Exact Mass: 869.6591776
Exact Mass Matches: 869.6591776
Found 500 metabolites which its exact mass value is equals to given mass value 869.6591776
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
PC(18:1(11Z)/24:1(15Z))
C50H96NO8P (869.6873185999999)
PC(18:1(11Z)/24:1(15Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:1(11Z)/24:1(15Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of nervonic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the nervonic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(18:1(11Z)/24:1(15Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:1(11Z)/24:1(15Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of nervonic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the nervonic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PC(18:1(9Z)/24:1(15Z))
C50H96NO8P (869.6873185999999)
PC(18:1(9Z)/24:1(15Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:1(9Z)/24:1(15Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of nervonic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the nervonic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PC(18:2(9Z,12Z)/24:0)
C50H96NO8P (869.6873185999999)
PC(18:2(9Z,12Z)/24:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:2(9Z,12Z)/24:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of lignoceric acid at the C-2 position. The linoleic acid moiety is derived from seed oils, while the lignoceric acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PC(20:0/22:2(13Z,16Z))
C50H96NO8P (869.6873185999999)
PC(20:0/22:2(13Z,16Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:0/22:2(13Z,16Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. The arachidic acid moiety is derived from peanut oil, while the docosadienoic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PC(20:1(11Z)/22:1(13Z))
C50H96NO8P (869.6873185999999)
PC(20:1(11Z)/22:1(13Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:1(11Z)/22:1(13Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of erucic acid at the C-2 position. The eicosenoic acid moiety is derived from vegetable oils and cod oils, while the erucic acid moiety is derived from seed oils and avocados. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(20:1(11Z)/22:1(13Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:1(11Z)/22:1(13Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of erucic acid at the C-2 position. The eicosenoic acid moiety is derived from vegetable oils and cod oils, while the erucic acid moiety is derived from seed oils and avocados. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PC(20:2(11Z,14Z)/22:0)
C50H96NO8P (869.6873185999999)
PC(20:2(11Z,14Z)/22:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:2(11Z,14Z)/22:0), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of behenic acid at the C-2 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the behenic acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PC(22:0/20:2(11Z,14Z))
C50H96NO8P (869.6873185999999)
PC(22:0/20:2(11Z,14Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:0/20:2(11Z,14Z)), in particular, consists of one chain of behenic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The behenic acid moiety is derived from groundnut oil, while the eicosadienoic acid moiety is derived from fish oils and liver. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PC(22:1(13Z)/20:1(11Z))
C50H96NO8P (869.6873185999999)
PC(22:1(13Z)/20:1(11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:1(13Z)/20:1(11Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. The erucic acid moiety is derived from seed oils and avocados, while the eicosenoic acid moiety is derived from vegetable oils and cod oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(22:1(13Z)/20:1(11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:1(13Z)/20:1(11Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. The erucic acid moiety is derived from seed oils and avocados, while the eicosenoic acid moiety is derived from vegetable oils and cod oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PC(22:2(13Z,16Z)/20:0)
C50H96NO8P (869.6873185999999)
PC(22:2(13Z,16Z)/20:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:2(13Z,16Z)/20:0), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of arachidic acid at the C-2 position. The docosadienoic acid moiety is derived from animal fats, while the arachidic acid moiety is derived from peanut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PC(24:0/18:2(9Z,12Z))
C50H96NO8P (869.6873185999999)
PC(24:0/18:2(9Z,12Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(24:0/18:2(9Z,12Z)), in particular, consists of one chain of lignoceric acid at the C-1 position and one chain of linoleic acid at the C-2 position. The lignoceric acid moiety is derived from groundnut oil, while the linoleic acid moiety is derived from seed oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PC(24:1(15Z)/18:1(11Z))
C50H96NO8P (869.6873185999999)
PC(24:1(15Z)/18:1(11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(24:1(15Z)/18:1(11Z)), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The nervonic acid moiety is derived from fish oils, while the vaccenic acid moiety is derived from butter fat and animal fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PC(24:1(15Z)/18:1(9Z))
C50H96NO8P (869.6873185999999)
PC(24:1(15Z)/18:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(24:1(15Z)/18:1(9Z)), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of oleic acid at the C-2 position. The nervonic acid moiety is derived from fish oils, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PS(18:2(9Z,12Z)/24:1(15Z))
PS(18:2(9Z,12Z)/24:1(15Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(18:2(9Z,12Z)/24:1(15Z)), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of nervonic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PS(18:3(6Z,9Z,12Z)/24:0)
PS(18:3(6Z,9Z,12Z)/24:0) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(18:3(6Z,9Z,12Z)/24:0), in particular, consists of one chain of gamma-linolenic acid at the C-1 position and one chain of lignoceric acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PS(18:3(9Z,12Z,15Z)/24:0)
PS(18:3(9Z,12Z,15Z)/24:0) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(18:3(9Z,12Z,15Z)/24:0), in particular, consists of one chain of alpha-linolenic acid at the C-1 position and one chain of lignoceric acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PS(20:1(11Z)/22:2(13Z,16Z))
PS(20:1(11Z)/22:2(13Z,16Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(20:1(11Z)/22:2(13Z,16Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PS(20:2(11Z,14Z)/22:1(13Z))
PS(20:2(11Z,14Z)/22:1(13Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(20:2(11Z,14Z)/22:1(13Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of erucic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PS(20:3(5Z,8Z,11Z)/22:0)
PS(20:3(5Z,8Z,11Z)/22:0) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(20:3(5Z,8Z,11Z)/22:0), in particular, consists of one chain of mead acid at the C-1 position and one chain of behenic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PS(20:3(8Z,11Z,14Z)/22:0)
PS(20:3(8Z,11Z,14Z)/22:0) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(20:3(8Z,11Z,14Z)/22:0), in particular, consists of one chain of dihomo-gamma-linolenic acid at the C-1 position and one chain of behenic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PS(22:0/20:3(5Z,8Z,11Z))
PS(22:0/20:3(5Z,8Z,11Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(22:0/20:3(5Z,8Z,11Z)), in particular, consists of one chain of behenic acid at the C-1 position and one chain of mead acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PS(22:0/20:3(8Z,11Z,14Z))
PS(22:0/20:3(8Z,11Z,14Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(22:0/20:3(8Z,11Z,14Z)), in particular, consists of one chain of behenic acid at the C-1 position and one chain of dihomo-gamma-linolenic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PS(22:1(13Z)/20:2(11Z,14Z))
PS(22:1(13Z)/20:2(11Z,14Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(22:1(13Z)/20:2(11Z,14Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PS(22:2(13Z,16Z)/20:1(11Z))
PS(22:2(13Z,16Z)/20:1(11Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(22:2(13Z,16Z)/20:1(11Z)), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PS(24:0/18:3(6Z,9Z,12Z))
PS(24:0/18:3(6Z,9Z,12Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(24:0/18:3(6Z,9Z,12Z)), in particular, consists of one chain of lignoceric acid at the C-1 position and one chain of gamma-linolenic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PS(24:0/18:3(9Z,12Z,15Z))
PS(24:0/18:3(9Z,12Z,15Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(24:0/18:3(9Z,12Z,15Z)), in particular, consists of one chain of lignoceric acid at the C-1 position and one chain of alpha-linolenic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PS(24:1(15Z)/18:2(9Z,12Z))
PS(24:1(15Z)/18:2(9Z,12Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(24:1(15Z)/18:2(9Z,12Z)), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of linoleic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PE-NMe(20:1(11Z)/24:1(15Z))
C50H96NO8P (869.6873185999999)
PE-NMe(20:1(11Z)/24:1(15Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:1(11Z)/24:1(15Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of nervonic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe(20:2(11Z,14Z)/24:0)
C50H96NO8P (869.6873185999999)
PE-NMe(20:2(11Z,14Z)/24:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:2(11Z,14Z)/24:0), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of lignoceric acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe(22:0/22:2(13Z,16Z))
C50H96NO8P (869.6873185999999)
PE-NMe(22:0/22:2(13Z,16Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(22:0/22:2(13Z,16Z)), in particular, consists of one chain of behenic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe(22:1(13Z)/22:1(13Z))
C50H96NO8P (869.6873185999999)
PE-NMe(22:1(13Z)/22:1(13Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(22:1(13Z)/22:1(13Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of erucic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe(22:2(13Z,16Z)/22:0)
C50H96NO8P (869.6873185999999)
PE-NMe(22:2(13Z,16Z)/22:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(22:2(13Z,16Z)/22:0), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of behenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe(24:0/20:2(11Z,14Z))
C50H96NO8P (869.6873185999999)
PE-NMe(24:0/20:2(11Z,14Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(24:0/20:2(11Z,14Z)), in particular, consists of one chain of lignoceric acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe(24:1(15Z)/20:1(11Z))
C50H96NO8P (869.6873185999999)
PE-NMe(24:1(15Z)/20:1(11Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(24:1(15Z)/20:1(11Z)), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE(24:0/20:3(6,8,11)-OH(5))
C49H92NO9P (869.6509351999999)
PE(24:0/20:3(6,8,11)-OH(5)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(24:0/20:3(6,8,11)-OH(5)), in particular, consists of one chain of one tetracosanoyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).
PE(20:3(6,8,11)-OH(5)/24:0)
C49H92NO9P (869.6509351999999)
PE(20:3(6,8,11)-OH(5)/24:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:3(6,8,11)-OH(5)/24:0), in particular, consists of one chain of one 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of tetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).
PC(20:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))
PC(20:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of one eicosanoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:0)
PC(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:0), in particular, consists of one chain of one Leukotriene B4 at the C-1 position and one chain of eicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(20:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))
PC(20:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of one eicosanoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:0)
PC(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:0), in particular, consists of one chain of one 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of eicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(20:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))
PC(20:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of one eicosanoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:0)
PC(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:0), in particular, consists of one chain of one 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of eicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(20:1(11Z)/20:3(8Z,11Z,14Z)-2OH(5,6))
PC(20:1(11Z)/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:1(11Z)/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(20:3(8Z,11Z,14Z)-2OH(5,6)/20:1(11Z))
PC(20:3(8Z,11Z,14Z)-2OH(5,6)/20:1(11Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(8Z,11Z,14Z)-2OH(5,6)/20:1(11Z)), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC 42:2
C50H96NO8P (869.6873185999999)
Found in mouse brain; TwoDicalId=218; MgfFile=160720_brain_AA_19_Neg; MgfId=2267
(2R,17Z)-N-{(1S,2S,3R,7Z)-1-[(beta-D-glucopyranosyloxy)methyl]-2,3-dihydroxyheptadec-7-en-1-yl}-2-hydroxyhexacos-17-enamide|1-O-(beta-D-glucopyranosyl)-(2S,3S,4R,8Z)-2-[(2R)-2-hydroxyhexacosenoilamino]-8(Z)-octadecene-1,3,4-triol|Cerebroside B-2
1-O-beta-D-Glucopyranosyl-2-N-2-hydroxy-cis-15-tetracosenoyl-4-hydroxy-eicosasphinga-cis-10-enin
PC(16:0/26:2)
C50H96NO8P (869.6873185999999)
PC(21:1/21:1)[U]
C50H96NO8P (869.6873185999999)
PC(26:2/16:0)
C50H96NO8P (869.6873185999999)
PC(20:1(11Z)/22:1(11Z))
C50H96NO8P (869.6873185999999)
PC(22:1(11Z)/20:1(11Z))
C50H96NO8P (869.6873185999999)
HexCer 43:3;O5
1-hexadecanoyl-2-[(5Z,9Z)-hexacosadienoyl]-sn-glycero-3-phosphocholine
C50H96NO8P (869.6873185999999)
A phosphatidylcholine 42:2 in which the acyl groups specified at positions 1 and 2 are hexadecanoyl and (5Z,9Z)-hexacosadienoyl respectively.
[3-[(Z)-octadec-9-enoyl]oxy-2-[(Z)-tetracos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxypropyl] tetracosanoate
C49H92NO9P (869.6509351999999)
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxypropan-2-yl] tetracosanoate
C49H92NO9P (869.6509351999999)
N-capryl-1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphoethanolamine
C49H92NO9P (869.6509351999999)
An N-acylphosphatidylethanolamine in which the N-acyl group is specified as capryl (decanoyl) while the phosphatidyl acyl groups at position 1 and 2 are specified as palmitoyl (hexadecanoyl) and linoleoyl (9Z,12Z-octadecadienoyl) respectively.
[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-tetracosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C52H88NO7P (869.6298067999999)
2-[3-nonanoyloxy-2-[(16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-16,19,22,25,28,31-hexaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(15Z,18Z,21Z,24Z,27Z)-triaconta-15,18,21,24,27-pentaenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-heptadecanoyloxy-2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-nonadecanoyloxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoyl]oxy-3-tridecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(Z)-henicos-11-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]oxy-3-pentadecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-[(Z)-nonadec-9-enoyl]oxy-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-14,17,20,23,26,29-hexaenoyl]oxy-3-undecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-henicosanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-[(Z)-heptadec-9-enoyl]oxy-2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate
C52H88NO7P (869.6298067999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate
C52H88NO7P (869.6298067999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoxy]propan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate
C52H88NO7P (869.6298067999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]propan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate
C52H88NO7P (869.6298067999999)
2-amino-3-[hydroxy-[3-nonadecoxy-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropoxy]phosphoryl]oxypropanoic acid
C49H92NO9P (869.6509351999999)
2-amino-3-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(Z)-hexacos-15-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid
C49H92NO9P (869.6509351999999)
[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C52H88NO7P (869.6298067999999)
[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C52H88NO7P (869.6298067999999)
[3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C52H88NO7P (869.6298067999999)
2-amino-3-[hydroxy-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-tricosoxypropoxy]phosphoryl]oxypropanoic acid
C49H92NO9P (869.6509351999999)
2-amino-3-[hydroxy-[3-[(Z)-nonadec-9-enoxy]-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid
C49H92NO9P (869.6509351999999)
[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C52H88NO7P (869.6298067999999)
[3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C52H88NO7P (869.6298067999999)
[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C52H88NO7P (869.6298067999999)
[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C52H88NO7P (869.6298067999999)
2-amino-3-[[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-henicosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
C49H92NO9P (869.6509351999999)
2-amino-3-[[3-[(Z)-heptadec-9-enoxy]-2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
C49H92NO9P (869.6509351999999)
2-amino-3-[[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-henicosoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
C49H92NO9P (869.6509351999999)
[2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C52H88NO7P (869.6298067999999)
[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C52H88NO7P (869.6298067999999)
2-amino-3-[[2-[(Z)-docos-13-enoyl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid
C49H92NO9P (869.6509351999999)
2-amino-3-[hydroxy-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-[(Z)-tetracos-13-enoxy]propoxy]phosphoryl]oxypropanoic acid
C49H92NO9P (869.6509351999999)
2-amino-3-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(Z)-henicos-11-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid
C49H92NO9P (869.6509351999999)
2-amino-3-[[3-heptadecoxy-2-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
C49H92NO9P (869.6509351999999)
2-amino-3-[hydroxy-[3-[(9Z,12Z)-nonadeca-9,12-dienoxy]-2-[(Z)-tetracos-13-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid
C49H92NO9P (869.6509351999999)
2-amino-3-[[2-[(Z)-heptadec-9-enoyl]oxy-3-[(15Z,18Z)-hexacosa-15,18-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid
C49H92NO9P (869.6509351999999)
[3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C52H88NO7P (869.6298067999999)
2-amino-3-[[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-[(Z)-hexacos-15-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
C49H92NO9P (869.6509351999999)
2-amino-3-[hydroxy-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-pentacosoxypropoxy]phosphoryl]oxypropanoic acid
C49H92NO9P (869.6509351999999)
2-amino-3-[hydroxy-[2-[(Z)-nonadec-9-enoyl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propoxy]phosphoryl]oxypropanoic acid
C49H92NO9P (869.6509351999999)
2-amino-3-[hydroxy-[3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]-2-pentacosanoyloxypropoxy]phosphoryl]oxypropanoic acid
C49H92NO9P (869.6509351999999)
[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C52H88NO7P (869.6298067999999)
[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C52H88NO7P (869.6298067999999)
[3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C52H88NO7P (869.6298067999999)
[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C52H88NO7P (869.6298067999999)
[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C52H88NO7P (869.6298067999999)
2-amino-3-[hydroxy-[3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]-2-tricosanoyloxypropoxy]phosphoryl]oxypropanoic acid
C49H92NO9P (869.6509351999999)
2-amino-3-[[3-[(Z)-docos-13-enoxy]-2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
C49H92NO9P (869.6509351999999)
[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C52H88NO7P (869.6298067999999)
2-amino-3-[[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-[(Z)-henicos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
C49H92NO9P (869.6509351999999)
2-amino-3-[hydroxy-[2-nonadecanoyloxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propoxy]phosphoryl]oxypropanoic acid
C49H92NO9P (869.6509351999999)
[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C52H88NO7P (869.6298067999999)
2-amino-3-[[2-heptadecanoyloxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid
C49H92NO9P (869.6509351999999)
2-[4-[3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-12-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]ethanesulfonic acid
C52H87NO7S (869.6202911999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (21Z,24Z)-dotriaconta-21,24-dienoate
C50H96NO8P (869.6873185999999)
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropyl] octacosanoate
C50H96NO8P (869.6873185999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (Z)-triacont-19-enoate
C50H96NO8P (869.6873185999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (19Z,22Z)-triaconta-19,22-dienoate
C50H96NO8P (869.6873185999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropan-2-yl] (Z)-octacos-17-enoate
C50H96NO8P (869.6873185999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (Z)-dotriacont-21-enoate
C50H96NO8P (869.6873185999999)
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] nonacosanoate
C50H96NO8P (869.6873185999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (17Z,20Z)-octacosa-17,20-dienoate
C50H96NO8P (869.6873185999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (23Z,26Z)-tetratriaconta-23,26-dienoate
C50H96NO8P (869.6873185999999)
[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C52H88NO7P (869.6298067999999)
[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C52H88NO7P (869.6298067999999)
[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C52H88NO7P (869.6298067999999)
[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C52H88NO7P (869.6298067999999)
[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C52H88NO7P (869.6298067999999)
[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C52H88NO7P (869.6298067999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (25Z,28Z)-hexatriaconta-25,28-dienoate
C50H96NO8P (869.6873185999999)
[3-octanoyloxy-2-[(23Z,26Z)-tetratriaconta-23,26-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
2-amino-3-[hydroxy-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid
2-amino-3-[[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-[(Z)-henicos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[3-[(Z)-docos-13-enoyl]oxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(13Z,16Z)-docosa-13,16-dienoyl]oxypropyl] tricosanoate
C50H96NO8P (869.6873185999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-henicosanoyloxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate
C50H96NO8P (869.6873185999999)
2-amino-3-[hydroxy-[3-[(Z)-octadec-9-enoyl]oxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid
2-amino-3-[[3-hexacosanoyloxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoyl]oxypropan-2-yl] (Z)-tetracos-13-enoate
C50H96NO8P (869.6873185999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecanoyloxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate
C50H96NO8P (869.6873185999999)
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropyl] hexacosanoate
C50H96NO8P (869.6873185999999)
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] heptacosanoate
C50H96NO8P (869.6873185999999)
2-amino-3-[[3-docosanoyloxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropyl] tetracosanoate
C50H96NO8P (869.6873185999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropan-2-yl] (Z)-hexacos-15-enoate
C50H96NO8P (869.6873185999999)
2-amino-3-[hydroxy-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-[(Z)-tetracos-13-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid
2-amino-3-[[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-icosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[3-[(Z)-hexacos-15-enoyl]oxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropyl] pentacosanoate
C50H96NO8P (869.6873185999999)
2-amino-3-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(Z)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
[3-dodecanoyloxy-2-[(19Z,22Z)-triaconta-19,22-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[2-[(Z)-octacos-17-enoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[3-decanoyloxy-2-[(21Z,24Z)-dotriaconta-21,24-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[2-[(17Z,20Z)-octacosa-17,20-dienoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-3-hexadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-pentacosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[3-hexacosanoyloxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
2-amino-3-[[2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
[3-docosanoyloxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
2,3-bis[[(Z)-henicos-11-enoyl]oxy]propyl 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[2-[(Z)-docos-13-enoyl]oxy-3-[(Z)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[2-[(Z)-hexacos-15-enoyl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[3-octadecanoyloxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-tricosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-henicosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
(2S)-2-amino-3-[hydroxy-[(2S)-3-[(6E,9E)-octadeca-6,9-dienoyl]oxy-2-[(E)-tetracos-15-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid
(2S)-2-amino-3-[hydroxy-[(2S)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-[(E)-tetracos-15-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid
[(2R)-2-[(13E,16E)-docosa-13,16-dienoyl]oxy-3-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
(2S)-2-amino-3-[[3-hexacosanoyloxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-nonadecanoyloxypropyl] (5E,9E)-hexacosa-5,9-dienoate
C50H96NO8P (869.6873185999999)
4-[2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-3-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2S)-2-[(E)-octadec-7-enoyl]oxy-3-[(E)-tetracos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
4-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-3-[(E)-docos-13-enoyl]oxy-2-[(E)-icos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
(2S)-2-amino-3-[hydroxy-[(2S)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-[(E)-tetracos-15-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid
[(2R)-3-octadec-17-enoyloxy-2-[(E)-tetracos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
(2S)-2-amino-3-[[(2R)-3-[(E)-docos-13-enoyl]oxy-2-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
[(2R)-3-[(6E,9E)-octadeca-6,9-dienoyl]oxy-2-tetracosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[(2R)-2-[(E)-hexacos-5-enoyl]oxy-3-[(E)-hexadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[(2S)-2-octadec-17-enoyloxy-3-[(E)-tetracos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
(2S)-2-amino-3-[[(2S)-2-[(5E,9E)-hexacosa-5,9-dienoyl]oxy-3-[(E)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
[(2R)-2-docosanoyloxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[(2R)-3-docosanoyloxy-2-[(5E,8E)-icosa-5,8-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-pentacosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
(2S)-2-amino-3-[[(2R)-2-docosanoyloxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
(2S)-2-amino-3-[hydroxy-[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid
[(2S)-2-[(E)-octadec-6-enoyl]oxy-3-[(E)-tetracos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
(2S)-2-amino-3-[[(2R)-3-[(13E,16E)-docosa-13,16-dienoyl]oxy-2-[(E)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(13E,16E)-docosa-13,16-dienoyl]oxypropyl] tricosanoate
C50H96NO8P (869.6873185999999)
[(2S)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-tetracosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[(2R)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-tetracosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[(2R)-3-[(E)-octadec-13-enoyl]oxy-2-[(E)-tetracos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[(2R)-3-[(E)-octadec-4-enoyl]oxy-2-[(E)-tetracos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[(2R)-2-[(E)-docos-13-enoyl]oxy-3-[(E)-icos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[(2R)-3-[(9E,12E)-octadeca-9,12-dienoyl]oxy-2-tetracosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[(2S)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-tetracosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[(2R)-2-[(5E,9E)-hexacosa-5,9-dienoyl]oxy-3-hexadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
(2S)-2-amino-3-[[(2R)-2-[(13E,16E)-docosa-13,16-dienoyl]oxy-3-[(E)-icos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
[3-hexacosanoyloxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[(2S)-2-[(E)-octadec-4-enoyl]oxy-3-[(E)-tetracos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[(2R)-3-[(E)-octadec-6-enoyl]oxy-2-[(E)-tetracos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
(2S)-2-amino-3-[[(2R)-3-[(E)-docos-13-enoyl]oxy-2-[(5E,8E)-icosa-5,8-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
4-[3-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(5E,8E)-icosa-5,8-dienoyl]oxypropan-2-yl] pentacosanoate
C50H96NO8P (869.6873185999999)
4-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
(2S)-2-amino-3-[[(2R)-3-docosanoyloxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
[(2S)-3-[(E)-hexacos-5-enoyl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[(2R)-3-docosanoyloxy-2-[(11E,14E)-icosa-11,14-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
(2S)-2-amino-3-[hydroxy-[(2S)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-[(E)-tetracos-15-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid
[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(5E,8E)-icosa-5,8-dienoyl]oxypropyl] pentacosanoate
C50H96NO8P (869.6873185999999)
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecanoyloxypropan-2-yl] (5E,9E)-hexacosa-5,9-dienoate
C50H96NO8P (869.6873185999999)
[(2S)-3-[(E)-hexacos-5-enoyl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
(2S)-2-amino-3-[[3-[(E)-hexacos-11-enoyl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
(2S)-2-amino-3-[hydroxy-[(2S)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-[(E)-tetracos-15-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid
[(2R)-2-[(E)-docos-13-enoyl]oxy-3-[(E)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[(2R)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-pentacosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13E,16E)-docosa-13,16-dienoyl]oxypropan-2-yl] tricosanoate
C50H96NO8P (869.6873185999999)
[(2S)-2-[(E)-octadec-11-enoyl]oxy-3-[(E)-tetracos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
4-[3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-2-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
(2S)-2-amino-3-[[(2S)-2-[(5E,9E)-hexacosa-5,9-dienoyl]oxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
(2S)-2-amino-3-[[(2R)-3-docosanoyloxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
4-[2-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
(2S)-2-amino-3-[[(2R)-2-[(E)-docos-13-enoyl]oxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
[(2R)-3-[(E)-octadec-11-enoyl]oxy-2-[(E)-tetracos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[(2S)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-tetracosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[(2R)-3-[(E)-docos-13-enoyl]oxy-2-[(E)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[(2S)-2-[(E)-octadec-9-enoyl]oxy-3-[(E)-tetracos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
(2S)-2-amino-3-[hydroxy-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid
[(2R)-3-[(E)-octadec-7-enoyl]oxy-2-[(E)-tetracos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
(2S)-2-amino-3-[hydroxy-[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid
4-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
(2S)-2-amino-3-[hydroxy-[(2S)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-[(E)-tetracos-15-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid
[(2R)-3-[(13E,16E)-docosa-13,16-dienoyl]oxy-2-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[(2S)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-tetracosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
(2S)-2-amino-3-[[(2R)-2-docosanoyloxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
[(2R)-3-[(E)-octadec-9-enoyl]oxy-2-[(E)-tetracos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
(2S)-2-amino-3-[hydroxy-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-tetracosanoyloxypropoxy]phosphoryl]oxypropanoic acid
4-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropan-2-yl] pentacosanoate
C50H96NO8P (869.6873185999999)
[(2S)-2-[(E)-octadec-13-enoyl]oxy-3-[(E)-tetracos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
(2S)-2-amino-3-[[(2R)-3-[(13E,16E)-docosa-13,16-dienoyl]oxy-2-[(E)-icos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
[(2S)-3-[(5E,9E)-hexacosa-5,9-dienoyl]oxy-2-hexadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[(2R)-3-[(9E,11E)-octadeca-9,11-dienoyl]oxy-2-tetracosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(11E,14E)-icosa-11,14-dienoyl]oxypropyl] pentacosanoate
C50H96NO8P (869.6873185999999)
(2S)-2-amino-3-[hydroxy-[(2S)-3-[(9E,12E)-octadeca-9,12-dienoyl]oxy-2-[(E)-tetracos-15-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid
[(2R)-2-[(E)-hexacos-5-enoyl]oxy-3-[(E)-hexadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
[(2R)-2-docosanoyloxy-3-[(5E,8E)-icosa-5,8-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H96NO8P (869.6873185999999)
(2S)-2-amino-3-[[(2R)-2-[(13E,16E)-docosa-13,16-dienoyl]oxy-3-[(E)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-[hydroxy-[3-hydroxy-2-[[(11Z,14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-11,14,17,20,23,26,29,32,35-nonaenoyl]amino]nonoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoyl]amino]-3-hydroxypentadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E)-2-[[(11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-11,14,17,20,23,26,29-heptaenoyl]amino]-3-hydroxypentadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoyl]amino]heptadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E,12E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxypentacosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-[[(10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-10,13,16,19,22,25,28,31-octaenoyl]amino]tridec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]amino]nonadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-hydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-7,10,13,16,19,22,25,28,31-nonaenoyl]amino]tridecoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E,12E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxyhenicosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]amino]-3-hydroxypentadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(8E,12E,16E)-3,4-dihydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]amino]octadeca-8,12,16-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoyl]amino]heptadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E,12E)-2-[[(14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-14,17,20,23,26,29-hexaenoyl]amino]-3-hydroxypentadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxyhenicosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]tricosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-[[(9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-9,12,15,18,21,24,27,30,33-nonaenoyl]amino]-3-hydroxyundecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]amino]nonadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(E)-2-[[(12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-12,15,18,21,24,27,30,33-octaenoyl]amino]-3-hydroxyundec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-[[(14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-14,17,20,23,26,29,32,35-octaenoyl]amino]non-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-13,16,19,22,25,28,31-heptaenoyl]amino]trideca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
1-tetracosanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine
C50H96NO8P (869.6873185999999)
1-(11Z,14Z-eicosadienoyl)-2-docosanoyl-glycero-3-phosphocholine
C50H96NO8P (869.6873185999999)
1-(9Z-octadecenoyl)-2-(15Z-tetracosenoyl)-sn-glycero-3-phosphocholine
C50H96NO8P (869.6873185999999)
1-(11Z-eicosenoyl)-2-(13Z-docosenoyl)-sn-glycero-3-phosphocholine
C50H96NO8P (869.6873185999999)
phosphatidylcholine 42:2
C50H96NO8P (869.6873185999999)
A 1,2-diacyl-sn-glycero-3-phosphocholine in which the acyl groups at C-1 and C-2 contain 42 carbons in total with 2 double bonds.
MePC(41:2)
C50H96NO8P (869.6873185999999)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved