Exact Mass: 856.4569

Exact Mass Matches: 856.4569

Found 32 metabolites which its exact mass value is equals to given mass value 856.4569, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

PGP(i-14:0/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2S)-3-({[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-[(12-methyltridecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C40H74O15P2 (856.4503)


PGP(i-14:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-14:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/i-14:0)

[(2S)-3-({[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-[(12-methyltridecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C40H74O15P2 (856.4503)


PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/i-14:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/i-14:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

Glycyrrhizin

.ALPHA.-D-GLUCOPYRANOSIDURONIC ACID, (3.BETA.,20.BETA.)-20-CARBOXY-11-OXO-30-NOROLEAN-12-EN-3-YL 2-O-.BETA.-D-GLUCOPYRANURONOSYL-, AMMONIUM SALT (1:2)

C42H68N2O16 (856.4569)


Diammonium Glycyrrhizinate is the diammonium salt of glycyrrhizin and the active constituent in the traditional Chinese medicinal herb Glycyrrhiza uralensis (Chinese liquorice or Gan-Cao) with anti-inflammatory, antioxidant and hepatoprotective properties. Diammonium glycyrrhizinate (DG) is slowly metabolized within the cells into glycyrrhetic acid, which inhibits enzymes that control cortisol metabolism and contributes to this agents anti-inflammatory effect. Although the exact mechanism of action remains to be fully elucidated, DG may prevent or reduce hepatotoxicity via the scavenging of free radicals. This agent also upregulates the expression of transcription coactivator PGC-1alpha and modulates hepatic enzymes such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), superoxide dismutase and glutathion peroxidase. A widely used anti-inflammatory agent isolated from the licorice root. It is metabolized to GLYCYRRHETINIC ACID, which inhibits 11-BETA-HYDROXYSTEROID DEHYDROGENASES and other enzymes involved in the metabolism of CORTICOSTEROIDS. Therefore, glycyrrhizic acid, which is the main and sweet component of licorice, has been investigated for its ability to cause hypermineralocorticoidism with sodium retention and potassium loss, edema, increased blood pressure, as well as depression of the renin-angiotensin-aldosterone system. Diammonium Glycyrrhizinate, isolated from the licorice root, is a widely used anti-inflammatory agent[1]. Diammonium Glycyrrhizinate, isolated from the licorice root, is a widely used anti-inflammatory agent[1].

   
   
   

Marsdenoside C

Marsdenoside C

C47H68O14 (856.4609)


   

Diperamycin

Diperamycin

C38H64N8O14 (856.4542)


A 19-membered cyclodepsipeptide that is a hexadepsipeptide isolated from the fermentation broth of Streptomyces griseoaurantiacus MK393-AF2 and exhibits potent inhibitory activity against various Gram-positive bacteria including Enterococcus seriolicida and methicillin-resistant Staphylococcus aureus. D000890 - Anti-Infective Agents > D023181 - Antimicrobial Cationic Peptides

   

5-oxoavermectin B1b

5-oxoavermectin B1b

C47H68O14 (856.4609)


   

Aminoglycoside 66-40C

Aminoglycoside 66-40C

C38H64N8O14 (856.4542)


   

muricatic acid B

muricatic acid B

C40H72O19 (856.4668)


   

(11S)-hydroxyhexadecanoate 11-O-alpha-L-rhamnopyranosyl-(1-4)-O-[alpha-L-rhamnopyranosyl-(1-4)]-O-alpha-L-rhamnopyranosyl-(1-2)-O-beta-D-fucopyranoside|mammoside I|operculinic acid C

(11S)-hydroxyhexadecanoate 11-O-alpha-L-rhamnopyranosyl-(1-4)-O-[alpha-L-rhamnopyranosyl-(1-4)]-O-alpha-L-rhamnopyranosyl-(1-2)-O-beta-D-fucopyranoside|mammoside I|operculinic acid C

C40H72O19 (856.4668)


   

(10S,11R,14S,16S,20S,21R,24E)-14,16-dihydroxy-20-{(2S,3S,7R,8R,10E)-11-[(hydroxymethyl)(methyl)amino]-2,8-dimethoxy-3,7-dimethyl-6-oxoundec-10-en-1-yl}-10-methoxy-11,21-dimethyl-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1~2,5~.1~6,9~]hentriaconta-1(28),2(31),4,6(30),8,24,26(29)-heptaene-12,18-dione

(10S,11R,14S,16S,20S,21R,24E)-14,16-dihydroxy-20-{(2S,3S,7R,8R,10E)-11-[(hydroxymethyl)(methyl)amino]-2,8-dimethoxy-3,7-dimethyl-6-oxoundec-10-en-1-yl}-10-methoxy-11,21-dimethyl-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1~2,5~.1~6,9~]hentriaconta-1(28),2(31),4,6(30),8,24,26(29)-heptaene-12,18-dione

C44H64N4O13 (856.447)


   

Diammonium Glycyrrhizinate

Diammonium Glycyrrhizinate

C42H68N2O16 (856.4569)


D000893 - Anti-Inflammatory Agents C1907 - Drug, Natural Product Diammonium Glycyrrhizinate, isolated from the licorice root, is a widely used anti-inflammatory agent[1]. Diammonium Glycyrrhizinate, isolated from the licorice root, is a widely used anti-inflammatory agent[1].

   

PGP(i-14:0/20:3(8Z,11Z,14Z)-2OH(5,6))

PGP(i-14:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C40H74O15P2 (856.4503)


   

PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/i-14:0)

PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/i-14:0)

C40H74O15P2 (856.4503)


   

Operculinic acid C

Operculinic acid C

C40H72O19 (856.4668)


A natural product found in Ipomoea operculata.

   
   

(10s,11r,14s,16s,20s,21r,24e)-14,16-dihydroxy-20-[(2s,3s,7r,8r,10e)-11-[(hydroxymethyl)(methyl)amino]-2,8-dimethoxy-3,7-dimethyl-6-oxoundec-10-en-1-yl]-10-methoxy-11,21-dimethyl-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1²,⁵.1⁶,⁹]hentriaconta-1(28),2(31),4,6(30),8,24,26(29)-heptaene-12,18-dione

(10s,11r,14s,16s,20s,21r,24e)-14,16-dihydroxy-20-[(2s,3s,7r,8r,10e)-11-[(hydroxymethyl)(methyl)amino]-2,8-dimethoxy-3,7-dimethyl-6-oxoundec-10-en-1-yl]-10-methoxy-11,21-dimethyl-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1²,⁵.1⁶,⁹]hentriaconta-1(28),2(31),4,6(30),8,24,26(29)-heptaene-12,18-dione

C44H64N4O13 (856.447)


   

14,16-dihydroxy-20-{11-[(hydroxymethyl)(methyl)amino]-2,8-dimethoxy-3,7-dimethyl-6-oxoundec-10-en-1-yl}-10-methoxy-11,21-dimethyl-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1²,⁵.1⁶,⁹]hentriaconta-1(28),2(31),4,6(30),8,24,26(29)-heptaene-12,18-dione

14,16-dihydroxy-20-{11-[(hydroxymethyl)(methyl)amino]-2,8-dimethoxy-3,7-dimethyl-6-oxoundec-10-en-1-yl}-10-methoxy-11,21-dimethyl-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1²,⁵.1⁶,⁹]hentriaconta-1(28),2(31),4,6(30),8,24,26(29)-heptaene-12,18-dione

C44H64N4O13 (856.447)


   

2-(5-hexyl-2-hydroxy-6-methyloxan-2-yl)-2-hydroxy-n-[5,7,21-trihydroxy-6-(methoxymethyl)-17,20-dimethyl-2,8,15,19,22-pentaoxo-18-oxa-1,4,7,13,14,21,27-heptaazatricyclo[21.4.0.0⁹,¹⁴]heptacos-4-en-16-yl]propanimidic acid

2-(5-hexyl-2-hydroxy-6-methyloxan-2-yl)-2-hydroxy-n-[5,7,21-trihydroxy-6-(methoxymethyl)-17,20-dimethyl-2,8,15,19,22-pentaoxo-18-oxa-1,4,7,13,14,21,27-heptaazatricyclo[21.4.0.0⁹,¹⁴]heptacos-4-en-16-yl]propanimidic acid

C38H64N8O14 (856.4542)


   

(1'r,2s,4's,5s,6r,8'r,10'e,12's,13's,14'e,16'e,20's,24's)-24'-hydroxy-12'-{[(2r,4s,5s,6s)-5-{[(2s,4s,5s,6s)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-6-isopropyl-5,11',13',22'-tetramethyl-5,6-dihydro-3',7',19'-trioxaspiro[pyran-2,6'-tetracyclo[15.6.1.1⁴,⁸.0²⁰,²⁴]pentacosane]-10',14',16',22'-tetraene-2',21'-dione

(1'r,2s,4's,5s,6r,8'r,10'e,12's,13's,14'e,16'e,20's,24's)-24'-hydroxy-12'-{[(2r,4s,5s,6s)-5-{[(2s,4s,5s,6s)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-6-isopropyl-5,11',13',22'-tetramethyl-5,6-dihydro-3',7',19'-trioxaspiro[pyran-2,6'-tetracyclo[15.6.1.1⁴,⁸.0²⁰,²⁴]pentacosane]-10',14',16',22'-tetraene-2',21'-dione

C47H68O14 (856.4609)


   

(11r)-11-{[(2r,3r,4s,5s,6r)-3-{[(2s,3r,4s,5s,6r)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl]oxy}hexadecanoic acid

(11r)-11-{[(2r,3r,4s,5s,6r)-3-{[(2s,3r,4s,5s,6r)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl]oxy}hexadecanoic acid

C40H72O19 (856.4668)


   

(2s)-2-[(2s,5r,6s)-5-hexyl-2-hydroxy-6-methyloxan-2-yl]-2-hydroxy-n-[(6r,9r,16s,17r,20r,23s)-5,7,21-trihydroxy-6-(methoxymethyl)-17,20-dimethyl-2,8,15,19,22-pentaoxo-18-oxa-1,4,7,13,14,21,27-heptaazatricyclo[21.4.0.0⁹,¹⁴]heptacos-4-en-16-yl]propanimidic acid

(2s)-2-[(2s,5r,6s)-5-hexyl-2-hydroxy-6-methyloxan-2-yl]-2-hydroxy-n-[(6r,9r,16s,17r,20r,23s)-5,7,21-trihydroxy-6-(methoxymethyl)-17,20-dimethyl-2,8,15,19,22-pentaoxo-18-oxa-1,4,7,13,14,21,27-heptaazatricyclo[21.4.0.0⁹,¹⁴]heptacos-4-en-16-yl]propanimidic acid

C38H64N8O14 (856.4542)


   

(11r)-11-{[(2r,3r,4s,5s,6r)-3-{[(2s,3r,4s,5s,6r)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl]oxy}hexadecanoic acid

(11r)-11-{[(2r,3r,4s,5s,6r)-3-{[(2s,3r,4s,5s,6r)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl]oxy}hexadecanoic acid

C40H72O19 (856.4668)


   

24'-hydroxy-12'-({5-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-4-methoxy-6-methyloxan-2-yl}oxy)-6-isopropyl-5,11',13',22'-tetramethyl-5,6-dihydro-3',7',19'-trioxaspiro[pyran-2,6'-tetracyclo[15.6.1.1⁴,⁸.0²⁰,²⁴]pentacosane]-10',14',16',22'-tetraene-2',21'-dione

24'-hydroxy-12'-({5-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-4-methoxy-6-methyloxan-2-yl}oxy)-6-isopropyl-5,11',13',22'-tetramethyl-5,6-dihydro-3',7',19'-trioxaspiro[pyran-2,6'-tetracyclo[15.6.1.1⁴,⁸.0²⁰,²⁴]pentacosane]-10',14',16',22'-tetraene-2',21'-dione

C47H68O14 (856.4609)


   

2-hydroxy-2-[2-hydroxy-6-methyl-5-(2-methylpropyl)oxan-2-yl]-n-[5,7,21-trihydroxy-17-isopropyl-6-(methoxymethyl)-20-methyl-2,8,15,19,22-pentaoxo-18-oxa-1,4,7,13,14,21,27-heptaazatricyclo[21.4.0.0⁹,¹⁴]heptacos-4-en-16-yl]propanimidic acid

2-hydroxy-2-[2-hydroxy-6-methyl-5-(2-methylpropyl)oxan-2-yl]-n-[5,7,21-trihydroxy-17-isopropyl-6-(methoxymethyl)-20-methyl-2,8,15,19,22-pentaoxo-18-oxa-1,4,7,13,14,21,27-heptaazatricyclo[21.4.0.0⁹,¹⁴]heptacos-4-en-16-yl]propanimidic acid

C38H64N8O14 (856.4542)


   

11-[(3-{[5-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl)oxy]hexadecanoic acid

11-[(3-{[5-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl)oxy]hexadecanoic acid

C40H72O19 (856.4668)


   

11-[(3-{[3-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl)oxy]hexadecanoic acid

11-[(3-{[3-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl)oxy]hexadecanoic acid

C40H72O19 (856.4668)


   

(1s,3r,6r,7s,8s,9s,10s,11s,14s,16s)-6-acetyl-14-{[(2r,4r,5r,6r)-5-{[(2s,3r,4r,5r,6r)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-7,11-dimethyl-9-{[(2s)-2-methylbutanoyl]oxy}-2-oxapentacyclo[8.8.0.0¹,³.0³,⁷.0¹¹,¹⁶]octadecan-8-yl benzoate

(1s,3r,6r,7s,8s,9s,10s,11s,14s,16s)-6-acetyl-14-{[(2r,4r,5r,6r)-5-{[(2s,3r,4r,5r,6r)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-7,11-dimethyl-9-{[(2s)-2-methylbutanoyl]oxy}-2-oxapentacyclo[8.8.0.0¹,³.0³,⁷.0¹¹,¹⁶]octadecan-8-yl benzoate

C47H68O14 (856.4609)


   

6,14,20,28-tetraamino-5,19-bis({[3,5-dihydroxy-5-methyl-4-(methylamino)oxan-2-yl]oxy})-2,16,29,30-tetraoxa-9,23-diazapentacyclo[23.3.1.1¹¹,¹⁵.0³,⁸.0¹⁷,²²]triaconta-9,11,23,25-tetraene-4,18-diol

6,14,20,28-tetraamino-5,19-bis({[3,5-dihydroxy-5-methyl-4-(methylamino)oxan-2-yl]oxy})-2,16,29,30-tetraoxa-9,23-diazapentacyclo[23.3.1.1¹¹,¹⁵.0³,⁸.0¹⁷,²²]triaconta-9,11,23,25-tetraene-4,18-diol

C38H64N8O14 (856.4542)


   

(2s)-2-hydroxy-2-[(2s,5s,6s)-2-hydroxy-6-methyl-5-(2-methylpropyl)oxan-2-yl]-n-[(6s,9r,16s,17s,20r,23s)-5,7,21-trihydroxy-17-isopropyl-6-(methoxymethyl)-20-methyl-2,8,15,19,22-pentaoxo-18-oxa-1,4,7,13,14,21,27-heptaazatricyclo[21.4.0.0⁹,¹⁴]heptacos-4-en-16-yl]propanimidic acid

(2s)-2-hydroxy-2-[(2s,5s,6s)-2-hydroxy-6-methyl-5-(2-methylpropyl)oxan-2-yl]-n-[(6s,9r,16s,17s,20r,23s)-5,7,21-trihydroxy-17-isopropyl-6-(methoxymethyl)-20-methyl-2,8,15,19,22-pentaoxo-18-oxa-1,4,7,13,14,21,27-heptaazatricyclo[21.4.0.0⁹,¹⁴]heptacos-4-en-16-yl]propanimidic acid

C38H64N8O14 (856.4542)


   

(1r,3s,4s,5r,6s,8r,14r,15s,17r,18r,19s,20r,22s,28s)-6,14,20,28-tetraamino-5,19-bis({[(2r,3r,4r,5r)-3,5-dihydroxy-5-methyl-4-(methylamino)oxan-2-yl]oxy})-2,16,29,30-tetraoxa-9,23-diazapentacyclo[23.3.1.1¹¹,¹⁵.0³,⁸.0¹⁷,²²]triaconta-9,11,23,25-tetraene-4,18-diol

(1r,3s,4s,5r,6s,8r,14r,15s,17r,18r,19s,20r,22s,28s)-6,14,20,28-tetraamino-5,19-bis({[(2r,3r,4r,5r)-3,5-dihydroxy-5-methyl-4-(methylamino)oxan-2-yl]oxy})-2,16,29,30-tetraoxa-9,23-diazapentacyclo[23.3.1.1¹¹,¹⁵.0³,⁸.0¹⁷,²²]triaconta-9,11,23,25-tetraene-4,18-diol

C38H64N8O14 (856.4542)