxymethyl)-8,14-dimethyl-7-(2-methylprop-1-en-1-yl)-5-oxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicos-19-en-17-yl]oxy}-6-(hydroxymethyl)oxan-3-yl)oxy]-3,5-dihydroxy-6-methyloxan-4-yl 4-methoxybenzoate

2-[(4,5-dihydroxy-2-{[6-hydroxy-10-(hydroxymethyl)-8,14-dimethyl-7-(2-methylprop-1-en-1-yl)-5-oxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicos-19-en-17-yl]oxy}-6-(hydroxymethyl)oxan-3-yl)oxy]-3,5-dihydroxy-6-methyloxan-4-yl 4-methoxybenzoate

C47H68O15 (872.4558)


   

2-{4-[19-({3,5-dihydroxy-6-methyl-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-16-hydroxy-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-6-en-6-yl]-2-methylbutoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{4-[19-({3,5-dihydroxy-6-methyl-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-16-hydroxy-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-6-en-6-yl]-2-methylbutoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C44H72O17 (872.4769)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C44H72O17 (872.4769)