Exact Mass: 865.6252

Exact Mass Matches: 865.6252

Found 500 metabolites which its exact mass value is equals to given mass value 865.6252, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PC(18:3(6Z,9Z,12Z)/24:1(15Z))

trimethyl(2-{[(2R)-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]-2-[(15Z)-tetracos-15-enoyloxy]propyl phosphonato]oxy}ethyl)azanium

C50H92NO8P (865.656)


PC(18:3(6Z,9Z,12Z)/24:1(15Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:3(6Z,9Z,12Z)/24:1(15Z)), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of nervonic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the nervonic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(18:3(6Z,9Z,12Z)/24:1(15Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:3(6Z,9Z,12Z)/24:1(15Z)), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of nervonic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the nervonic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(18:3(9Z,12Z,15Z)/24:1(15Z))

trimethyl(2-{[(2R)-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]-2-[(15Z)-tetracos-15-enoyloxy]propyl phosphonato]oxy}ethyl)azanium

C50H92NO8P (865.656)


PC(18:3(9Z,12Z,15Z)/24:1(15Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:3(9Z,12Z,15Z)/24:1(15Z)), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of nervonic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the nervonic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(18:4(6Z,9Z,12Z,15Z)/24:0)

trimethyl(2-{[(2R)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-2-(tetracosanoyloxy)propyl phosphonato]oxy}ethyl)azanium

C50H92NO8P (865.656)


PC(18:4(6Z,9Z,12Z,15Z)/24:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:4(6Z,9Z,12Z,15Z)/24:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of lignoceric acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the lignoceric acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(18:4(6Z,9Z,12Z,15Z)/24:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:4(6Z,9Z,12Z,15Z)/24:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of lignoceric acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the lignoceric acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(20:0/22:4(7Z,10Z,13Z,16Z))

(2-{[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-(icosanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

C50H92NO8P (865.656)


PC(20:0/22:4(7Z,10Z,13Z,16Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:0/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of adrenic acid at the C-2 position. The arachidic acid moiety is derived from peanut oil, while the adrenic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(20:2(11Z,14Z)/22:2(13Z,16Z))

(2-{[(2R)-2-[(13Z,16Z)-docosa-13,16-dienoyloxy]-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C50H92NO8P (865.656)


PC(20:2(11Z,14Z)/22:2(13Z,16Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:2(11Z,14Z)/22:2(13Z,16Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the docosadienoic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(20:2(11Z,14Z)/22:2(13Z,16Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:2(11Z,14Z)/22:2(13Z,16Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the docosadienoic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(20:3(5Z,8Z,11Z)/22:1(13Z))

(2-{[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C50H92NO8P (865.656)


PC(20:3(5Z,8Z,11Z)/22:1(13Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:3(5Z,8Z,11Z)/22:1(13Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of erucic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the erucic acid moiety is derived from seed oils and avocados. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(20:3(8Z,11Z,14Z)/22:1(13Z))

(2-{[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C50H92NO8P (865.656)


PC(20:3(8Z,11Z,14Z)/22:1(13Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:3(8Z,11Z,14Z)/22:1(13Z)), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of erucic acid at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the erucic acid moiety is derived from seed oils and avocados. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(20:3(8Z,11Z,14Z)/22:1(13Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:3(8Z,11Z,14Z)/22:1(13Z)), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of erucic acid at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the erucic acid moiety is derived from seed oils and avocados. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(20:4(5Z,8Z,11Z,14Z)/22:0)

(2-{[(2R)-2-(docosanoyloxy)-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C50H92NO8P (865.656)


PC(20:4(5Z,8Z,11Z,14Z)/22:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:4(5Z,8Z,11Z,14Z)/22:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of behenic acid at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the behenic acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(20:4(5Z,8Z,11Z,14Z)/22:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:4(5Z,8Z,11Z,14Z)/22:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of behenic acid at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the behenic acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(20:4(8Z,11Z,14Z,17Z)/22:0)

(2-{[(2R)-2-(docosanoyloxy)-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C50H92NO8P (865.656)


PC(20:4(8Z,11Z,14Z,17Z)/22:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:4(8Z,11Z,14Z,17Z)/22:0), in particular, consists of one chain of eicsoatetraenoic acid at the C-1 position and one chain of behenic acid at the C-2 position. The eicsoatetraenoic acid moiety is derived from fish oils, while the behenic acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(20:4(8Z,11Z,14Z,17Z)/22:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:4(8Z,11Z,14Z,17Z)/22:0), in particular, consists of one chain of eicsoatetraenoic acid at the C-1 position and one chain of behenic acid at the C-2 position. The eicsoatetraenoic acid moiety is derived from fish oils, while the behenic acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(22:0/20:4(5Z,8Z,11Z,14Z))

(2-{[(2R)-3-(docosanoyloxy)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C50H92NO8P (865.656)


PC(22:0/20:4(5Z,8Z,11Z,14Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:0/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of behenic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. The behenic acid moiety is derived from groundnut oil, while the arachidonic acid moiety is derived from animal fats and eggs. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(22:0/20:4(5Z,8Z,11Z,14Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:0/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of behenic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. The behenic acid moiety is derived from groundnut oil, while the arachidonic acid moiety is derived from animal fats and eggs. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(22:0/20:4(8Z,11Z,14Z,17Z))

(2-{[(2R)-3-(docosanoyloxy)-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C50H92NO8P (865.656)


PC(22:0/20:4(8Z,11Z,14Z,17Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of behenic acid at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The behenic acid moiety is derived from groundnut oil, while the eicsoatetraenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(22:1(13Z)/20:3(5Z,8Z,11Z))

(2-{[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C50H92NO8P (865.656)


PC(22:1(13Z)/20:3(5Z,8Z,11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:1(13Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of mead acid at the C-2 position. The erucic acid moiety is derived from seed oils and avocados, while the mead acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(22:1(13Z)/20:3(5Z,8Z,11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:1(13Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of mead acid at the C-2 position. The erucic acid moiety is derived from seed oils and avocados, while the mead acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(22:1(13Z)/20:3(8Z,11Z,14Z))

(2-{[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C50H92NO8P (865.656)


PC(22:1(13Z)/20:3(8Z,11Z,14Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:1(13Z)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of homo-g-linolenic acid at the C-2 position. The erucic acid moiety is derived from seed oils and avocados, while the homo-g-linolenic acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(22:2(13Z,16Z)/20:2(11Z,14Z))

(2-{[(2R)-3-[(13Z,16Z)-docosa-13,16-dienoyloxy]-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C50H92NO8P (865.656)


PC(22:2(13Z,16Z)/20:2(11Z,14Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:2(13Z,16Z)/20:2(11Z,14Z)), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The docosadienoic acid moiety is derived from animal fats, while the eicosadienoic acid moiety is derived from fish oils and liver. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(22:4(7Z,10Z,13Z,16Z)/20:0)

(2-{[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-(icosanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

C50H92NO8P (865.656)


PC(22:4(7Z,10Z,13Z,16Z)/20:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:4(7Z,10Z,13Z,16Z)/20:0), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of arachidic acid at the C-2 position. The adrenic acid moiety is derived from animal fats, while the arachidic acid moiety is derived from peanut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(24:0/18:4(6Z,9Z,12Z,15Z))

trimethyl(2-{[(2R)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-3-(tetracosanoyloxy)propyl phosphonato]oxy}ethyl)azanium

C50H92NO8P (865.656)


PC(24:0/18:4(6Z,9Z,12Z,15Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(24:0/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of lignoceric acid at the C-1 position and one chain of stearidonic acid at the C-2 position. The lignoceric acid moiety is derived from groundnut oil, while the stearidonic acid moiety is derived from seed oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(24:0/18:4(6Z,9Z,12Z,15Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(24:0/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of lignoceric acid at the C-1 position and one chain of stearidonic acid at the C-2 position. The lignoceric acid moiety is derived from groundnut oil, while the stearidonic acid moiety is derived from seed oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(24:1(15Z)/18:3(6Z,9Z,12Z))

trimethyl(2-{[(2R)-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]-3-[(15Z)-tetracos-15-enoyloxy]propyl phosphonato]oxy}ethyl)azanium

C50H92NO8P (865.656)


PC(24:1(15Z)/18:3(6Z,9Z,12Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(24:1(15Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The nervonic acid moiety is derived from fish oils, while the g-linolenic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(24:1(15Z)/18:3(9Z,12Z,15Z))

trimethyl(2-{[(2R)-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]-3-[(15Z)-tetracos-15-enoyloxy]propyl phosphonato]oxy}ethyl)azanium

C50H92NO8P (865.656)


PC(24:1(15Z)/18:3(9Z,12Z,15Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(24:1(15Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The nervonic acid moiety is derived from fish oils, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PE-NMe(20:3(5Z,8Z,11Z)/24:1(15Z))

{3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-2-[(15Z)-tetracos-15-enoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C50H92NO8P (865.656)


PE-NMe(20:3(5Z,8Z,11Z)/24:1(15Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:3(5Z,8Z,11Z)/24:1(15Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of nervonic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(20:3(8Z,11Z,14Z)/24:1(15Z))

{3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-2-[(15Z)-tetracos-15-enoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C50H92NO8P (865.656)


PE-NMe(20:3(8Z,11Z,14Z)/24:1(15Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:3(8Z,11Z,14Z)/24:1(15Z)), in particular, consists of one chain of dihomo-gamma-linolenic acid at the C-1 position and one chain of nervonic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(20:4(5Z,8Z,11Z,14Z)/24:0)

{3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-2-(tetracosanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C50H92NO8P (865.656)


PE-NMe(20:4(5Z,8Z,11Z,14Z)/24:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:4(5Z,8Z,11Z,14Z)/24:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of lignoceric acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(20:4(8Z,11Z,14Z,17Z)/24:0)

{3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]-2-(tetracosanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C50H92NO8P (865.656)


PE-NMe(20:4(8Z,11Z,14Z,17Z)/24:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:4(8Z,11Z,14Z,17Z)/24:0), in particular, consists of one chain of eicosatetraenoic acid at the C-1 position and one chain of lignoceric acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(22:0/22:4(7Z,10Z,13Z,16Z))

{2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-(docosanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C50H92NO8P (865.656)


PE-NMe(22:0/22:4(7Z,10Z,13Z,16Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(22:0/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of behenic acid at the C-1 position and one chain of adrenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(22:2(13Z,16Z)/22:2(13Z,16Z))

{2,3-bis[(13Z,16Z)-docosa-13,16-dienoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C50H92NO8P (865.656)


PE-NMe(22:2(13Z,16Z)/22:2(13Z,16Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(22:2(13Z,16Z)/22:2(13Z,16Z)), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(22:4(7Z,10Z,13Z,16Z)/22:0)

{3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-(docosanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C50H92NO8P (865.656)


PE-NMe(22:4(7Z,10Z,13Z,16Z)/22:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(22:4(7Z,10Z,13Z,16Z)/22:0), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of behenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(24:0/20:4(5Z,8Z,11Z,14Z))

{2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-3-(tetracosanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C50H92NO8P (865.656)


PE-NMe(24:0/20:4(5Z,8Z,11Z,14Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(24:0/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of lignoceric acid at the C-1 position and one chain of arachidonic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(24:0/20:4(8Z,11Z,14Z,17Z))

{2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]-3-(tetracosanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C50H92NO8P (865.656)


PE-NMe(24:0/20:4(8Z,11Z,14Z,17Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(24:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of lignoceric acid at the C-1 position and one chain of eicosatetraenoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(24:1(15Z)/20:3(5Z,8Z,11Z))

{2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-3-[(15Z)-tetracos-15-enoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C50H92NO8P (865.656)


PE-NMe(24:1(15Z)/20:3(5Z,8Z,11Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(24:1(15Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of mead acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(24:1(15Z)/20:3(8Z,11Z,14Z))

{2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-3-[(15Z)-tetracos-15-enoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C50H92NO8P (865.656)


PE-NMe(24:1(15Z)/20:3(8Z,11Z,14Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(24:1(15Z)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of dihomo-gamma-linolenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE(24:0/20:4(6E,8Z,11Z,14Z)+=O(5))

(2-aminoethoxy)[(2R)-2-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}-3-(tetracosanoyloxy)propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(24:0/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(24:0/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of one tetracosanoyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(6E,8Z,11Z,14Z)+=O(5)/24:0)

(2-aminoethoxy)[(2R)-3-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}-2-(tetracosanoyloxy)propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(20:4(6E,8Z,11Z,14Z)+=O(5)/24:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(6E,8Z,11Z,14Z)+=O(5)/24:0), in particular, consists of one chain of one 5-oxo-eicosatetraenoyl at the C-1 position and one chain of tetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(24:0/20:4(5Z,8Z,11Z,13E)+=O(15))

(2-aminoethoxy)[(2R)-2-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}-3-(tetracosanoyloxy)propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(24:0/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(24:0/20:4(5Z,8Z,11Z,13E)+=O(15)), in particular, consists of one chain of one tetracosanoyl at the C-1 position and one chain of 15-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(5Z,8Z,11Z,13E)+=O(15)/24:0)

(2-aminoethoxy)[(2R)-3-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}-2-(tetracosanoyloxy)propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(20:4(5Z,8Z,11Z,13E)+=O(15)/24:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(5Z,8Z,11Z,13E)+=O(15)/24:0), in particular, consists of one chain of one 15-oxo-eicosatetraenoyl at the C-1 position and one chain of tetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(24:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

(2-aminoethoxy)[(2R)-2-{[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-3-(tetracosanoyloxy)propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(24:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(24:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)), in particular, consists of one chain of one tetracosanoyl at the C-1 position and one chain of 18-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/24:0)

(2-aminoethoxy)[(2R)-3-{[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-2-(tetracosanoyloxy)propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/24:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/24:0), in particular, consists of one chain of one 18-hydroxyleicosapentaenoyl at the C-1 position and one chain of tetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(24:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

(2-aminoethoxy)[(2R)-2-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-3-(tetracosanoyloxy)propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(24:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(24:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)), in particular, consists of one chain of one tetracosanoyl at the C-1 position and one chain of 15-hydroxyleicosapentaenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/24:0)

(2-aminoethoxy)[(2R)-3-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-2-(tetracosanoyloxy)propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/24:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/24:0), in particular, consists of one chain of one 15-hydroxyleicosapentaenyl at the C-1 position and one chain of tetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(24:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

(2-aminoethoxy)[(2R)-2-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-3-(tetracosanoyloxy)propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(24:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(24:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)), in particular, consists of one chain of one tetracosanoyl at the C-1 position and one chain of 12-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/24:0)

(2-aminoethoxy)[(2R)-3-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-2-(tetracosanoyloxy)propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/24:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/24:0), in particular, consists of one chain of one 12-hydroxyleicosapentaenoyl at the C-1 position and one chain of tetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(24:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

(2-aminoethoxy)[(2R)-2-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-3-(tetracosanoyloxy)propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(24:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(24:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)), in particular, consists of one chain of one tetracosanoyl at the C-1 position and one chain of 5-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/24:0)

(2-aminoethoxy)[(2R)-3-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-2-(tetracosanoyloxy)propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/24:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/24:0), in particular, consists of one chain of one 5-hydroxyleicosapentaenoyl at the C-1 position and one chain of tetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(24:1(15Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

(2-aminoethoxy)[(2R)-2-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}-3-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(24:1(15Z)/20:3(5Z,8Z,11Z)-O(14R,15S)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(24:1(15Z)/20:3(5Z,8Z,11Z)-O(14R,15S)), in particular, consists of one chain of one 15Z-tetracosenoyl at the C-1 position and one chain of 14,15-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:3(5Z,8Z,11Z)-O(14R,15S)/24:1(15Z))

(2-aminoethoxy)[(2R)-3-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}-2-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(20:3(5Z,8Z,11Z)-O(14R,15S)/24:1(15Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:3(5Z,8Z,11Z)-O(14R,15S)/24:1(15Z)), in particular, consists of one chain of one 14,15-epoxyeicosatrienoyl at the C-1 position and one chain of 15Z-tetracosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(24:1(15Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

(2-aminoethoxy)[(2R)-2-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}-3-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(24:1(15Z)/20:3(5Z,8Z,14Z)-O(11S,12R)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(24:1(15Z)/20:3(5Z,8Z,14Z)-O(11S,12R)), in particular, consists of one chain of one 15Z-tetracosenoyl at the C-1 position and one chain of 11,12-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:3(5Z,8Z,14Z)-O(11S,12R)/24:1(15Z))

(2-aminoethoxy)[(2R)-3-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}-2-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(20:3(5Z,8Z,14Z)-O(11S,12R)/24:1(15Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:3(5Z,8Z,14Z)-O(11S,12R)/24:1(15Z)), in particular, consists of one chain of one 11,12-epoxyeicosatrienoyl at the C-1 position and one chain of 15Z-tetracosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(24:1(15Z)/20:3(5Z,11Z,14Z)-O(8,9))

(2-aminoethoxy)[(2R)-3-[(15Z)-tetracos-15-enoyloxy]-2-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(24:1(15Z)/20:3(5Z,11Z,14Z)-O(8,9)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(24:1(15Z)/20:3(5Z,11Z,14Z)-O(8,9)), in particular, consists of one chain of one 15Z-tetracosenoyl at the C-1 position and one chain of 8,9--epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:3(5Z,11Z,14Z)-O(8,9)/24:1(15Z))

(2-aminoethoxy)[(2R)-2-[(15Z)-tetracos-15-enoyloxy]-3-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(20:3(5Z,11Z,14Z)-O(8,9)/24:1(15Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:3(5Z,11Z,14Z)-O(8,9)/24:1(15Z)), in particular, consists of one chain of one 8,9--epoxyeicosatrienoyl at the C-1 position and one chain of 15Z-tetracosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(24:1(15Z)/20:3(8Z,11Z,14Z)-O(5,6))

(2-aminoethoxy)[(2R)-3-[(15Z)-tetracos-15-enoyloxy]-2-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(24:1(15Z)/20:3(8Z,11Z,14Z)-O(5,6)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(24:1(15Z)/20:3(8Z,11Z,14Z)-O(5,6)), in particular, consists of one chain of one 15Z-tetracosenoyl at the C-1 position and one chain of 5,6-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:3(8Z,11Z,14Z)-O(5,6)/24:1(15Z))

(2-aminoethoxy)[(2R)-2-[(15Z)-tetracos-15-enoyloxy]-3-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(20:3(8Z,11Z,14Z)-O(5,6)/24:1(15Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:3(8Z,11Z,14Z)-O(5,6)/24:1(15Z)), in particular, consists of one chain of one 5,6-epoxyeicosatrienoyl at the C-1 position and one chain of 15Z-tetracosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(24:1(15Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

(2-aminoethoxy)[(2R)-2-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(24:1(15Z)/20:4(5Z,8Z,11Z,14Z)-OH(20)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(24:1(15Z)/20:4(5Z,8Z,11Z,14Z)-OH(20)), in particular, consists of one chain of one 15Z-tetracosenoyl at the C-1 position and one chain of 20-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(5Z,8Z,11Z,14Z)-OH(20)/24:1(15Z))

(2-aminoethoxy)[(2R)-3-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(20:4(5Z,8Z,11Z,14Z)-OH(20)/24:1(15Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(5Z,8Z,11Z,14Z)-OH(20)/24:1(15Z)), in particular, consists of one chain of one 20-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 15Z-tetracosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(24:1(15Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

(2-aminoethoxy)[(2R)-2-{[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-3-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(24:1(15Z)/20:4(6E,8Z,11Z,14Z)-OH(5S)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(24:1(15Z)/20:4(6E,8Z,11Z,14Z)-OH(5S)), in particular, consists of one chain of one 15Z-tetracosenoyl at the C-1 position and one chain of 5-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(6E,8Z,11Z,14Z)-OH(5S)/24:1(15Z))

(2-aminoethoxy)[(2R)-3-{[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-2-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(20:4(6E,8Z,11Z,14Z)-OH(5S)/24:1(15Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(6E,8Z,11Z,14Z)-OH(5S)/24:1(15Z)), in particular, consists of one chain of one 5-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 15Z-tetracosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(24:1(15Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

(2-aminoethoxy)[(2R)-2-{[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(24:1(15Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(24:1(15Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S)), in particular, consists of one chain of one 15Z-tetracosenoyl at the C-1 position and one chain of 19-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(5Z,8Z,11Z,14Z)-OH(19S)/24:1(15Z))

(2-aminoethoxy)[(2R)-3-{[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(20:4(5Z,8Z,11Z,14Z)-OH(19S)/24:1(15Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(5Z,8Z,11Z,14Z)-OH(19S)/24:1(15Z)), in particular, consists of one chain of one 19-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 15Z-tetracosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(24:1(15Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

(2-aminoethoxy)[(2R)-2-{[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(24:1(15Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(24:1(15Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R)), in particular, consists of one chain of one 15Z-tetracosenoyl at the C-1 position and one chain of 18-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(5Z,8Z,11Z,14Z)-OH(18R)/24:1(15Z))

(2-aminoethoxy)[(2R)-3-{[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(20:4(5Z,8Z,11Z,14Z)-OH(18R)/24:1(15Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(5Z,8Z,11Z,14Z)-OH(18R)/24:1(15Z)), in particular, consists of one chain of one 18-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 15Z-tetracosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(24:1(15Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

(2-aminoethoxy)[(2R)-2-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(24:1(15Z)/20:4(5Z,8Z,11Z,14Z)-OH(17)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(24:1(15Z)/20:4(5Z,8Z,11Z,14Z)-OH(17)), in particular, consists of one chain of one 15Z-tetracosenoyl at the C-1 position and one chain of 17-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(5Z,8Z,11Z,14Z)-OH(17)/24:1(15Z))

(2-aminoethoxy)[(2R)-3-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(20:4(5Z,8Z,11Z,14Z)-OH(17)/24:1(15Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(5Z,8Z,11Z,14Z)-OH(17)/24:1(15Z)), in particular, consists of one chain of one 17-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 15Z-tetracosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(24:1(15Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

(2-aminoethoxy)[(2R)-2-{[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(24:1(15Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(24:1(15Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R)), in particular, consists of one chain of one 15Z-tetracosenoyl at the C-1 position and one chain of 16-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(5Z,8Z,11Z,14Z)-OH(16R)/24:1(15Z))

(2-aminoethoxy)[(2R)-3-{[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(20:4(5Z,8Z,11Z,14Z)-OH(16R)/24:1(15Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(5Z,8Z,11Z,14Z)-OH(16R)/24:1(15Z)), in particular, consists of one chain of one 16-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 15Z-tetracosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(24:1(15Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

(2-aminoethoxy)[(2R)-2-{[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-3-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(24:1(15Z)/20:4(5Z,8Z,11Z,13E)-OH(15S)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(24:1(15Z)/20:4(5Z,8Z,11Z,13E)-OH(15S)), in particular, consists of one chain of one 15Z-tetracosenoyl at the C-1 position and one chain of 15-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(5Z,8Z,11Z,13E)-OH(15S)/24:1(15Z))

(2-aminoethoxy)[(2R)-3-{[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-2-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(20:4(5Z,8Z,11Z,13E)-OH(15S)/24:1(15Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(5Z,8Z,11Z,13E)-OH(15S)/24:1(15Z)), in particular, consists of one chain of one 15-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 15Z-tetracosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(24:1(15Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

(2-aminoethoxy)[(2R)-2-{[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-3-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(24:1(15Z)/20:4(5Z,8Z,10E,14Z)-OH(12S)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(24:1(15Z)/20:4(5Z,8Z,10E,14Z)-OH(12S)), in particular, consists of one chain of one 15Z-tetracosenoyl at the C-1 position and one chain of 12-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(5Z,8Z,10E,14Z)-OH(12S)/24:1(15Z))

(2-aminoethoxy)[(2R)-3-{[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-2-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(20:4(5Z,8Z,10E,14Z)-OH(12S)/24:1(15Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(5Z,8Z,10E,14Z)-OH(12S)/24:1(15Z)), in particular, consists of one chain of one 12-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 15Z-tetracosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(24:1(15Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

(2-aminoethoxy)[(2R)-2-{[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-3-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(24:1(15Z)/20:4(5E,8Z,12Z,14Z)-OH(11R)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(24:1(15Z)/20:4(5E,8Z,12Z,14Z)-OH(11R)), in particular, consists of one chain of one 15Z-tetracosenoyl at the C-1 position and one chain of 11-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(5E,8Z,12Z,14Z)-OH(11R)/24:1(15Z))

(2-aminoethoxy)[(2R)-3-{[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-2-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(20:4(5E,8Z,12Z,14Z)-OH(11R)/24:1(15Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(5E,8Z,12Z,14Z)-OH(11R)/24:1(15Z)), in particular, consists of one chain of one 11-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 15Z-tetracosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(24:1(15Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

(2-aminoethoxy)[(2R)-2-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-3-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(24:1(15Z)/20:4(5Z,7E,11Z,14Z)-OH(9)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(24:1(15Z)/20:4(5Z,7E,11Z,14Z)-OH(9)), in particular, consists of one chain of one 15Z-tetracosenoyl at the C-1 position and one chain of 9-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(5Z,7E,11Z,14Z)-OH(9)/24:1(15Z))

(2-aminoethoxy)[(2R)-3-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-2-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

C49H88NO9P (865.6196)


PE(20:4(5Z,7E,11Z,14Z)-OH(9)/24:1(15Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(5Z,7E,11Z,14Z)-OH(9)/24:1(15Z)), in particular, consists of one chain of one 9-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 15Z-tetracosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PC(22:3(10Z,13Z,16Z)/18:1(12Z)-O(9S,10R))

trimethyl(2-{[(2R)-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]-3-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propyl phosphono]oxy}ethyl)azanium

C49H88NO9P (865.6196)


PC(22:3(10Z,13Z,16Z)/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:3(10Z,13Z,16Z)/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:1(12Z)-O(9S,10R)/22:3(10Z,13Z,16Z))

trimethyl(2-{[(2R)-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]-2-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propyl phosphono]oxy}ethyl)azanium

C49H88NO9P (865.6196)


PC(18:1(12Z)-O(9S,10R)/22:3(10Z,13Z,16Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:1(12Z)-O(9S,10R)/22:3(10Z,13Z,16Z)), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:3(10Z,13Z,16Z)/18:1(9Z)-O(12,13))

trimethyl(2-{[(2R)-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}-3-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propyl phosphono]oxy}ethyl)azanium

C49H88NO9P (865.6196)


PC(22:3(10Z,13Z,16Z)/18:1(9Z)-O(12,13)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:3(10Z,13Z,16Z)/18:1(9Z)-O(12,13)), in particular, consists of one chain of one 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:1(9Z)-O(12,13)/22:3(10Z,13Z,16Z))

trimethyl(2-{[(2R)-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}-2-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propyl phosphono]oxy}ethyl)azanium

C49H88NO9P (865.6196)


PC(18:1(9Z)-O(12,13)/22:3(10Z,13Z,16Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:1(9Z)-O(12,13)/22:3(10Z,13Z,16Z)), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

Phosphatidylcholine 22:0-20:4

Phosphatidylcholine 22:0-20:4

C50H92NO8P (865.656)


   
   

PI-Cer(d18:0/22:0)

N-(docosanoyl)-sphinganine-1-phospho-(1-myo-inositol)

C46H92NO11P (865.6408)


   

PI-Cer(d20:0/20:0)

N-(eicosanoyl)-eicosasphinganine-1-phospho-(1-myo-inositol)

C46H92NO11P (865.6408)


   

Lecithin

1-erucoyl-2-homo-gamma-linolenoyl-sn-glycero-3-phosphocholine

C50H92NO8P (865.656)


   

PC(20:3(8Z,11Z,14Z)/22:1(11Z))

1-(8Z,11Z,14Z-eicosatrienoyl)-2-(11Z-docosenoyl)-glycero-3-phosphocholine

C50H92NO8P (865.656)


   

PC(22:1(11Z)/20:3(8Z,11Z,14Z))

1-(11Z-docosenoyl)-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phosphocholine

C50H92NO8P (865.656)


   

PC 42:4

1-(15Z-tetracosenoyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-sn-glycero-3-phosphocholine

C50H92NO8P (865.656)


   

Am-Hex-PE O-34:1

N-(1-deoxyfructosyl)-1-hexadecyl-2-(9Z-octadecenoyl)-glycero-3-phosphoethanolamine

C45H88NO12P (865.6044)


   

Am-Hex-PE O-34:2

N-(1-deoxyfructosyl)-1-(1Z-hexadecenyl)-2-(9Z-octadecenoyl)-glycero-3-phosphoethanolamine

C45H88NO12P (865.6044)


   

IPC 40:0;O2

N-(eicosanoyl)-eicosasphinganine-1-phospho-(1-myo-inositol)

C46H92NO11P (865.6408)


   

PE(24:0/20:4(6E,8Z,11Z,14Z)+=O(5))

PE(24:0/20:4(6E,8Z,11Z,14Z)+=O(5))

C49H88NO9P (865.6196)


   

PE(20:4(6E,8Z,11Z,14Z)+=O(5)/24:0)

PE(20:4(6E,8Z,11Z,14Z)+=O(5)/24:0)

C49H88NO9P (865.6196)


   

PE(24:0/20:4(5Z,8Z,11Z,13E)+=O(15))

PE(24:0/20:4(5Z,8Z,11Z,13E)+=O(15))

C49H88NO9P (865.6196)


   

PE(20:4(5Z,8Z,11Z,13E)+=O(15)/24:0)

PE(20:4(5Z,8Z,11Z,13E)+=O(15)/24:0)

C49H88NO9P (865.6196)


   

PE(24:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

PE(24:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C49H88NO9P (865.6196)


   

PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/24:0)

PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/24:0)

C49H88NO9P (865.6196)


   

PE(24:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

PE(24:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C49H88NO9P (865.6196)


   

PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/24:0)

PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/24:0)

C49H88NO9P (865.6196)


   

PE(24:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

PE(24:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C49H88NO9P (865.6196)


   

PE(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/24:0)

PE(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/24:0)

C49H88NO9P (865.6196)


   

PE(24:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

PE(24:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C49H88NO9P (865.6196)


   

PE(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/24:0)

PE(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/24:0)

C49H88NO9P (865.6196)


   

PE(24:1(15Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

PE(24:1(15Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

C49H88NO9P (865.6196)


   

PE(20:3(5Z,8Z,11Z)-O(14R,15S)/24:1(15Z))

PE(20:3(5Z,8Z,11Z)-O(14R,15S)/24:1(15Z))

C49H88NO9P (865.6196)


   

PE(24:1(15Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

PE(24:1(15Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

C49H88NO9P (865.6196)


   

PE(20:3(5Z,8Z,14Z)-O(11S,12R)/24:1(15Z))

PE(20:3(5Z,8Z,14Z)-O(11S,12R)/24:1(15Z))

C49H88NO9P (865.6196)


   

PE(24:1(15Z)/20:3(5Z,11Z,14Z)-O(8,9))

PE(24:1(15Z)/20:3(5Z,11Z,14Z)-O(8,9))

C49H88NO9P (865.6196)


   

PE(20:3(5Z,11Z,14Z)-O(8,9)/24:1(15Z))

PE(20:3(5Z,11Z,14Z)-O(8,9)/24:1(15Z))

C49H88NO9P (865.6196)


   

PE(24:1(15Z)/20:3(8Z,11Z,14Z)-O(5,6))

PE(24:1(15Z)/20:3(8Z,11Z,14Z)-O(5,6))

C49H88NO9P (865.6196)


   

PE(20:3(8Z,11Z,14Z)-O(5,6)/24:1(15Z))

PE(20:3(8Z,11Z,14Z)-O(5,6)/24:1(15Z))

C49H88NO9P (865.6196)


   

PE(24:1(15Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

PE(24:1(15Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

C49H88NO9P (865.6196)


   

PE(20:4(5Z,8Z,11Z,14Z)-OH(20)/24:1(15Z))

PE(20:4(5Z,8Z,11Z,14Z)-OH(20)/24:1(15Z))

C49H88NO9P (865.6196)


   

PE(24:1(15Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

PE(24:1(15Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

C49H88NO9P (865.6196)


   

PE(20:4(6E,8Z,11Z,14Z)-OH(5S)/24:1(15Z))

PE(20:4(6E,8Z,11Z,14Z)-OH(5S)/24:1(15Z))

C49H88NO9P (865.6196)


   

PE(24:1(15Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

PE(24:1(15Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C49H88NO9P (865.6196)


   

PE(20:4(5Z,8Z,11Z,14Z)-OH(19S)/24:1(15Z))

PE(20:4(5Z,8Z,11Z,14Z)-OH(19S)/24:1(15Z))

C49H88NO9P (865.6196)


   

PE(24:1(15Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

PE(24:1(15Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C49H88NO9P (865.6196)


   

PE(20:4(5Z,8Z,11Z,14Z)-OH(18R)/24:1(15Z))

PE(20:4(5Z,8Z,11Z,14Z)-OH(18R)/24:1(15Z))

C49H88NO9P (865.6196)


   

PE(24:1(15Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

PE(24:1(15Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

C49H88NO9P (865.6196)


   

PE(20:4(5Z,8Z,11Z,14Z)-OH(17)/24:1(15Z))

PE(20:4(5Z,8Z,11Z,14Z)-OH(17)/24:1(15Z))

C49H88NO9P (865.6196)


   

PE(24:1(15Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

PE(24:1(15Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C49H88NO9P (865.6196)


   

PE(20:4(5Z,8Z,11Z,14Z)-OH(16R)/24:1(15Z))

PE(20:4(5Z,8Z,11Z,14Z)-OH(16R)/24:1(15Z))

C49H88NO9P (865.6196)


   

PE(24:1(15Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

PE(24:1(15Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

C49H88NO9P (865.6196)


   

PE(20:4(5Z,8Z,11Z,13E)-OH(15S)/24:1(15Z))

PE(20:4(5Z,8Z,11Z,13E)-OH(15S)/24:1(15Z))

C49H88NO9P (865.6196)


   

PE(24:1(15Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

PE(24:1(15Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

C49H88NO9P (865.6196)


   

PE(20:4(5Z,8Z,10E,14Z)-OH(12S)/24:1(15Z))

PE(20:4(5Z,8Z,10E,14Z)-OH(12S)/24:1(15Z))

C49H88NO9P (865.6196)


   

PE(24:1(15Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

PE(24:1(15Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

C49H88NO9P (865.6196)


   

PE(20:4(5E,8Z,12Z,14Z)-OH(11R)/24:1(15Z))

PE(20:4(5E,8Z,12Z,14Z)-OH(11R)/24:1(15Z))

C49H88NO9P (865.6196)


   

PE(24:1(15Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

PE(24:1(15Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

C49H88NO9P (865.6196)


   

PE(20:4(5Z,7E,11Z,14Z)-OH(9)/24:1(15Z))

PE(20:4(5Z,7E,11Z,14Z)-OH(9)/24:1(15Z))

C49H88NO9P (865.6196)


   

PC(22:3(10Z,13Z,16Z)/18:1(12Z)-O(9S,10R))

PC(22:3(10Z,13Z,16Z)/18:1(12Z)-O(9S,10R))

C49H88NO9P (865.6196)


   

PC(18:1(12Z)-O(9S,10R)/22:3(10Z,13Z,16Z))

PC(18:1(12Z)-O(9S,10R)/22:3(10Z,13Z,16Z))

C49H88NO9P (865.6196)


   

PC(22:3(10Z,13Z,16Z)/18:1(9Z)-O(12,13))

PC(22:3(10Z,13Z,16Z)/18:1(9Z)-O(12,13))

C49H88NO9P (865.6196)


   

PC(18:1(9Z)-O(12,13)/22:3(10Z,13Z,16Z))

PC(18:1(9Z)-O(12,13)/22:3(10Z,13Z,16Z))

C49H88NO9P (865.6196)


   

[(2S,3R)-2-(docosanoylamino)-3-hydroxyoctadecyl] [(2R,3S,5R,6R)-2,3,4,5,6-pentahydroxycyclohexyl] hydrogen phosphate

[(2S,3R)-2-(docosanoylamino)-3-hydroxyoctadecyl] [(2R,3S,5R,6R)-2,3,4,5,6-pentahydroxycyclohexyl] hydrogen phosphate

C46H92NO11P (865.6408)


   

[(2S,3R)-3-hydroxy-2-(icosanoylamino)icosyl] [(2R,3S,5R,6R)-2,3,4,5,6-pentahydroxycyclohexyl] hydrogen phosphate

[(2S,3R)-3-hydroxy-2-(icosanoylamino)icosyl] [(2R,3S,5R,6R)-2,3,4,5,6-pentahydroxycyclohexyl] hydrogen phosphate

C46H92NO11P (865.6408)


   

myristoyl-Aib-Hyp-DL-Leu-Val-Gln-Leu-ol

myristoyl-Aib-Hyp-DL-Leu-Val-Gln-Leu-ol

C45H83N7O9 (865.6252)


   

[3-docosanoyloxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-docosanoyloxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[3-octadecanoyloxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-octadecanoyloxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   
   
   

HexCer 9:1;2O/38:8

HexCer 9:1;2O/38:8

C53H87NO8 (865.6431)


   

HexCer 9:0;2O/38:9

HexCer 9:0;2O/38:9

C53H87NO8 (865.6431)


   

HexCer 17:1;2O/30:8

HexCer 17:1;2O/30:8

C53H87NO8 (865.6431)


   

HexCer 11:1;2O/36:8

HexCer 11:1;2O/36:8

C53H87NO8 (865.6431)


   

HexCer 19:3;2O/28:6

HexCer 19:3;2O/28:6

C53H87NO8 (865.6431)


   

HexCer 21:2;2O/26:7

HexCer 21:2;2O/26:7

C53H87NO8 (865.6431)


   

HexCer 13:0;2O/34:9

HexCer 13:0;2O/34:9

C53H87NO8 (865.6431)


   

HexCer 13:1;2O/34:8

HexCer 13:1;2O/34:8

C53H87NO8 (865.6431)


   

HexCer 19:2;2O/28:7

HexCer 19:2;2O/28:7

C53H87NO8 (865.6431)


   

HexCer 11:0;2O/36:9

HexCer 11:0;2O/36:9

C53H87NO8 (865.6431)


   

HexCer 15:2;2O/32:7

HexCer 15:2;2O/32:7

C53H87NO8 (865.6431)


   

HexCer 15:3;2O/32:6

HexCer 15:3;2O/32:6

C53H87NO8 (865.6431)


   

HexCer 17:2;2O/30:7

HexCer 17:2;2O/30:7

C53H87NO8 (865.6431)


   

HexCer 23:3;2O/24:6

HexCer 23:3;2O/24:6

C53H87NO8 (865.6431)


   

HexCer 21:3;2O/26:6

HexCer 21:3;2O/26:6

C53H87NO8 (865.6431)


   

HexCer 13:2;2O/34:7

HexCer 13:2;2O/34:7

C53H87NO8 (865.6431)


   

HexCer 15:1;2O/32:8

HexCer 15:1;2O/32:8

C53H87NO8 (865.6431)


   

HexCer 15:0;2O/32:9

HexCer 15:0;2O/32:9

C53H87NO8 (865.6431)


   

HexCer 25:3;2O/22:6

HexCer 25:3;2O/22:6

C53H87NO8 (865.6431)


   

HexCer 17:3;2O/30:6

HexCer 17:3;2O/30:6

C53H87NO8 (865.6431)


   

SHexCer 17:0;2O/22:1;O

SHexCer 17:0;2O/22:1;O

C45H87NO12S (865.5949)


   

SHexCer 16:0;2O/23:1;O

SHexCer 16:0;2O/23:1;O

C45H87NO12S (865.5949)


   

SHexCer 18:0;2O/21:1;O

SHexCer 18:0;2O/21:1;O

C45H87NO12S (865.5949)


   

SHexCer 25:1;2O/14:0;O

SHexCer 25:1;2O/14:0;O

C45H87NO12S (865.5949)


   

SHexCer 22:1;2O/17:0;O

SHexCer 22:1;2O/17:0;O

C45H87NO12S (865.5949)


   

SHexCer 20:0;2O/19:1;O

SHexCer 20:0;2O/19:1;O

C45H87NO12S (865.5949)


   

SHexCer 13:0;2O/26:1;O

SHexCer 13:0;2O/26:1;O

C45H87NO12S (865.5949)


   

SHexCer 13:1;2O/26:0;O

SHexCer 13:1;2O/26:0;O

C45H87NO12S (865.5949)


   

SHexCer 26:1;2O/13:0;O

SHexCer 26:1;2O/13:0;O

C45H87NO12S (865.5949)


   

SHexCer 17:1;2O/22:0;O

SHexCer 17:1;2O/22:0;O

C45H87NO12S (865.5949)


   

SHexCer 24:1;2O/15:0;O

SHexCer 24:1;2O/15:0;O

C45H87NO12S (865.5949)


   

SHexCer 21:1;2O/18:0;O

SHexCer 21:1;2O/18:0;O

C45H87NO12S (865.5949)


   

SHexCer 23:0;2O/16:1;O

SHexCer 23:0;2O/16:1;O

C45H87NO12S (865.5949)


   

SHexCer 26:0;2O/13:1;O

SHexCer 26:0;2O/13:1;O

C45H87NO12S (865.5949)


   

SHexCer 19:0;2O/20:1;O

SHexCer 19:0;2O/20:1;O

C45H87NO12S (865.5949)


   

SHexCer 16:1;2O/23:0;O

SHexCer 16:1;2O/23:0;O

C45H87NO12S (865.5949)


   

SHexCer 14:0;2O/25:1;O

SHexCer 14:0;2O/25:1;O

C45H87NO12S (865.5949)


   

SHexCer 14:1;2O/25:0;O

SHexCer 14:1;2O/25:0;O

C45H87NO12S (865.5949)


   

SHexCer 20:1;2O/19:0;O

SHexCer 20:1;2O/19:0;O

C45H87NO12S (865.5949)


   

SHexCer 24:0;2O/15:1;O

SHexCer 24:0;2O/15:1;O

C45H87NO12S (865.5949)


   

SHexCer 15:0;2O/24:1;O

SHexCer 15:0;2O/24:1;O

C45H87NO12S (865.5949)


   

SHexCer 18:1;2O/21:0;O

SHexCer 18:1;2O/21:0;O

C45H87NO12S (865.5949)


   

SHexCer 21:0;2O/18:1;O

SHexCer 21:0;2O/18:1;O

C45H87NO12S (865.5949)


   

SHexCer 15:1;2O/24:0;O

SHexCer 15:1;2O/24:0;O

C45H87NO12S (865.5949)


   

SHexCer 23:1;2O/16:0;O

SHexCer 23:1;2O/16:0;O

C45H87NO12S (865.5949)


   

SHexCer 19:1;2O/20:0;O

SHexCer 19:1;2O/20:0;O

C45H87NO12S (865.5949)


   

SHexCer 25:0;2O/14:1;O

SHexCer 25:0;2O/14:1;O

C45H87NO12S (865.5949)


   

HexCer 15:2;2O/29:2;2O

HexCer 15:2;2O/29:2;2O

C50H91NO10 (865.6643)


   

HexCer 14:2;2O/30:2;2O

HexCer 14:2;2O/30:2;2O

C50H91NO10 (865.6643)


   

HexCer 16:1;2O/28:3;2O

HexCer 16:1;2O/28:3;2O

C50H91NO10 (865.6643)


   

HexCer 15:1;2O/29:3;2O

HexCer 15:1;2O/29:3;2O

C50H91NO10 (865.6643)


   

HexCer 14:1;2O/30:3;2O

HexCer 14:1;2O/30:3;2O

C50H91NO10 (865.6643)


   

2-[3-nonanoyloxy-2-[(10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-10,13,16,19,22,25,28,31-octaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-nonanoyloxy-2-[(10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-10,13,16,19,22,25,28,31-octaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C53H87NO8 (865.6431)


   

HexCer 16:3;2O/28:1;2O

HexCer 16:3;2O/28:1;2O

C50H91NO10 (865.6643)


   

HexCer 15:3;2O/29:1;2O

HexCer 15:3;2O/29:1;2O

C50H91NO10 (865.6643)


   

HexCer 14:3;2O/30:1;2O

HexCer 14:3;2O/30:1;2O

C50H91NO10 (865.6643)


   

HexCer 16:2;2O/28:2;2O

HexCer 16:2;2O/28:2;2O

C50H91NO10 (865.6643)


   

Lnape 26:3/N-19:1

Lnape 26:3/N-19:1

C50H92NO8P (865.656)


   

Lnape 21:1/N-24:3

Lnape 21:1/N-24:3

C50H92NO8P (865.656)


   

Lnape 18:4/N-27:0

Lnape 18:4/N-27:0

C50H92NO8P (865.656)


   

Lnape 20:4/N-25:0

Lnape 20:4/N-25:0

C50H92NO8P (865.656)


   

Lnape 24:3/N-21:1

Lnape 24:3/N-21:1

C50H92NO8P (865.656)


   

Lnape 24:4/N-21:0

Lnape 24:4/N-21:0

C50H92NO8P (865.656)


   

Lnape 21:2/N-24:2

Lnape 21:2/N-24:2

C50H92NO8P (865.656)


   

Lnape 21:0/N-24:4

Lnape 21:0/N-24:4

C50H92NO8P (865.656)


   

Lnape 23:0/N-22:4

Lnape 23:0/N-22:4

C50H92NO8P (865.656)


   

Lnape 26:4/N-19:0

Lnape 26:4/N-19:0

C50H92NO8P (865.656)


   

Lnape 19:0/N-26:4

Lnape 19:0/N-26:4

C50H92NO8P (865.656)


   

Lnape 19:1/N-26:3

Lnape 19:1/N-26:3

C50H92NO8P (865.656)


   

Lnape 22:4/N-23:0

Lnape 22:4/N-23:0

C50H92NO8P (865.656)


   

Lnape 26:2/N-19:2

Lnape 26:2/N-19:2

C50H92NO8P (865.656)


   

Lnape 24:2/N-21:2

Lnape 24:2/N-21:2

C50H92NO8P (865.656)


   

Lnape 27:0/N-18:4

Lnape 27:0/N-18:4

C50H92NO8P (865.656)


   

Lnape 25:0/N-20:4

Lnape 25:0/N-20:4

C50H92NO8P (865.656)


   

Lnape 19:2/N-26:2

Lnape 19:2/N-26:2

C50H92NO8P (865.656)


   

2-[3-[(Z)-heptadec-9-enoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-[(Z)-heptadec-9-enoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C53H87NO8 (865.6431)


   

2-[2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C53H87NO8 (865.6431)


   

2-[3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C53H87NO8 (865.6431)


   

2-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C53H87NO8 (865.6431)


   

2-[2-[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]oxy-3-tridecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]oxy-3-tridecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C53H87NO8 (865.6431)


   

2-[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C53H87NO8 (865.6431)


   

2-[2-[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]oxy-3-undecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]oxy-3-undecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C53H87NO8 (865.6431)


   

2-[2-[(9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C53H87NO8 (865.6431)


   

[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H84NO7P (865.5985)


   

HexCer 28:2;3O(FA 16:1)

HexCer 28:2;3O(FA 16:1)

C50H91NO10 (865.6643)


   

HexCer 30:2;3O(FA 14:1)

HexCer 30:2;3O(FA 14:1)

C50H91NO10 (865.6643)


   

HexCer 29:2;3O(FA 15:1)

HexCer 29:2;3O(FA 15:1)

C50H91NO10 (865.6643)


   

HexCer 28:1;3O(FA 16:2)

HexCer 28:1;3O(FA 16:2)

C50H91NO10 (865.6643)


   

HexCer 29:3;3O(FA 15:0)

HexCer 29:3;3O(FA 15:0)

C50H91NO10 (865.6643)


   

HexCer 28:3;3O(FA 16:0)

HexCer 28:3;3O(FA 16:0)

C50H91NO10 (865.6643)


   

PI-Cer 16:1;2O/23:0;O

PI-Cer 16:1;2O/23:0;O

C45H88NO12P (865.6044)


   

PI-Cer 23:0;2O/16:1;O

PI-Cer 23:0;2O/16:1;O

C45H88NO12P (865.6044)


   

PI-Cer 23:1;2O/16:0;O

PI-Cer 23:1;2O/16:0;O

C45H88NO12P (865.6044)


   

PI-Cer 24:0;2O/15:1;O

PI-Cer 24:0;2O/15:1;O

C45H88NO12P (865.6044)


   

PI-Cer 21:1;2O/18:0;O

PI-Cer 21:1;2O/18:0;O

C45H88NO12P (865.6044)


   

PI-Cer 17:1;2O/22:0;O

PI-Cer 17:1;2O/22:0;O

C45H88NO12P (865.6044)


   

PI-Cer 15:0;2O/24:1;O

PI-Cer 15:0;2O/24:1;O

C45H88NO12P (865.6044)


   

PI-Cer 19:1;2O/20:0;O

PI-Cer 19:1;2O/20:0;O

C45H88NO12P (865.6044)


   

PI-Cer 21:0;2O/18:1;O

PI-Cer 21:0;2O/18:1;O

C45H88NO12P (865.6044)


   

PI-Cer 25:0;2O/14:1;O

PI-Cer 25:0;2O/14:1;O

C45H88NO12P (865.6044)


   

PI-Cer 26:0;2O/13:1;O

PI-Cer 26:0;2O/13:1;O

C45H88NO12P (865.6044)


   

PI-Cer 16:0;2O/23:1;O

PI-Cer 16:0;2O/23:1;O

C45H88NO12P (865.6044)


   

PI-Cer 20:1;2O/19:0;O

PI-Cer 20:1;2O/19:0;O

C45H88NO12P (865.6044)


   

PI-Cer 17:0;2O/22:1;O

PI-Cer 17:0;2O/22:1;O

C45H88NO12P (865.6044)


   

PI-Cer 15:1;2O/24:0;O

PI-Cer 15:1;2O/24:0;O

C45H88NO12P (865.6044)


   

PI-Cer 26:1;2O/13:0;O

PI-Cer 26:1;2O/13:0;O

C45H88NO12P (865.6044)


   

PI-Cer 19:0;2O/20:1;O

PI-Cer 19:0;2O/20:1;O

C45H88NO12P (865.6044)


   

PI-Cer 25:1;2O/14:0;O

PI-Cer 25:1;2O/14:0;O

C45H88NO12P (865.6044)


   

PI-Cer 24:1;2O/15:0;O

PI-Cer 24:1;2O/15:0;O

C45H88NO12P (865.6044)


   

PI-Cer 14:0;2O/25:1;O

PI-Cer 14:0;2O/25:1;O

C45H88NO12P (865.6044)


   

PI-Cer 18:0;2O/21:1;O

PI-Cer 18:0;2O/21:1;O

C45H88NO12P (865.6044)


   

PI-Cer 14:1;2O/25:0;O

PI-Cer 14:1;2O/25:0;O

C45H88NO12P (865.6044)


   

PI-Cer 13:0;2O/26:1;O

PI-Cer 13:0;2O/26:1;O

C45H88NO12P (865.6044)


   

PI-Cer 18:1;2O/21:0;O

PI-Cer 18:1;2O/21:0;O

C45H88NO12P (865.6044)


   

PI-Cer 20:0;2O/19:1;O

PI-Cer 20:0;2O/19:1;O

C45H88NO12P (865.6044)


   

PI-Cer 22:1;2O/17:0;O

PI-Cer 22:1;2O/17:0;O

C45H88NO12P (865.6044)


   

PI-Cer 13:1;2O/26:0;O

PI-Cer 13:1;2O/26:0;O

C45H88NO12P (865.6044)


   

HexCer 26:3;3O/18:1;(2OH)

HexCer 26:3;3O/18:1;(2OH)

C50H91NO10 (865.6643)


   

HexCer 24:3;3O/20:1;(2OH)

HexCer 24:3;3O/20:1;(2OH)

C50H91NO10 (865.6643)


   

HexCer 31:3;3O/13:1;(2OH)

HexCer 31:3;3O/13:1;(2OH)

C50H91NO10 (865.6643)


   

HexCer 22:3;3O/22:1;(2OH)

HexCer 22:3;3O/22:1;(2OH)

C50H91NO10 (865.6643)


   

HexCer 29:3;3O/15:1;(2OH)

HexCer 29:3;3O/15:1;(2OH)

C50H91NO10 (865.6643)


   

HexCer 21:3;3O/23:1;(2OH)

HexCer 21:3;3O/23:1;(2OH)

C50H91NO10 (865.6643)


   

HexCer 20:3;3O/24:1;(2OH)

HexCer 20:3;3O/24:1;(2OH)

C50H91NO10 (865.6643)


   

HexCer 28:3;3O/16:1;(2OH)

HexCer 28:3;3O/16:1;(2OH)

C50H91NO10 (865.6643)


   

HexCer 25:3;3O/19:1;(2OH)

HexCer 25:3;3O/19:1;(2OH)

C50H91NO10 (865.6643)


   

HexCer 18:3;3O/26:1;(2OH)

HexCer 18:3;3O/26:1;(2OH)

C50H91NO10 (865.6643)


   

HexCer 23:3;3O/21:1;(2OH)

HexCer 23:3;3O/21:1;(2OH)

C50H91NO10 (865.6643)


   

HexCer 19:3;3O/25:1;(2OH)

HexCer 19:3;3O/25:1;(2OH)

C50H91NO10 (865.6643)


   

HexCer 32:3;3O/12:1;(2OH)

HexCer 32:3;3O/12:1;(2OH)

C50H91NO10 (865.6643)


   

HexCer 30:3;3O/14:1;(2OH)

HexCer 30:3;3O/14:1;(2OH)

C50H91NO10 (865.6643)


   

2-amino-3-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H88NO9P (865.6196)


   

2-amino-3-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-henicosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-henicosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H88NO9P (865.6196)


   

2-amino-3-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-tricosoxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-tricosoxypropoxy]phosphoryl]oxypropanoic acid

C49H88NO9P (865.6196)


   

2-amino-3-[[2-heptadecanoyloxy-3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-heptadecanoyloxy-3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H88NO9P (865.6196)


   

[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H84NO7P (865.5985)


   

2-amino-3-[[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(Z)-henicos-11-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(Z)-henicos-11-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H88NO9P (865.6196)


   

[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H84NO7P (865.5985)


   

2-amino-3-[[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H88NO9P (865.6196)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H84NO7P (865.5985)


   

2-amino-3-[[2-[(Z)-heptadec-9-enoyl]oxy-3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(Z)-heptadec-9-enoyl]oxy-3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H88NO9P (865.6196)


   

2-amino-3-[hydroxy-[3-nonadecoxy-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-nonadecoxy-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C49H88NO9P (865.6196)


   

[3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H84NO7P (865.5985)


   

2-amino-3-[[3-heptadecoxy-2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-heptadecoxy-2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H88NO9P (865.6196)


   

2-amino-3-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-pentacosoxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-pentacosoxypropoxy]phosphoryl]oxypropanoic acid

C49H88NO9P (865.6196)


   

2-amino-3-[[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H88NO9P (865.6196)


   

2-amino-3-[hydroxy-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propoxy]phosphoryl]oxypropanoic acid

C49H88NO9P (865.6196)


   

2-amino-3-[hydroxy-[3-[(Z)-nonadec-9-enoxy]-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(Z)-nonadec-9-enoxy]-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C49H88NO9P (865.6196)


   

2-amino-3-[hydroxy-[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]-2-pentacosanoyloxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]-2-pentacosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C49H88NO9P (865.6196)


   

[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H84NO7P (865.5985)


   

[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H84NO7P (865.5985)


   

2-amino-3-[[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-[(Z)-henicos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-[(Z)-henicos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H88NO9P (865.6196)


   

2-amino-3-[hydroxy-[3-[(9Z,12Z)-nonadeca-9,12-dienoxy]-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(9Z,12Z)-nonadeca-9,12-dienoxy]-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C49H88NO9P (865.6196)


   

2-amino-3-[hydroxy-[2-nonadecanoyloxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-nonadecanoyloxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propoxy]phosphoryl]oxypropanoic acid

C49H88NO9P (865.6196)


   

2-amino-3-[hydroxy-[2-[(Z)-nonadec-9-enoyl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(Z)-nonadec-9-enoyl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propoxy]phosphoryl]oxypropanoic acid

C49H88NO9P (865.6196)


   

2-amino-3-[hydroxy-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]-2-tricosanoyloxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]-2-tricosanoyloxypropoxy]phosphoryl]oxypropanoic acid

C49H88NO9P (865.6196)


   

2-amino-3-[[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H88NO9P (865.6196)


   

2-amino-3-[[3-[(Z)-heptadec-9-enoxy]-2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(Z)-heptadec-9-enoxy]-2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H88NO9P (865.6196)


   

[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H84NO7P (865.5985)


   

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-henicosoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-henicosoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C49H88NO9P (865.6196)


   

2-[4-[3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-12-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]ethanesulfonic acid

2-[4-[3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-12-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]ethanesulfonic acid

C52H83NO7S (865.589)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoate

C50H92NO8P (865.656)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropan-2-yl] (14Z,17Z,20Z)-octacosa-14,17,20-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropan-2-yl] (14Z,17Z,20Z)-octacosa-14,17,20-trienoate

C50H92NO8P (865.656)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (22Z,25Z,28Z,31Z)-tetratriaconta-22,25,28,31-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (22Z,25Z,28Z,31Z)-tetratriaconta-22,25,28,31-tetraenoate

C50H92NO8P (865.656)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (18Z,21Z,24Z)-dotriaconta-18,21,24-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (18Z,21Z,24Z)-dotriaconta-18,21,24-trienoate

C50H92NO8P (865.656)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoyl]oxypropan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoyl]oxypropan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

C50H92NO8P (865.656)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] nonacosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] nonacosanoate

C50H92NO8P (865.656)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate

C50H92NO8P (865.656)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (17Z,20Z)-octacosa-17,20-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (17Z,20Z)-octacosa-17,20-dienoate

C50H92NO8P (865.656)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (16Z,19Z,22Z)-triaconta-16,19,22-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (16Z,19Z,22Z)-triaconta-16,19,22-trienoate

C50H92NO8P (865.656)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (20Z,23Z,26Z,29Z)-dotriaconta-20,23,26,29-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (20Z,23Z,26Z,29Z)-dotriaconta-20,23,26,29-tetraenoate

C50H92NO8P (865.656)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (18Z,21Z,24Z,27Z)-triaconta-18,21,24,27-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (18Z,21Z,24Z,27Z)-triaconta-18,21,24,27-tetraenoate

C50H92NO8P (865.656)


   

AHexCer (O-14:1)16:1;2O/14:1;O

AHexCer (O-14:1)16:1;2O/14:1;O

C50H91NO10 (865.6643)


   
   

SHexCer 15:0;2O/25:0

SHexCer 15:0;2O/25:0

C46H91NO11S (865.6312)


   

SHexCer 24:0;2O/16:0

SHexCer 24:0;2O/16:0

C46H91NO11S (865.6312)


   

SHexCer 22:0;2O/18:0

SHexCer 22:0;2O/18:0

C46H91NO11S (865.6312)


   

SHexCer 19:0;2O/21:0

SHexCer 19:0;2O/21:0

C46H91NO11S (865.6312)


   

SHexCer 26:0;2O/14:0

SHexCer 26:0;2O/14:0

C46H91NO11S (865.6312)


   

SHexCer 28:0;2O/12:0

SHexCer 28:0;2O/12:0

C46H91NO11S (865.6312)


   

SHexCer 21:0;2O/19:0

SHexCer 21:0;2O/19:0

C46H91NO11S (865.6312)


   

SHexCer 27:0;2O/13:0

SHexCer 27:0;2O/13:0

C46H91NO11S (865.6312)


   

SHexCer 16:0;2O/24:0

SHexCer 16:0;2O/24:0

C46H91NO11S (865.6312)


   

SHexCer 20:0;2O/20:0

SHexCer 20:0;2O/20:0

C46H91NO11S (865.6312)


   

SHexCer 23:0;2O/17:0

SHexCer 23:0;2O/17:0

C46H91NO11S (865.6312)


   

SHexCer 17:0;2O/23:0

SHexCer 17:0;2O/23:0

C46H91NO11S (865.6312)


   

SHexCer 18:0;2O/22:0

SHexCer 18:0;2O/22:0

C46H91NO11S (865.6312)


   

SHexCer 25:0;2O/15:0

SHexCer 25:0;2O/15:0

C46H91NO11S (865.6312)


   
   

HexCer 14:2;3O/30:2;(2OH)

HexCer 14:2;3O/30:2;(2OH)

C50H91NO10 (865.6643)


   

HexCer 28:2;3O/16:2;(2OH)

HexCer 28:2;3O/16:2;(2OH)

C50H91NO10 (865.6643)


   

[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H84NO7P (865.5985)


   

[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C52H84NO7P (865.5985)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (24Z,27Z,30Z,33Z)-hexatriaconta-24,27,30,33-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (24Z,27Z,30Z,33Z)-hexatriaconta-24,27,30,33-tetraenoate

C50H92NO8P (865.656)


   

[3-octanoyloxy-2-[(22Z,25Z,28Z,31Z)-tetratriaconta-22,25,28,31-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-octanoyloxy-2-[(22Z,25Z,28Z,31Z)-tetratriaconta-22,25,28,31-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxypropyl] tricosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxypropyl] tricosanoate

C50H92NO8P (865.656)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C50H92NO8P (865.656)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] heptacosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] heptacosanoate

C50H92NO8P (865.656)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecanoyloxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecanoyloxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C50H92NO8P (865.656)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-henicosanoyloxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-henicosanoyloxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C50H92NO8P (865.656)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

C50H92NO8P (865.656)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropyl] pentacosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropyl] pentacosanoate

C50H92NO8P (865.656)


   

[2-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[3-dodecanoyloxy-2-[(18Z,21Z,24Z,27Z)-triaconta-18,21,24,27-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-dodecanoyloxy-2-[(18Z,21Z,24Z,27Z)-triaconta-18,21,24,27-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[3-decanoyloxy-2-[(20Z,23Z,26Z,29Z)-dotriaconta-20,23,26,29-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-decanoyloxy-2-[(20Z,23Z,26Z,29Z)-dotriaconta-20,23,26,29-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[3-[(Z)-octadec-9-enoyl]oxy-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-octadec-9-enoyl]oxy-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[2-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[2-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-hexadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-hexadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[3-hexacosanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hexacosanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[3-[(Z)-hexacos-15-enoyl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-hexacos-15-enoyl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-tetracosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-tetracosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

2,3-bis[[(11Z,14Z)-henicosa-11,14-dienoyl]oxy]propyl 2-(trimethylazaniumyl)ethyl phosphate

2,3-bis[[(11Z,14Z)-henicosa-11,14-dienoyl]oxy]propyl 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[3-[(Z)-docos-13-enoyl]oxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-docos-13-enoyl]oxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(Z)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(Z)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-[(Z)-tetracos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-[(Z)-tetracos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[(2R)-3-[(13E,16E)-docosa-13,16-dienoyl]oxy-2-[(11E,14E)-icosa-11,14-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(13E,16E)-docosa-13,16-dienoyl]oxy-2-[(11E,14E)-icosa-11,14-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[(2R)-2-docosanoyloxy-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-docosanoyloxy-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[3-[(E)-hexacos-11-enoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(E)-hexacos-11-enoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[(2R)-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-2-tetracosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-2-tetracosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[(2R)-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-2-tetracosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-2-tetracosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxypropyl] tricosanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxypropyl] tricosanoate

C50H92NO8P (865.656)


   

[(2R)-2-docosanoyloxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-docosanoyloxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[(2R)-2-[(13E,16E)-docosa-13,16-dienoyl]oxy-3-[(5E,8E)-icosa-5,8-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(13E,16E)-docosa-13,16-dienoyl]oxy-3-[(5E,8E)-icosa-5,8-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[3-hexacosanoyloxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hexacosanoyloxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropan-2-yl] pentacosanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropan-2-yl] pentacosanoate

C50H92NO8P (865.656)


   

[(2R)-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-3-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-3-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(E)-tetracos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(E)-tetracos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[(2R)-2-[(E)-docos-13-enoyl]oxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-docos-13-enoyl]oxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[(2S)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-tetracosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-tetracosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[(2R)-3-docosanoyloxy-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-docosanoyloxy-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[(2R)-3-[(E)-docos-13-enoyl]oxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-docos-13-enoyl]oxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[3-[(11E,14E)-hexacosa-11,14-dienoyl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(11E,14E)-hexacosa-11,14-dienoyl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropan-2-yl] pentacosanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropan-2-yl] pentacosanoate

C50H92NO8P (865.656)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropyl] pentacosanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropyl] pentacosanoate

C50H92NO8P (865.656)


   

[(2R)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-[(E)-tetracos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-[(E)-tetracos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[(2R)-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-2-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-2-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[(2R)-3-octadecanoyloxy-2-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-octadecanoyloxy-2-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropyl] pentacosanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropyl] pentacosanoate

C50H92NO8P (865.656)


   

[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(E)-tetracos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(E)-tetracos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[(2R)-3-[(13E,16E)-docosa-13,16-dienoyl]oxy-2-[(5E,8E)-icosa-5,8-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(13E,16E)-docosa-13,16-dienoyl]oxy-2-[(5E,8E)-icosa-5,8-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-henicosanoyloxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-henicosanoyloxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C50H92NO8P (865.656)


   

[(2R)-2-[(E)-docos-13-enoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-docos-13-enoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxypropan-2-yl] tricosanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxypropan-2-yl] tricosanoate

C50H92NO8P (865.656)


   

[(2S)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-tetracosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-tetracosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[(2R)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-[(E)-tetracos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-[(E)-tetracos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[(2R)-3-[(E)-docos-13-enoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-docos-13-enoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[(2R)-2-[(13E,16E)-docosa-13,16-dienoyl]oxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(13E,16E)-docosa-13,16-dienoyl]oxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[(2S)-2-octadecanoyloxy-3-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-2-octadecanoyloxy-3-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-henicosanoyloxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-henicosanoyloxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C50H92NO8P (865.656)


   

[(2R)-3-docosanoyloxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-docosanoyloxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H92NO8P (865.656)


   

2-[[(4E,8E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoyl]amino]-3-hydroxypentadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoyl]amino]-3-hydroxypentadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C52H86N2O6P+ (865.6223)


   

2-[hydroxy-[(E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-8,11,14,17,20,23,26,29,32,35-decaenoyl]amino]non-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-8,11,14,17,20,23,26,29,32,35-decaenoyl]amino]non-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C52H86N2O6P+ (865.6223)


   

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-7,10,13,16,19,22,25,28,31-nonaenoyl]amino]trideca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-7,10,13,16,19,22,25,28,31-nonaenoyl]amino]trideca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C52H86N2O6P+ (865.6223)


   

2-[[(E)-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-6,9,12,15,18,21,24,27,30,33-decaenoyl]amino]-3-hydroxyundec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(E)-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-6,9,12,15,18,21,24,27,30,33-decaenoyl]amino]-3-hydroxyundec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C52H86N2O6P+ (865.6223)


   

2-[[(4E,8E,12E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]amino]-3-hydroxypentadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E,12E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]amino]-3-hydroxypentadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C52H86N2O6P+ (865.6223)


   

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]amino]heptadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]amino]heptadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

C52H86N2O6P+ (865.6223)


   

PC(20:4(5Z,8Z,11Z,14Z)/22:0)

PC(20:4(5Z,8Z,11Z,14Z)/22:0)

C50H92NO8P (865.656)


   

PC(22:0/20:4(5Z,8Z,11Z,14Z))

PC(22:0/20:4(5Z,8Z,11Z,14Z))

C50H92NO8P (865.656)


   

PC(18:4(6Z,9Z,12Z,15Z)/24:0)

PC(18:4(6Z,9Z,12Z,15Z)/24:0)

C50H92NO8P (865.656)


   

PC(24:0/18:4(6Z,9Z,12Z,15Z))

PC(24:0/18:4(6Z,9Z,12Z,15Z))

C50H92NO8P (865.656)


   

PC(20:0/22:4(7Z,10Z,13Z,16Z))

PC(20:0/22:4(7Z,10Z,13Z,16Z))

C50H92NO8P (865.656)


   

PC(22:4(7Z,10Z,13Z,16Z)/20:0)

PC(22:4(7Z,10Z,13Z,16Z)/20:0)

C50H92NO8P (865.656)


   

PC(20:3(5Z,8Z,11Z)/22:1(13Z))

PC(20:3(5Z,8Z,11Z)/22:1(13Z))

C50H92NO8P (865.656)


   

PC(20:4(8Z,11Z,14Z,17Z)/22:0)

PC(20:4(8Z,11Z,14Z,17Z)/22:0)

C50H92NO8P (865.656)


   

PC(22:0/20:4(8Z,11Z,14Z,17Z))

PC(22:0/20:4(8Z,11Z,14Z,17Z))

C50H92NO8P (865.656)


   

PC(22:1(13Z)/20:3(5Z,8Z,11Z))

PC(22:1(13Z)/20:3(5Z,8Z,11Z))

C50H92NO8P (865.656)


   

PC(24:1(15Z)/18:3(6Z,9Z,12Z))

PC(24:1(15Z)/18:3(6Z,9Z,12Z))

C50H92NO8P (865.656)


   

PC(18:3(9Z,12Z,15Z)/24:1(15Z))

PC(18:3(9Z,12Z,15Z)/24:1(15Z))

C50H92NO8P (865.656)


   

PC(20:3(8Z,11Z,14Z)/22:1(13Z))

PC(20:3(8Z,11Z,14Z)/22:1(13Z))

C50H92NO8P (865.656)


   

PC(22:1(13Z)/20:3(8Z,11Z,14Z))

PC(22:1(13Z)/20:3(8Z,11Z,14Z))

C50H92NO8P (865.656)


   

PC(20:2(11Z,14Z)/22:2(13Z,16Z))

PC(20:2(11Z,14Z)/22:2(13Z,16Z))

C50H92NO8P (865.656)


   

PC(22:2(13Z,16Z)/20:2(11Z,14Z))

PC(22:2(13Z,16Z)/20:2(11Z,14Z))

C50H92NO8P (865.656)


   

PC(18:3(6Z,9Z,12Z)/24:1(15Z))

PC(18:3(6Z,9Z,12Z)/24:1(15Z))

C50H92NO8P (865.656)


   

PC(24:1(15Z)/18:3(9Z,12Z,15Z))

PC(24:1(15Z)/18:3(9Z,12Z,15Z))

C50H92NO8P (865.656)


   

phosphatidylcholine 42:4

phosphatidylcholine 42:4

C50H92NO8P (865.656)


A 1,2-diacyl-sn-glycero-3-phosphocholine in which the acyl groups at C-1 and C-2 contain 42 carbons in total with 4 double bonds.

   

1-[(6Z,9Z,12Z)-octadecatrienoyl]-2-[(15Z)-tetracosenoyl]-sn-glycero-3-phosphocholine

1-[(6Z,9Z,12Z)-octadecatrienoyl]-2-[(15Z)-tetracosenoyl]-sn-glycero-3-phosphocholine

C50H92NO8P (865.656)


A phosphatidylcholine 42:4 in which the acyl groups specified at positions 1 and 2 are (6Z,9Z,12Z)-octadecatrienoyl and (15Z)-tetracosenoyl respectively.

   

MePC(41:4)

MePC(19:0_22:4)

C50H92NO8P (865.656)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

PE(45:4)

PE(22:4_23:0)

C50H92NO8P (865.656)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

Hex2Cer(33:0)

Hex2Cer(t16:0_17:0)

C45H87NO14 (865.6126)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   

PC O-20:0/22:5;O

PC O-20:0/22:5;O

C50H92NO8P (865.656)


   
   
   

PC P-20:0/22:4;O

PC P-20:0/22:4;O

C50H92NO8P (865.656)


   
   

PC P-44:10 or PC O-44:11

PC P-44:10 or PC O-44:11

C52H84NO7P (865.5985)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

Hex2Cer 14:0;O2/19:0;O

Hex2Cer 14:0;O2/19:0;O

C45H87NO14 (865.6126)


   

Hex2Cer 15:0;O2/18:0;O

Hex2Cer 15:0;O2/18:0;O

C45H87NO14 (865.6126)


   

Hex2Cer 16:0;O2/17:0;O

Hex2Cer 16:0;O2/17:0;O

C45H87NO14 (865.6126)


   

Hex2Cer 17:0;O2/16:0;O

Hex2Cer 17:0;O2/16:0;O

C45H87NO14 (865.6126)


   

Hex2Cer 18:0;O2/15:0;O

Hex2Cer 18:0;O2/15:0;O

C45H87NO14 (865.6126)


   

Hex2Cer 19:0;O2/14:0;O

Hex2Cer 19:0;O2/14:0;O

C45H87NO14 (865.6126)


   

Hex2Cer 20:0;O2/13:0;O

Hex2Cer 20:0;O2/13:0;O

C45H87NO14 (865.6126)


   

Hex2Cer 21:0;O2/12:0;O

Hex2Cer 21:0;O2/12:0;O

C45H87NO14 (865.6126)


   

Hex2Cer 22:0;O2/11:0;O

Hex2Cer 22:0;O2/11:0;O

C45H87NO14 (865.6126)


   

Hex2Cer 33:0;O2;O

Hex2Cer 33:0;O2;O

C45H87NO14 (865.6126)


   

LacCer 14:0;O2/19:0;O

LacCer 14:0;O2/19:0;O

C45H87NO14 (865.6126)


   

LacCer 15:0;O2/18:0;O

LacCer 15:0;O2/18:0;O

C45H87NO14 (865.6126)


   

LacCer 16:0;O2/17:0;O

LacCer 16:0;O2/17:0;O

C45H87NO14 (865.6126)


   

LacCer 17:0;O2/16:0;O

LacCer 17:0;O2/16:0;O

C45H87NO14 (865.6126)


   

LacCer 18:0;O2/15:0;O

LacCer 18:0;O2/15:0;O

C45H87NO14 (865.6126)


   

LacCer 19:0;O2/14:0;O

LacCer 19:0;O2/14:0;O

C45H87NO14 (865.6126)


   

LacCer 20:0;O2/13:0;O

LacCer 20:0;O2/13:0;O

C45H87NO14 (865.6126)


   

LacCer 21:0;O2/12:0;O

LacCer 21:0;O2/12:0;O

C45H87NO14 (865.6126)


   

LacCer 22:0;O2/11:0;O

LacCer 22:0;O2/11:0;O

C45H87NO14 (865.6126)


   

LacCer 33:0;O2;O

LacCer 33:0;O2;O

C45H87NO14 (865.6126)


   

HexCer 9:0;O2/38:9

HexCer 9:0;O2/38:9

C53H87NO8 (865.6431)


   
   
   
   

IPC 14:1;O2/25:0;O

IPC 14:1;O2/25:0;O

C45H88NO12P (865.6044)


   

IPC 15:0;O2/24:1;O

IPC 15:0;O2/24:1;O

C45H88NO12P (865.6044)


   
   

IPC 15:1;O2/24:0;O

IPC 15:1;O2/24:0;O

C45H88NO12P (865.6044)


   
   

IPC 16:1;O2/23:0;O

IPC 16:1;O2/23:0;O

C45H88NO12P (865.6044)


   

IPC 17:0;O2/22:1;O

IPC 17:0;O2/22:1;O

C45H88NO12P (865.6044)


   
   

IPC 17:1;O2/22:0;O

IPC 17:1;O2/22:0;O

C45H88NO12P (865.6044)


   
   

IPC 18:1;O2/21:0;O

IPC 18:1;O2/21:0;O

C45H88NO12P (865.6044)


   

IPC 19:0;O2/20:1;O

IPC 19:0;O2/20:1;O

C45H88NO12P (865.6044)


   
   

IPC 19:1;O2/20:0;O

IPC 19:1;O2/20:0;O

C45H88NO12P (865.6044)


   
   

IPC 20:1;O2/19:0;O

IPC 20:1;O2/19:0;O

C45H88NO12P (865.6044)


   

IPC 21:0;O2/18:1;O

IPC 21:0;O2/18:1;O

C45H88NO12P (865.6044)


   
   

IPC 21:1;O2/18:0;O

IPC 21:1;O2/18:0;O

C45H88NO12P (865.6044)


   
   

IPC 22:1;O2/17:0;O

IPC 22:1;O2/17:0;O

C45H88NO12P (865.6044)


   
   
   
   

ST(40:0)

ST(d18:0_22:0)

C46H91NO11S (865.6312)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

(2s)-2-{[(2s)-1-hydroxy-2-{[1-hydroxy-2-({hydroxy[(2s,4r)-4-hydroxy-1-{2-[(1-hydroxytetradecylidene)amino]-2-methylpropanoyl}pyrrolidin-2-yl]methylidene}amino)-4-methylpentylidene]amino}-3-methylbutylidene]amino}-n-[(2s)-1-hydroxy-4-methylpentan-2-yl]pentanediimidic acid

(2s)-2-{[(2s)-1-hydroxy-2-{[1-hydroxy-2-({hydroxy[(2s,4r)-4-hydroxy-1-{2-[(1-hydroxytetradecylidene)amino]-2-methylpropanoyl}pyrrolidin-2-yl]methylidene}amino)-4-methylpentylidene]amino}-3-methylbutylidene]amino}-n-[(2s)-1-hydroxy-4-methylpentan-2-yl]pentanediimidic acid

C45H83N7O9 (865.6252)


   

(2s)-2-{[(2s)-1-hydroxy-2-{[(2s)-1-hydroxy-2-({hydroxy[(4s)-4-hydroxy-1-{2-[(1-hydroxytetradecylidene)amino]-2-methylpropanoyl}pyrrolidin-2-yl]methylidene}amino)-4-methylpentylidene]amino}-3-methylbutylidene]amino}-n-[(2s)-1-hydroxy-4-methylpentan-2-yl]pentanediimidic acid

(2s)-2-{[(2s)-1-hydroxy-2-{[(2s)-1-hydroxy-2-({hydroxy[(4s)-4-hydroxy-1-{2-[(1-hydroxytetradecylidene)amino]-2-methylpropanoyl}pyrrolidin-2-yl]methylidene}amino)-4-methylpentylidene]amino}-3-methylbutylidene]amino}-n-[(2s)-1-hydroxy-4-methylpentan-2-yl]pentanediimidic acid

C45H83N7O9 (865.6252)


   

2-({1-hydroxy-2-[(1-hydroxy-2-{[hydroxy(4-hydroxy-1-{2-[(1-hydroxytetradecylidene)amino]-2-methylpropanoyl}pyrrolidin-2-yl)methylidene]amino}-4-methylpentylidene)amino]-3-methylbutylidene}amino)-n-(1-hydroxy-4-methylpentan-2-yl)pentanediimidic acid

2-({1-hydroxy-2-[(1-hydroxy-2-{[hydroxy(4-hydroxy-1-{2-[(1-hydroxytetradecylidene)amino]-2-methylpropanoyl}pyrrolidin-2-yl)methylidene]amino}-4-methylpentylidene)amino]-3-methylbutylidene}amino)-n-(1-hydroxy-4-methylpentan-2-yl)pentanediimidic acid

C45H83N7O9 (865.6252)