Exact Mass: 864.5809914
Exact Mass Matches: 864.5809914
Found 500 metabolites which its exact mass value is equals to given mass value 864.5809914
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
All trans decaprenyl diphosphate
C50H90O7P2 (864.6161450000001)
All trans decaprenyl diphosphate is an intermediate in ubiquinone biosynthesis. The enzyme 4-hydroxybenzoate nonaprenyltransferase [EC:2.5.1.39] catalyzes the conversion of this metabolite into 3-decaprenyl-4-hydroxybenzoate. This reaction is irreversible and occurs in the mitochondria. [HMDB]. all-trans-Decaprenyl diphosphate is found in many foods, some of which are pomes, custard apple, common grape, and dock. All trans decaprenyl diphosphate is an intermediate in ubiquinone biosynthesis. The enzyme 4-hydroxybenzoate nonaprenyltransferase [EC:2.5.1.39] catalyzes the conversion of this metabolite into 3-decaprenyl-4-hydroxybenzoate. This reaction is irreversible and occurs in the mitochondria.
PI(18:0/18:1(9Z))
C45H85O13P (864.5727489999999)
PI(18:0/18:1(9Z)) is a phosphatidylinositol. Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PI(18:0/18:0), in particular, consists of one chain of stearic acid at the C-1 position and one chain of oleic acid at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for the biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main sources of diacylglycerols that serve as signalling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodelling that occurs while these molecules are in membranes. PIs contain almost exclusively stearic acid at carbon 1 and arachidonic acid at carbon 2. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.
PA(24:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))
PA(24:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(24:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one tetracosanoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/24:0)
PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/24:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/24:0), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of tetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(24:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))
PA(24:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(24:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one tetracosanoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/24:0)
PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/24:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/24:0), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of tetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(i-24:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))
PA(i-24:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-24:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one 22-methyltricosanoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-24:0)
PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-24:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-24:0), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of 22-methyltricosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(i-24:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))
PA(i-24:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-24:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one 22-methyltricosanoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-24:0)
PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-24:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-24:0), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of 22-methyltricosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PG(20:1(11Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))
PG(20:1(11Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:1(11Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/20:1(11Z))
PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/20:1(11Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/20:1(11Z)), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(20:1(11Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))
PG(20:1(11Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:1(11Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/20:1(11Z))
PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/20:1(11Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/20:1(11Z)), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(20:1(11Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))
PG(20:1(11Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:1(11Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/20:1(11Z))
PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/20:1(11Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/20:1(11Z)), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(20:1(11Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))
PG(20:1(11Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:1(11Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/20:1(11Z))
PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/20:1(11Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/20:1(11Z)), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(20:1(11Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))
PG(20:1(11Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:1(11Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/20:1(11Z))
PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/20:1(11Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/20:1(11Z)), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(22:4(7Z,10Z,13Z,16Z)/20:3(6,8,11)-OH(5))
PG(22:4(7Z,10Z,13Z,16Z)/20:3(6,8,11)-OH(5)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:4(7Z,10Z,13Z,16Z)/20:3(6,8,11)-OH(5)), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(20:3(6,8,11)-OH(5)/22:4(7Z,10Z,13Z,16Z))
PG(20:3(6,8,11)-OH(5)/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:3(6,8,11)-OH(5)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(i-19:0/PGF1alpha)
C45H85O13P (864.5727489999999)
PG(i-19:0/PGF1alpha) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-19:0/PGF1alpha), in particular, consists of one chain of one 17-methyloctadecanoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(PGF1alpha/i-19:0)
C45H85O13P (864.5727489999999)
PG(PGF1alpha/i-19:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGF1alpha/i-19:0), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of 17-methyloctadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(i-22:0/18:1(12Z)-2OH(9,10))
PG(i-22:0/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-22:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 20-methylheneicosanoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(18:1(12Z)-2OH(9,10)/i-22:0)
PG(18:1(12Z)-2OH(9,10)/i-22:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:1(12Z)-2OH(9,10)/i-22:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 20-methylheneicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PI 36:1
C45H85O13P (864.5727489999999)
Found in mouse brain; TwoDicalId=307; MgfFile=160720_brain_EPA_06_Neg__never; MgfId=895
PG(21:0/22:6)
PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/21:0)
PI(14:0/22:1(11Z))
C45H85O13P (864.5727489999999)
PI(14:1(9Z)/22:0)
C45H85O13P (864.5727489999999)
PI(15:1(9Z)/21:0)
C45H85O13P (864.5727489999999)
PI(16:1(9Z)/20:0)
C45H85O13P (864.5727489999999)
PI(17:0/19:1(9Z))
C45H85O13P (864.5727489999999)
PI(17:1(9Z)/19:0)
C45H85O13P (864.5727489999999)
PI(19:0/17:1(9Z))
C45H85O13P (864.5727489999999)
PI(19:1(9Z)/17:0)
C45H85O13P (864.5727489999999)
PI(20:0/16:1(9Z))
C45H85O13P (864.5727489999999)
PI(20:1(11Z)/16:0)
C45H85O13P (864.5727489999999)
PI(21:0/15:1(9Z))
C45H85O13P (864.5727489999999)
PI(22:0/14:1(9Z))
C45H85O13P (864.5727489999999)
PI(22:1(11Z)/14:0)
C45H85O13P (864.5727489999999)
PI(18:1(9Z)/18:0)
C45H85O13P (864.5727489999999)
PI(16:0/20:1(11Z))
C45H85O13P (864.5727489999999)
PI(18:0/18:1(9Z))
C45H85O13P (864.5727489999999)
DGDG 30:0
PG 43:6
[3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-2-[(Z)-octadec-9-enoyl]oxypropyl] octadecanoate
C45H85O13P (864.5727489999999)
(1r)-2-{[(S)-Hydroxy{[(1s,2r,3r,4s,5s,6r)-2,3,4,5,6-Pentahydroxycyclohexyl]oxy}phosphoryl]oxy}-1-[(Octadecanoyloxy)methyl]ethyl (9z)-Octadec-9-Enoate
C45H85O13P (864.5727489999999)
PA(i-24:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))
PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-24:0)
PA(i-24:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))
PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-24:0)
2-[[(2R)-2-[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy-3-[(Z)-octadec-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy-2-[(Z)-octadec-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy-3-[(Z)-octadec-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy-2-[(Z)-octadec-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[hydroxy-[(2R)-2-[(Z)-7-[(1S,5R)-5-[(E,3S)-3-hydroxyoct-1-enyl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[hydroxy-[(2R)-3-[(Z)-7-[(1S,5R)-5-[(E,3S)-3-hydroxyoct-1-enyl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[hydroxy-[(2R)-3-[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy-2-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C49H87NO9P+ (864.6118121999999)
2-[hydroxy-[(2R)-2-[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy-3-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C49H87NO9P+ (864.6118121999999)
2-[hydroxy-[(2R)-3-[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy-2-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C49H87NO9P+ (864.6118121999999)
2-[hydroxy-[(2R)-2-[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy-3-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C49H87NO9P+ (864.6118121999999)
2-[hydroxy-[(2R)-3-[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy-2-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C49H87NO9P+ (864.6118121999999)
2-[hydroxy-[(2R)-2-[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy-3-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C49H87NO9P+ (864.6118121999999)
2-[hydroxy-[(2R)-3-[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy-2-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C49H87NO9P+ (864.6118121999999)
2-[[(2R)-2-[(Z,9S,10S)-9,10-dihydroxyoctadec-12-enoyl]oxy-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[(Z,9R,10R)-9,10-dihydroxyoctadec-12-enoyl]oxy-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-2-[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-3-[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-2-[(5Z,8Z)-10-[3-[(Z)-oct-2-enyl]oxiran-2-yl]deca-5,8-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-3-[(5Z,8Z)-10-[3-[(Z)-oct-2-enyl]oxiran-2-yl]deca-5,8-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-2-[(Z)-7-[3-[(2Z,5Z)-undeca-2,5-dienyl]oxiran-2-yl]hept-5-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-3-[(Z)-7-[3-[(2Z,5Z)-undeca-2,5-dienyl]oxiran-2-yl]hept-5-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-2-[4-[3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trienyl]oxiran-2-yl]butanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-3-[4-[3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trienyl]oxiran-2-yl]butanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-2-[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-3-[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-2-[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-3-[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-2-[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-3-[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-2-[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-3-[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-2-[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-3-[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-2-[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-3-[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-2-[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-3-[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-2-[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-3-[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-2-[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-3-[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-2-[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-3-[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-2-[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-3-[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-2-[(5Z,8Z)-10-[3-[(Z)-oct-2-enyl]oxiran-2-yl]deca-5,8-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-3-[(5Z,8Z)-10-[3-[(Z)-oct-2-enyl]oxiran-2-yl]deca-5,8-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-2-[(Z)-7-[3-[(2Z,5Z)-undeca-2,5-dienyl]oxiran-2-yl]hept-5-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-3-[(Z)-7-[3-[(2Z,5Z)-undeca-2,5-dienyl]oxiran-2-yl]hept-5-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-2-[4-[3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trienyl]oxiran-2-yl]butanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-3-[4-[3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trienyl]oxiran-2-yl]butanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-2-[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-3-[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-2-[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-3-[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-2-[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-3-[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-2-[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-3-[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-2-[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-3-[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-2-[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-3-[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-2-[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-3-[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-2-[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-3-[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-2-[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-3-[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-3-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-2-[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[[(2R)-2-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-3-[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
cholesteryl 6-O-[15-(ethyldisulfanyl)pentadecanoyl]-beta-D-galactoside
A cholesteryl 6-O-acyl-beta-D-galactoside having 15-(ethyldisulfanyl)pentadecanoyl as the 6-O-acyl group.
[1-hexadecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-icos-11-enoate
C45H85O13P (864.5727489999999)
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecoxypropan-2-yl] (Z)-tetracos-13-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] heptadecanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]propan-2-yl] (Z)-docos-13-enoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] octadecanoate
[1-hexadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-henicos-11-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-icosoxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-docosa-13,16-dienoxy]propan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecoxypropan-2-yl] (Z)-hexacos-15-enoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentadecoxypropan-2-yl] (Z)-docos-13-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] (Z)-tetracos-13-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-icosoxypropan-2-yl] (Z)-heptadec-9-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetracosoxypropan-2-yl] (Z)-tridec-9-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (Z)-hexacos-15-enoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonadecoxypropan-2-yl] (Z)-octadec-9-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propan-2-yl] icosanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-docosoxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propan-2-yl] (11Z,14Z)-icosa-11,14-dienoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tricosoxypropan-2-yl] (Z)-tetradec-9-enoate
[1-[(Z)-henicos-11-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] hexadecanoate
[1-[(Z)-hexadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] henicosanoate
[1-[(Z)-docos-13-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] pentadecanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]propan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexacos-15-enoxy]propan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] tetracosanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate
[1-docosoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-pentadec-9-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(15Z,18Z)-hexacosa-15,18-dienoxy]propan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] nonadecanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]propan-2-yl] docosanoate
[1-[(Z)-hexacos-15-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] undecanoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] tricosanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetracos-13-enoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]propan-2-yl] octadecanoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetracos-13-enoxy]propan-2-yl] tridecanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octadecoxypropan-2-yl] (Z)-nonadec-9-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-docos-13-enoxy]propan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[1-[(Z)-heptadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] icosanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]propan-2-yl] (13Z,16Z)-docosa-13,16-dienoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propan-2-yl] (Z)-icos-11-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]propan-2-yl] (Z)-octadec-9-enoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] docosanoate
[1-henicosoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-hexadec-9-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate
[1-heptadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-icos-11-enoate
[(4E,8E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoyl]amino]-3-hydroxypentadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C52H85N2O6P (864.6144919999999)
[(4E,8E)-3-hydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-7,10,13,16,19,22,25,28,31-nonaenoyl]amino]trideca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C52H85N2O6P (864.6144919999999)
[(4E,8E,12E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]amino]-3-hydroxypentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
C52H85N2O6P (864.6144919999999)
[(4E,8E,12E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]amino]heptadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
C52H85N2O6P (864.6144919999999)
[(E)-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-6,9,12,15,18,21,24,27,30,33-decaenoyl]amino]-3-hydroxyundec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C52H85N2O6P (864.6144919999999)
[1-Pentanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] pentacosanoate
[1-Octanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] docosanoate
[1-Propanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] heptacosanoate
[1-Butanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] hexacosanoate
[1-Heptanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] tricosanoate
[1-Nonanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] henicosanoate
[1-Hexanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] tetracosanoate
[1-Decanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] icosanoate
[1-[3,4,5-Trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] nonadecanoate
[1-Dodecanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] octadecanoate
[1-Tridecanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] heptadecanoate
[1-Tetradecanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] hexadecanoate
[2-Pentadecanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] pentadecanoate
[6-(3-Dodecanoyloxy-2-pentacosanoyloxypropoxy)-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[3,4,5-Trihydroxy-6-(2-tetracosanoyloxy-3-tridecanoyloxypropoxy)oxan-2-yl]methanesulfonic acid
[3,4,5-Trihydroxy-6-(3-tetradecanoyloxy-2-tricosanoyloxypropoxy)oxan-2-yl]methanesulfonic acid
[6-(2-Docosanoyloxy-3-pentadecanoyloxypropoxy)-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[6-(2-Henicosanoyloxy-3-hexadecanoyloxypropoxy)-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[6-(3-Heptadecanoyloxy-2-icosanoyloxypropoxy)-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[3,4,5-Trihydroxy-6-(2-nonadecanoyloxy-3-octadecanoyloxypropoxy)oxan-2-yl]methanesulfonic acid
6-[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
6-[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
[(E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-8,11,14,17,20,23,26,29,32,35-decaenoyl]amino]non-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C52H85N2O6P (864.6144919999999)
[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate
[1-[[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
[1-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate
[1-[(2-henicosanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[1-[[2-[(Z)-henicos-11-enoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (Z)-henicos-11-enoate
C45H85O13P (864.5727489999999)
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
[1-heptadecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-nonadec-9-enoate
C45H85O13P (864.5727489999999)
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (Z)-docos-13-enoate
C45H85O13P (864.5727489999999)
[3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] docosanoate
C45H85O13P (864.5727489999999)
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-2-[(Z)-tridec-9-enoyl]oxypropyl] tricosanoate
C45H85O13P (864.5727489999999)
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-henicosanoyloxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[1-dodecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tetracos-13-enoate
C45H85O13P (864.5727489999999)
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate
[2-[(Z)-heptadec-9-enoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] nonadecanoate
C45H85O13P (864.5727489999999)
[3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] henicosanoate
C45H85O13P (864.5727489999999)
[2-[(Z)-hexadec-9-enoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] icosanoate
C45H85O13P (864.5727489999999)
[1-decanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-hexacos-15-enoate
C45H85O13P (864.5727489999999)
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-nonadecanoyloxy-2-octadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid
[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (E)-docos-13-enoate
C45H85O13P (864.5727489999999)
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] docosanoate
C45H85O13P (864.5727489999999)
[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] octadecanoate
[(2R)-1-hexadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-icos-13-enoate
C45H85O13P (864.5727489999999)
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-octadec-13-enoyl]oxypropan-2-yl] octadecanoate
C45H85O13P (864.5727489999999)
[(2S)-2-pentadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] pentadecanoate
[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] docosanoate
C45H85O13P (864.5727489999999)
[(2S)-2-hexadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-icos-11-enoate
C45H85O13P (864.5727489999999)
[(2S,3S,6S)-6-[(2S)-2-hexacosanoyloxy-3-undecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-tetracosanoyloxy-3-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-6-[(2S)-2-dodecanoyloxy-3-pentacosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-6-[(2S)-3-heptadecanoyloxy-2-icosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] nonadecanoate
C45H85O13P (864.5727489999999)
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-tetradecanoyloxy-2-tricosanoyloxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-6-[(2S)-3-docosanoyloxy-2-pentadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S)-1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] icosanoate
[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] icosanoate
C45H85O13P (864.5727489999999)
[(2S,3S,6S)-6-[(2S)-2-heptadecanoyloxy-3-icosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S)-2-hexadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-icos-13-enoate
C45H85O13P (864.5727489999999)
[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] henicosanoate
C45H85O13P (864.5727489999999)
[(2S)-2-dodecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-tetracos-15-enoate
C45H85O13P (864.5727489999999)
[(2S,3S,6S)-6-[(2S)-3-dodecanoyloxy-2-pentacosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-octadec-6-enoyl]oxypropyl] octadecanoate
C45H85O13P (864.5727489999999)
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-octadec-9-enoyl]oxypropan-2-yl] octadecanoate
C45H85O13P (864.5727489999999)
[(2S)-2-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] octadecanoate
[(2S,3S,6S)-6-[(2S)-2-docosanoyloxy-3-pentadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] nonadecanoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-henicosanoyloxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-octadec-13-enoyl]oxypropyl] octadecanoate
C45H85O13P (864.5727489999999)
[(2R)-1-decanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-hexacos-5-enoate
C45H85O13P (864.5727489999999)
[(2S)-2-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] heptadecanoate
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-octadec-11-enoyl]oxypropyl] octadecanoate
C45H85O13P (864.5727489999999)
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-tetracosanoyloxy-2-tridecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid
[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] icosanoate
C45H85O13P (864.5727489999999)
[(2R)-1-dodecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-tetracos-15-enoate
C45H85O13P (864.5727489999999)
[(2S,3S,6S)-6-[(2S)-3-henicosanoyloxy-2-hexadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-octadec-17-enoyloxypropan-2-yl] octadecanoate
C45H85O13P (864.5727489999999)
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-nonadecanoyloxy-3-octadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] nonadecanoate
C45H85O13P (864.5727489999999)
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-octadec-17-enoyloxypropyl] octadecanoate
C45H85O13P (864.5727489999999)
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-octadec-7-enoyl]oxypropan-2-yl] octadecanoate
C45H85O13P (864.5727489999999)
[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] heptadecanoate
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-tetradecanoyloxy-3-tricosanoyloxypropoxy]oxan-2-yl]methanesulfonic acid
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-octadec-7-enoyl]oxypropyl] octadecanoate
C45H85O13P (864.5727489999999)
[(2S)-1-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] hexadecanoate
[(2R)-1-hexadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-icos-11-enoate
C45H85O13P (864.5727489999999)
[(2S,3S,6S)-6-[(2S)-2-henicosanoyloxy-3-hexadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-octadec-4-enoyl]oxypropyl] octadecanoate
C45H85O13P (864.5727489999999)
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-octadec-11-enoyl]oxypropan-2-yl] octadecanoate
C45H85O13P (864.5727489999999)
[(2R)-2-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] icosanoate
[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] icosanoate
C45H85O13P (864.5727489999999)
[(2S,3S,6S)-6-[(2S)-3-hexacosanoyloxy-2-undecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-octadec-4-enoyl]oxypropan-2-yl] octadecanoate
C45H85O13P (864.5727489999999)
[(2S)-2-decanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-hexacos-5-enoate
C45H85O13P (864.5727489999999)
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tetradecanoyloxypropyl] (E)-docos-13-enoate
C45H85O13P (864.5727489999999)
[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] henicosanoate
C45H85O13P (864.5727489999999)
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-octadec-6-enoyl]oxypropan-2-yl] octadecanoate
C45H85O13P (864.5727489999999)
[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-henicosanoyloxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate
[(2R)-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-2-undecanoyloxypropyl] nonadecanoate
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-octadec-9-enoyl]oxypropyl] octadecanoate
C45H85O13P (864.5727489999999)
[(2S)-2-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] hexadecanoate
[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] icosanoate
C45H85O13P (864.5727489999999)
2-[[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C52H83NO7P+ (864.5906837999999)
2-[[2-[(4E,7E,10E,12Z,16E,19Z)-14,21-dihydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H83NO10P+ (864.5754287999999)
2-[hydroxy-[2-hydroxy-3-[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z,38Z,41Z)-tetratetraconta-8,11,14,17,20,23,26,29,32,35,38,41-dodecaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C52H83NO7P+ (864.5906837999999)
2-[[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C52H83NO7P+ (864.5906837999999)
2-[[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C52H83NO7P+ (864.5906837999999)
1-stearoyl-2-oleoyl-sn-glycero-3-phospho-1D-myo-inositol
C45H85O13P (864.5727489999999)
A 1-octadecanoyl-2-acyl-sn-glycero-3-phospho-1D-myo-inositol in which the 2-acyl group is specified as oleoyl.
1-tetradecanoyl-2-(11Z-docosenoyl)-glycero-3-phospho-(1-myo-inositol)
C45H85O13P (864.5727489999999)
1-(1Z-eicosenyl)-2-heptadecanoyl-glycero-3-phospho-(1-myo-inositol)
1-octadecyl-2-(9Z-nonadecenoyl)-glycero-3-phospho-(1-myo-inositol)
1-eicosyl-2-(9Z-heptadecenoyl)-glycero-3-phospho-(1-myo-inositol)
phosphatidylinositol 36:1
C45H85O13P (864.5727489999999)
A 1-phosphatidyl-1D-myo-inositol in which the two acyl groups contain a total of 36 carbon atoms and 1 double bond.
phosphatidylinositol (18:0/18:1)
C45H85O13P (864.5727489999999)
A phosphatidylinositol 36:1 in which the acyl group at position 1 contains 18 carbons and no double bonds while that at position 2 contains 18 carbons and 1 double bond.
phosphatidylserine 42:5(1-)
C48H83NO10P (864.5754287999999)
A 3-sn-phosphatidyl-L-serine(1-) in which the acyl groups at C-1 and C-2 contain 42 carbons in total and 5 double bonds.
MGDG(43:10)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved