Exact Mass: 866.5672698
Exact Mass Matches: 866.5672698
Found 408 metabolites which its exact mass value is equals to given mass value 866.5672698
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
PI(16:0/20:0)
C45H87O13P (866.5883981999999)
PI(16:0/20:0) is a phosphatidylinositol. Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PI(16:0/20:0), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of arachidic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the arachidic acid moiety is derived from peanut oil. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs contain almost exclusively stearic acid at carbon 1 and arachidonic acid at carbon 2. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol. PI(16:0/20:0)is a phosphatidylinositol. Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common.PI(16:0/20:0), in particular, consists of one hexadecanoyl chain to the C-1 atom, and one eicosanoyl to the C-2 atom. In most organisms, the stereochemical form of the last is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs contain almost exclusively stearic acid at carbon 1 and arachidonic acid at carbon 2. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
PI(18:0/18:0)
C45H87O13P (866.5883981999999)
PI(18:0/18:0) is a phosphatidylinositol. Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PI(18:0/18:0), in particular, consists of one chain of stearic acid at the C-1 position and one chain of stearic acid at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs contain almost exclusively stearic acid at carbon 1 and arachidonic acid at carbon 2. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol. PI(18:0/18:0)is a phosphatidylinositol. Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common.PI(18:0/18:0), in particular, consists of two octadecanoyl chains at positions C-1 and C-2 to the C-2 atom. In most organisms, the stereochemical form of the last is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs contain almost exclusively stearic acid at carbon 1 and arachidonic acid at carbon 2. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
PI(20:0/16:0)
C45H87O13P (866.5883981999999)
PI(20:0/16:0) is a phosphatidylinositol. Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PI(20:0/16:0), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The arachidic acid moiety is derived from peanut oil, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs contain almost exclusively stearic acid at carbon 1 and arachidonic acid at carbon 2. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol. PI(20:0/16:0)is a phosphatidylinositol. Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common.PI(20:0/16:0), in particular, consists of one eicosanoyl chain to the C-1 atom, and one hexadecanoyl to the C-2 atom. In most organisms, the stereochemical form of the last is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs contain almost exclusively stearic acid at carbon 1 and arachidonic acid at carbon 2. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
PC(DiMe(11,3)/DiMe(11,3))
C48H85NO10P (866.5910779999999)
PC(DiMe(11,3)/DiMe(11,3)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(DiMe(11,3)/DiMe(11,3)), in particular, consists of two chains of 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoic at the C-1 and C-2 positions. The 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoic moieties are derived from fish oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PC(DiMe(11,3)/DiMe(9,5))
C48H85NO10P (866.5910779999999)
PC(DiMe(11,3)/DiMe(9,5)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(DiMe(11,3)/DiMe(9,5)), in particular, consists of one chain of 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoic at the C-1 position and one chain of 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoic at the C-2 position. The 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoic moiety is derived from fish oil, while the 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoic moiety is derived from fish oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PC(DiMe(11,5)/DiMe(9,3))
C48H85NO10P (866.5910779999999)
PC(DiMe(11,5)/DiMe(9,3)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(DiMe(11,5)/DiMe(9,3)), in particular, consists of one chain of 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoic at the C-1 position and one chain of 10,13-epoxy-11-methylhexadeca-10,12-dienoic acid at the C-2 position. The 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoic moiety is derived from fish oil, while the 10,13-epoxy-11-methylhexadeca-10,12-dienoic acid moiety is derived from fish oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PC(DiMe(9,3)/DiMe(11,5))
C48H85NO10P (866.5910779999999)
PC(DiMe(9,3)/DiMe(11,5)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(DiMe(9,3)/DiMe(11,5)), in particular, consists of one chain of 10,13-epoxy-11-methylhexadeca-10,12-dienoic acid at the C-1 position and one chain of 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoic at the C-2 position. The 10,13-epoxy-11-methylhexadeca-10,12-dienoic acid moiety is derived from fish oil, while the 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoic moiety is derived from fish oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PC(DiMe(9,5)/DiMe(11,3))
C48H85NO10P (866.5910779999999)
PC(DiMe(9,5)/DiMe(11,3)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(DiMe(9,5)/DiMe(11,3)), in particular, consists of one chain of 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoic at the C-1 position and one chain of 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoic at the C-2 position. The 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoic moiety is derived from fish oil, while the 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoic moiety is derived from fish oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PC(DiMe(9,5)/DiMe(9,5))
C48H85NO10P (866.5910779999999)
PC(DiMe(9,5)/DiMe(9,5)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(DiMe(9,5)/DiMe(9,5)), in particular, consists of two chains of 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoic at the C-1 and C-2 positions. The 10,13-epoxy-11,12-dimethyloctadeca-10,12-dienoic moieties are derived from fish oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PC(MonoMe(11,3)/MonoMe(11,5))
C48H85NO10P (866.5910779999999)
PC(MonoMe(11,3)/MonoMe(11,5)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(MonoMe(11,3)/MonoMe(11,5)), in particular, consists of two chains of 12,15-epoxy-13-methyleicosa-12,14-dienoic at the C-1 and C-2 positions. The 12,15-epoxy-13-methyleicosa-12,14-dienoic moieties are derived from fish oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PC(MonoMe(11,5)/MonoMe(11,3))
C48H85NO10P (866.5910779999999)
PC(MonoMe(11,5)/MonoMe(11,3)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(MonoMe(11,5)/MonoMe(11,3)), in particular, consists of two chains of 12,15-epoxy-13-methyleicosa-12,14-dienoic at the C-1 and C-2 positions. The 12,15-epoxy-13-methyleicosa-12,14-dienoic moieties are derived from fish oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PC(MonoMe(11,5)/MonoMe(9,5))
C48H85NO10P (866.5910779999999)
PC(MonoMe(11,5)/MonoMe(9,5)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(MonoMe(11,5)/MonoMe(9,5)), in particular, consists of one chain of 12,15-epoxy-13-methyleicosa-12,14-dienoic at the C-1 position and one chain of 10,13-epoxy-11-methyloctadeca-10,12-dienoic at the C-2 position. The 12,15-epoxy-13-methyleicosa-12,14-dienoic moiety is derived from fish oil, while the 10,13-epoxy-11-methyloctadeca-10,12-dienoic moiety is derived from fish oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PC(MonoMe(9,5)/MonoMe(11,5))
C48H85NO10P (866.5910779999999)
PC(MonoMe(9,5)/MonoMe(11,5)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(MonoMe(9,5)/MonoMe(11,5)), in particular, consists of one chain of 10,13-epoxy-11-methyloctadeca-10,12-dienoic at the C-1 position and one chain of 12,15-epoxy-13-methyleicosa-12,14-dienoic at the C-2 position. The 10,13-epoxy-11-methyloctadeca-10,12-dienoic moiety is derived from fish oil, while the 12,15-epoxy-13-methyleicosa-12,14-dienoic moiety is derived from fish oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
Phosphatidylinositols,soya
C45H87O13P (866.5883981999999)
PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-20:0)
PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-20:0), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(i-20:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))
PG(i-20:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-20:0)
PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-20:0), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(i-20:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))
PG(i-20:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-20:0)
PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-20:0), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(i-20:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))
PG(i-20:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-20:0)
PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-20:0), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(i-20:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))
PG(i-20:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-20:0)
PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-20:0), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
Sarcinaxanthin monoglucoside
C.p. 450 glucoside
C.p. 473 glucoside
(2Xi,6Xi,2Xi,6Xi)-2-(4-beta(?)-D-glucopyranosyloxy-3-methyl-but-2t(?)-enyl)-2-(4-hydroxy-3-methyl-but-2t(?)-enyl)-epsilon,epsilon-carotene|(2Xi,6Xi,2Xi,6Xi)-2-(4-beta(?)-D-Glucopyranosyloxy-3-methyl-but-2t(?)-enyl)-2-(4-hydroxy-3-methyl-but-2t(?)-enyl)-epsilon,epsilon-carotin
[3-[hydroxy-[2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-octadecanoyloxypropyl] octadecanoate
C45H87O13P (866.5883981999999)
PI(36:0)
C45H87O13P (866.5883981999999)
PI(17:0/19:0)
C45H87O13P (866.5883981999999)
PI(19:0/17:0)
C45H87O13P (866.5883981999999)
PI(21:0/15:0)
C45H87O13P (866.5883981999999)
PI(22:0/14:0)
C45H87O13P (866.5883981999999)
PI(15:0/21:0)
C45H87O13P (866.5883981999999)
PI(14:0/22:0)
C45H87O13P (866.5883981999999)
PI(P-16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
PI 36:0
C45H87O13P (866.5883981999999)
PI O-38:7
Glc-GP 36:0
C45H87O13P (866.5883981999999)
C.p.450 glucoside
C.p.473 glucoside
(9E)-Erythromycin 9-[O-[[(2-Methoxyethoxy)methoxy]methyl]oxime]
1-(15Z-tetracosenoyl)-2-(9Z,12Z,15Z-octadecadienoyl)-sn-glycero-3-phosphoserine
C48H85NO10P- (866.5910779999999)
2-[[(2R)-2-[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy-3-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[[(2R)-3-[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy-2-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[[(2R)-2-[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy-3-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[[(2R)-3-[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy-2-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[hydroxy-[(2R)-2-[(Z)-7-[(1S,5R)-5-[(E,3S)-3-hydroxyoct-1-enyl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy-3-[(Z)-icos-11-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[hydroxy-[(2R)-3-[(Z)-7-[(1S,5R)-5-[(E,3S)-3-hydroxyoct-1-enyl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy-2-[(Z)-icos-11-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[[(2R)-2-[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[[(2R)-3-[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[[(2R)-2-[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[[(2R)-3-[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[[(2R)-2-[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[[(2R)-3-[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[[(2R)-2-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[[(2R)-3-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[[(2R)-2-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[[(2R)-3-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[[(2R)-2-[(Z,9S,10S)-9,10-dihydroxyoctadec-12-enoyl]oxy-3-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[[(2R)-3-[(Z,9R,10R)-9,10-dihydroxyoctadec-12-enoyl]oxy-2-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[[(2R)-2-[(Z,9S,10S)-9,10-dihydroxyoctadec-12-enoyl]oxy-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[[(2R)-3-[(Z,9R,10R)-9,10-dihydroxyoctadec-12-enoyl]oxy-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-2-[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-3-[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-2-[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-3-[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-2-[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-3-[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-2-[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-3-[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-2-[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-3-[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[[(2R)-3-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-2-[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-2-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-3-[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-3-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-2-[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[[(2R)-2-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-3-[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
(E,2S,4R,8S)-8-[(2S,5R,7S,8R,9R)-7-hydroxy-2-[(2R,4S,5S,7R,9S,10R)-2-[(2S,3S,5R,6R)-6-hydroxy-6-(hydroxymethyl)-3,5-dimethyloxan-2-yl]-9-[(2S,5S,6S)-5-methoxy-6-methyloxan-2-yl]oxy-4,10-dimethyl-1,6-dioxaspiro[4.5]decan-7-yl]-2,8-dimethyl-1,10-dioxaspiro[4.5]decan-9-yl]-2,4,6-trimethyl-5-oxonon-6-enoic acid
[1-dodecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[1-[(Z)-hexadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
[1-[(9Z,12Z)-hexadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate
[1-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (11Z,14Z)-icosa-11,14-dienoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
[1-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate
[1-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate
[1-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] dodecanoate
[1-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-hexadec-9-enoate
[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propan-2-yl] (Z)-tetradec-9-enoate
3,4,5-trihydroxy-6-[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]oxane-2-carboxylic acid
[6-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
6-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
[3,4,5-trihydroxy-6-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
6-[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
6-[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
[3,4,5-trihydroxy-6-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[6-[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[6-[3-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[6-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-hexadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[3,4,5-trihydroxy-6-[3-[(Z)-icos-11-enoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[3,4,5-trihydroxy-6-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[6-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[3,4,5-trihydroxy-6-[3-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[1-[[2-[(Z)-heptadec-9-enoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate
C49H87O10P (866.6036531999999)
[1-[(2-henicosanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
C49H87O10P (866.6036531999999)
[1-[[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate
C49H87O10P (866.6036531999999)
[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-nonadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate
C49H87O10P (866.6036531999999)
[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] tricosanoate
C49H87O10P (866.6036531999999)
[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] pentacosanoate
C49H87O10P (866.6036531999999)
[1-[[2-[(Z)-henicos-11-enoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
C49H87O10P (866.6036531999999)
[1-Heptadecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] nonadecanoate
C45H87O13P (866.5883981999999)
[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] henicosanoate
C45H87O13P (866.5883981999999)
[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] docosanoate
C45H87O13P (866.5883981999999)
[1-Hexadecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] icosanoate
C45H87O13P (866.5883981999999)
[1-Decanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] hexacosanoate
C45H87O13P (866.5883981999999)
[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] pentacosanoate
C45H87O13P (866.5883981999999)
[1-Dodecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] tetracosanoate
C45H87O13P (866.5883981999999)
[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] tricosanoate
C45H87O13P (866.5883981999999)
[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] pentacosanoate
C49H87O10P (866.6036531999999)
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate
C49H87O10P (866.6036531999999)
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate
C49H87O10P (866.6036531999999)
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoyl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
C49H87O10P (866.6036531999999)
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-henicosanoyloxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
C49H87O10P (866.6036531999999)
[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] tricosanoate
C49H87O10P (866.6036531999999)
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate
C49H87O10P (866.6036531999999)
[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
[2-dodecanoyloxy-3-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[1-dodecanoyloxy-3-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[3-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
[1-dodecanoyloxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
[1-[(Z)-hexadec-4-enoxy]-3-[hydroxy-[(2R,3R,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonanoyloxypropan-2-yl] heptacosanoate
C45H87O13P (866.5883981999999)
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-2-[(E)-hexadec-7-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(E)-octadec-6-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2R)-1-heptadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] nonadecanoate
C45H87O13P (866.5883981999999)
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(E)-octadec-6-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-6-[3-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] tricosanoate
C45H87O13P (866.5883981999999)
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-6-[(2S)-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(E)-hexadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(E)-octadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-henicosanoyloxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate
C49H87O10P (866.6036531999999)
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(E)-octadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-undecanoyloxypropyl] pentacosanoate
C45H87O13P (866.5883981999999)
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-6-[(2S)-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-2-[(E)-hexadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E)-icosa-5,8-dienoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-6-[(2S)-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(E)-hexadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] tricosanoate
C49H87O10P (866.6036531999999)
[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-henicosanoyloxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate
C49H87O10P (866.6036531999999)
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(E)-octadec-13-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-hexadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(E)-octadec-4-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-6-[3-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-6-[3-[(14E,16E)-docosa-14,16-dienoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-[(E)-hexadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2R)-1-dodecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] tetracosanoate
C45H87O13P (866.5883981999999)
[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] pentacosanoate
C45H87O13P (866.5883981999999)
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S)-2-dodecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] tetracosanoate
C45H87O13P (866.5883981999999)
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(E)-octadec-7-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-hexadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S)-2-decanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] hexacosanoate
C45H87O13P (866.5883981999999)
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2R)-1-decanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] hexacosanoate
C45H87O13P (866.5883981999999)
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E)-icosa-5,8-dienoyl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(E)-octadec-13-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2R)-1-hexadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] icosanoate
C45H87O13P (866.5883981999999)
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-pentadecanoyloxypropyl] henicosanoate
C45H87O13P (866.5883981999999)
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(E)-octadec-4-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S)-2-hexadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] icosanoate
C45H87O13P (866.5883981999999)
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-6-[(2S)-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(E)-hexadec-7-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] henicosanoate
C45H87O13P (866.5883981999999)
[(2S)-2-heptadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] nonadecanoate
C45H87O13P (866.5883981999999)
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-henicosanoyloxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate
C49H87O10P (866.6036531999999)
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(E)-octadec-7-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tridecanoyloxypropyl] tricosanoate
C45H87O13P (866.5883981999999)
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-henicosanoyloxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate
C49H87O10P (866.6036531999999)
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-octadec-17-enoyloxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-6-[3-[(E)-docos-11-enoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-octadec-17-enoyloxypropoxy]oxan-2-yl]methanesulfonic acid
[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] docosanoate
C45H87O13P (866.5883981999999)
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] tricosanoate
C49H87O10P (866.6036531999999)
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
2-[[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-[(Z)-octadec-9-enoxy]-2-[(4E,8E,10E,12Z,14E,19Z)-7,16,17-trihydroxydocosa-4,8,10,12,14,19-hexaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-[(4E,7E,10E,12Z,16E,19Z)-14,21-dihydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy-3-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[[2-[(4E,7E,10E,13E,16E)-19,20-dihydroxydocosa-4,7,10,13,16-pentaenoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H85NO10P+ (866.5910779999999)
2-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-hydroxy-3-[(11Z,14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z,38Z,41Z)-tetratetraconta-11,14,17,20,23,26,29,32,35,38,41-undecaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
1,2-dioctadecanoyl-sn-glycero-3-phospho-(1-myo-inositol)
C45H87O13P (866.5883981999999)
1-hexadecanoyl-2-eicosanoyl-glycero-3-phospho-(1-myo-inositol)
C45H87O13P (866.5883981999999)
1-nonadecanoyl-2-heptadecanoyl-glycero-3-phospho-(1-myo-inositol)
C45H87O13P (866.5883981999999)
1-eicosanoyl-2-hexadecanoyl-glycero-3-phospho-(1-myo-inositol)
C45H87O13P (866.5883981999999)
phosphatidylserine 42:4(1-)
C48H85NO10P (866.5910779999999)
A 3-sn-phosphatidyl-L-serine(1-) in which the acyl groups at C-1 and C-2 contain 42 carbons in total and 4 double bonds.
MGDG(43:9)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
Dianemycin
Dianemycin (Nanchangmycin free acid), a polyether antibiotic produced by Streptomyces nanchangensis NS3226, inhibits gram-positive bacteria[1]. Nanchangmycin is a broad spectrum antiviral active against Zika virus[2].
(2s,4r,6e,8s)-8-[(2s,5r,8r,9s)-9-hydroxy-2-[(4s,5s,9s,10r)-2-[(3s,5r,6r)-6-hydroxy-6-(hydroxymethyl)-3,5-dimethyloxan-2-yl]-9-{[(5s,6r)-5-methoxy-6-methyloxan-2-yl]oxy}-4,10-dimethyl-1,6-dioxaspiro[4.5]decan-7-yl]-2,8-dimethyl-1,6-dioxaspiro[4.5]decan-7-yl]-2,4,6-trimethyl-5-oxonon-6-enoic acid
(2r,3's,3''s,3'as,4's,4''s,5'r,6''r,6'as,7''s,8''r,9''s,10''r,12''s,14''r,15''r,18''s,24''s,25''s,29''r,32''s)-4',6''-dihydroxy-3',3'',4',5,5,5''',5''',7'',9'',24''-decamethyl-3',3'a,6',6'a-tetrahydrotrispiro[oxolane-2,2'-cyclopenta[b]furan-5',28''-[11]oxa-[21,35]diazanonacyclo[18.15.0.0³,¹⁸.0⁴,¹⁵.0⁷,¹⁴.0⁸,¹².0²²,³⁴.0²⁴,³².0²⁵,²⁹]pentatriacontane-10'',2'''-oxolane]-1''(20''),21'',34''-trien-27''-one
C54H78N2O7 (866.5808718000001)
2-{[4-(3-{18-[5-(4-hydroxy-3-methylbut-2-en-1-yl)-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl}-2,2,4-trimethylcyclohex-3-en-1-yl)-2-methylbut-2-en-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(2r,3's,3''s,3'as,4's,4''s,5'r,6''r,6'as,7''s,8''r,9''s,10''r,12''s,14''r,15''r,18''s,24''s,25''r,29''r,32''s)-4',6''-dihydroxy-3',3'',4',5,5,5''',5''',7'',9'',24''-decamethyl-3',3'a,6',6'a-tetrahydrotrispiro[oxolane-2,2'-cyclopenta[b]furan-5',28''-[11]oxa-[21,35]diazanonacyclo[18.15.0.0³,¹⁸.0⁴,¹⁵.0⁷,¹⁴.0⁸,¹².0²²,³⁴.0²⁴,³².0²⁵,²⁹]pentatriacontane-10'',2'''-oxolane]-1''(20''),21'',34''-trien-27''-one
C54H78N2O7 (866.5808718000001)
(2s,3's,3''s,3'as,4's,4''s,5'r,6''r,6'as,7''s,8''r,9''s,10''r,12''s,14''r,15''r,18''s,24''s,25''r,29''r,32''s)-4',6''-dihydroxy-3',3'',4',5,5,5''',5''',7'',9'',24''-decamethyl-3',3'a,6',6'a-tetrahydrotrispiro[oxolane-2,2'-cyclopenta[b]furan-5',28''-[11]oxa-[21,35]diazanonacyclo[18.15.0.0³,¹⁸.0⁴,¹⁵.0⁷,¹⁴.0⁸,¹².0²²,³⁴.0²⁴,³².0²⁵,²⁹]pentatriacontane-10'',2'''-oxolane]-1''(20''),21'',34''-trien-27''-one
C54H78N2O7 (866.5808718000001)
(2r,5s,5's,6's,8'r,9'r,10'r,11's,14'r,17'r,20's,26's,27's,29's,30's,31'r,32's,33'r,35's,37'r,38'r,41's)-5,5',5'',5'',9',11',26',30',32'-nonamethyldispiro[oxane-2,12'-[13,34]dioxa-[2,23]diazundecacyclo[22.18.0.0³,²².0⁵,²⁰.0⁶,¹⁷.0⁹,¹⁶.0¹⁰,¹⁴.0²⁶,⁴¹.0²⁷,³⁸.0³⁰,³⁷.0³¹,³⁵]dotetracontane-33',2''-oxolane]-1',3'(22'),15',23'-tetraene-5,8',29'-triol
C54H78N2O7 (866.5808718000001)
(2r,3r,4s,5s,6r)-2-{[(2e)-4-[(1r)-3-[(1e,3e,5e,7e,9e,11e,13e,15e,17e,19e,21e,23s)-24-hydroxy-3,7,12,16,20,24-hexamethyl-23-(3-methylbut-2-en-1-yl)pentacosa-1,3,5,7,9,11,13,15,17,19,21-undecaen-1-yl]-2,2,4-trimethylcyclohex-3-en-1-yl]-2-methylbut-2-en-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(2s,3's,3''s,3'as,4's,4''s,5'r,6''r,6'as,7''s,8''r,9''s,10''r,12''s,14''r,15''r,18''s,24''s,25''s,29''r,32''s)-4',6''-dihydroxy-3',3'',4',5,5,5''',5''',7'',9'',24''-decamethyl-3',3'a,6',6'a-tetrahydrotrispiro[oxolane-2,2'-cyclopenta[b]furan-5',28''-[11]oxa-[21,35]diazanonacyclo[18.15.0.0³,¹⁸.0⁴,¹⁵.0⁷,¹⁴.0⁸,¹².0²²,³⁴.0²⁴,³².0²⁵,²⁹]pentatriacontane-10'',2'''-oxolane]-1''(20''),21'',34''-trien-27''-one
C54H78N2O7 (866.5808718000001)
(2s,4r,6e,8s)-8-[(2r,3r,5s,7r,8r,9s)-9-hydroxy-2-[(2r,4s,5r,7r,10r)-2-[(2s,3s,5r,6r)-6-hydroxy-6-(hydroxymethyl)-3,5-dimethyloxan-2-yl]-4,10-dimethyl-1,6-dioxaspiro[4.5]decan-7-yl]-3-{[(2s,5s,6r)-5-methoxy-6-methyloxan-2-yl]oxy}-2,8-dimethyl-1,6-dioxaspiro[4.5]decan-7-yl]-2,4,6-trimethyl-5-oxonon-6-enoic acid
(2r,3r,4s,5s,6r)-2-{[(2e)-4-[(1r)-3-[(1e,3e,5e,7e,9e,11e,13e,15e,17e)-18-[(5r)-5-[(2e)-4-hydroxy-3-methylbut-2-en-1-yl]-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-2,2,4-trimethylcyclohex-3-en-1-yl]-2-methylbut-2-en-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
2-[(4-{3-[24-hydroxy-3,7,12,16,20,24-hexamethyl-23-(3-methylbut-2-en-1-yl)pentacosa-1,3,5,7,9,11,13,15,17,19,21-undecaen-1-yl]-2,2,4-trimethylcyclohex-3-en-1-yl}-2-methylbut-2-en-1-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol
(2s,4r,6e,8s)-8-[(2s,3r,5s,7r,8r,9s)-9-hydroxy-2-[(2r,4s,7r,10r)-2-[(2r,3r,5s,6s)-6-hydroxy-6-(hydroxymethyl)-3,5-dimethyloxan-2-yl]-4,10-dimethyl-1,6-dioxaspiro[4.5]decan-7-yl]-3-{[(2s,5s,6r)-5-methoxy-6-methyloxan-2-yl]oxy}-2,8-dimethyl-1,6-dioxaspiro[4.5]decan-7-yl]-2,4,6-trimethyl-5-oxonon-6-enoic acid
(2r,5s,5's,6'r,8'r,9'r,10'r,11's,14's,17'r,20's,26's,27's,29'r,30's,31'r,32's,33'r,35's,37'r,38'r,41's)-5,5',5'',5'',9',11',26',30',32'-nonamethyldispiro[oxane-2,12'-[13,34]dioxa-[2,23]diazundecacyclo[22.18.0.0³,²².0⁵,²⁰.0⁶,¹⁷.0⁹,¹⁶.0¹⁰,¹⁴.0²⁶,⁴¹.0²⁷,³⁸.0³⁰,³⁷.0³¹,³⁵]dotetracontane-33',2''-oxolane]-1',3'(22'),15',23'-tetraene-5,8',29'-triol
C54H78N2O7 (866.5808718000001)