Exact Mass: 851.6641792
Exact Mass Matches: 851.6641792
Found 500 metabolites which its exact mass value is equals to given mass value 851.6641792
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
PE(20:3(5Z,8Z,11Z)/24:1(15Z))
PE(20:3(5Z,8Z,11Z)/24:1(15Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:3(5Z,8Z,11Z)/24:1(15Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of nervonic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the nervonic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(20:3(5Z,8Z,11Z)/24:1(15Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:3(5Z,8Z,11Z)/24:1(15Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of nervonic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the nervonic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(20:3(8Z,11Z,14Z)/24:1(15Z))
PE(20:3(8Z,11Z,14Z)/24:1(15Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:3(8Z,11Z,14Z)/24:1(15Z)), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of nervonic acid at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the nervonic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(20:3(8Z,11Z,14Z)/24:1(15Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:3(8Z,11Z,14Z)/24:1(15Z)), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of nervonic acid at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the nervonic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(20:4(5Z,8Z,11Z,14Z)/24:0)
PE(20:4(5Z,8Z,11Z,14Z)/24:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:4(5Z,8Z,11Z,14Z)/24:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of lignoceric acid at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the lignoceric acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(20:4(5Z,8Z,11Z,14Z)/24:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:4(5Z,8Z,11Z,14Z)/24:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of lignoceric acid at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the lignoceric acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(20:4(8Z,11Z,14Z,17Z)/24:0)
PE(20:4(8Z,11Z,14Z,17Z)/24:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:4(8Z,11Z,14Z,17Z)/24:0), in particular, consists of one chain of eicsoatetraenoic acid at the C-1 position and one chain of lignoceric acid at the C-2 position. The eicsoatetraenoic acid moiety is derived from fish oils, while the lignoceric acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.
PE(22:0/22:4(7Z,10Z,13Z,16Z))
PE(22:0/22:4(7Z,10Z,13Z,16Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:0/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of behenic acid at the C-1 position and one chain of adrenic acid at the C-2 position. The behenic acid moiety is derived from groundnut oil, while the adrenic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(22:0/22:4(7Z,10Z,13Z,16Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:0/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of behenic acid at the C-1 position and one chain of adrenic acid at the C-2 position. The behenic acid moiety is derived from groundnut oil, while the adrenic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(22:2(13Z,16Z)/22:2(13Z,16Z))
PE(22:2(13Z,16Z)/22:2(13Z,16Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:2(13Z,16Z)/22:2(13Z,16Z)), in particular, consists of two chains of docosadienoic acid at the C-1 and C-2 positions. The docosadienoic acid moieties are derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(22:2(13Z,16Z)/22:2(13Z,16Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:2(13Z,16Z)/22:2(13Z,16Z)), in particular, consists of two chains of docosadienoic acid at the C-1 and C-2 positions. The docosadienoic acid moieties are derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(22:4(7Z,10Z,13Z,16Z)/22:0)
PE(22:4(7Z,10Z,13Z,16Z)/22:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:4(7Z,10Z,13Z,16Z)/22:0), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of behenic acid at the C-2 position. The adrenic acid moiety is derived from animal fats, while the behenic acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(22:4(7Z,10Z,13Z,16Z)/22:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:4(7Z,10Z,13Z,16Z)/22:0), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of behenic acid at the C-2 position. The adrenic acid moiety is derived from animal fats, while the behenic acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(24:0/20:4(5Z,8Z,11Z,14Z))
PE(24:0/20:4(5Z,8Z,11Z,14Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(24:0/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of lignoceric acid at the C-1 position and one chain of arachidonic acid at the C-2 position. The lignoceric acid moiety is derived from groundnut oil, while the arachidonic acid moiety is derived from animal fats and eggs. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.
PE(24:0/20:4(8Z,11Z,14Z,17Z))
PE(24:0/20:4(8Z,11Z,14Z,17Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(24:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of lignoceric acid at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The lignoceric acid moiety is derived from groundnut oil, while the eicsoatetraenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.
PE(24:1(15Z)/20:3(5Z,8Z,11Z))
PE(24:1(15Z)/20:3(5Z,8Z,11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(24:1(15Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of mead acid at the C-2 position. The nervonic acid moiety is derived from fish oils, while the mead acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.
PE(24:1(15Z)/20:3(8Z,11Z,14Z))
PE(24:1(15Z)/20:3(8Z,11Z,14Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(24:1(15Z)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of homo-g-linolenic acid at the C-2 position. The nervonic acid moiety is derived from fish oils, while the homo-g-linolenic acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.
PC(O-22:0/20:4(8Z,11Z,14Z,17Z))
C50H94NO7P (851.6767543999999)
PC(O-22:0/20:4(8Z,11Z,14Z,17Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(O-22:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of Behenyl alcohol at the C-1 position and one chain of eicosatetraenoic acid at the C-2 position. The Behenyl alcohol moiety is derived from Rice bran, while the eicosatetraenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(o-22:0/20:4(8Z,11Z,14Z,17Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(o-22:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of Behenyl alcohol at the C-1 position and one chain of eicosatetraenoic acid at the C-2 position. The Behenyl alcohol moiety is derived from Rice bran, while the eicosatetraenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PC(O-22:2(13Z,16Z)/20:2(11Z,14Z))
C50H94NO7P (851.6767543999999)
PC(O-22:2(13Z,16Z)/20:2(11Z,14Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(O-22:2(13Z,16Z)/20:2(11Z,14Z)), in particular, consists of one chain of Docosadienyl alcohol at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The Docosadienyl alcohol moiety is derived from animal fat, while the eicosadienoic acid moiety is derived from fish oils and liver. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(o-22:2(13Z,16Z)/20:2(11Z,14Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(o-22:2(13Z,16Z)/20:2(11Z,14Z)), in particular, consists of one chain of Docosadienyl alcohol at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The Docosadienyl alcohol moiety is derived from animal fat, while the eicosadienoic acid moiety is derived from fish oils and liver. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE-NMe2(18:3(6Z,9Z,12Z)/24:1(15Z))
PE-NMe2(18:3(6Z,9Z,12Z)/24:1(15Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(18:3(6Z,9Z,12Z)/24:1(15Z)), in particular, consists of one chain of gamma-linolenic acid at the C-1 position and one chain of nervonic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(18:3(9Z,12Z,15Z)/24:1(15Z))
PE-NMe2(18:3(9Z,12Z,15Z)/24:1(15Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(18:3(9Z,12Z,15Z)/24:1(15Z)), in particular, consists of one chain of alpha-linolenic acid at the C-1 position and one chain of nervonic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(18:4(6Z,9Z,12Z,15Z)/24:0)
PE-NMe2(18:4(6Z,9Z,12Z,15Z)/24:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(18:4(6Z,9Z,12Z,15Z)/24:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of lignoceric acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(20:0/22:4(7Z,10Z,13Z,16Z))
PE-NMe2(20:0/22:4(7Z,10Z,13Z,16Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(20:0/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of adrenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(20:2(11Z,14Z)/22:2(13Z,16Z))
PE-NMe2(20:2(11Z,14Z)/22:2(13Z,16Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(20:2(11Z,14Z)/22:2(13Z,16Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(20:3(5Z,8Z,11Z)/22:1(13Z))
PE-NMe2(20:3(5Z,8Z,11Z)/22:1(13Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(20:3(5Z,8Z,11Z)/22:1(13Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of erucic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(20:3(8Z,11Z,14Z)/22:1(13Z))
PE-NMe2(20:3(8Z,11Z,14Z)/22:1(13Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(20:3(8Z,11Z,14Z)/22:1(13Z)), in particular, consists of one chain of dihomo-gamma-linolenic acid at the C-1 position and one chain of erucic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(20:4(5Z,8Z,11Z,14Z)/22:0)
PE-NMe2(20:4(5Z,8Z,11Z,14Z)/22:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(20:4(5Z,8Z,11Z,14Z)/22:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of behenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(20:4(8Z,11Z,14Z,17Z)/22:0)
PE-NMe2(20:4(8Z,11Z,14Z,17Z)/22:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(20:4(8Z,11Z,14Z,17Z)/22:0), in particular, consists of one chain of eicosatetraenoic acid at the C-1 position and one chain of behenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(22:0/20:4(5Z,8Z,11Z,14Z))
PE-NMe2(22:0/20:4(5Z,8Z,11Z,14Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(22:0/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of behenic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(22:0/20:4(8Z,11Z,14Z,17Z))
PE-NMe2(22:0/20:4(8Z,11Z,14Z,17Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(22:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of behenic acid at the C-1 position and one chain of eicosatetraenoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(22:1(13Z)/20:3(5Z,8Z,11Z))
PE-NMe2(22:1(13Z)/20:3(5Z,8Z,11Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(22:1(13Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of mead acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(22:1(13Z)/20:3(8Z,11Z,14Z))
PE-NMe2(22:1(13Z)/20:3(8Z,11Z,14Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(22:1(13Z)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of dihomo-gamma-linolenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(22:2(13Z,16Z)/20:2(11Z,14Z))
PE-NMe2(22:2(13Z,16Z)/20:2(11Z,14Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(22:2(13Z,16Z)/20:2(11Z,14Z)), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(22:4(7Z,10Z,13Z,16Z)/20:0)
PE-NMe2(22:4(7Z,10Z,13Z,16Z)/20:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(22:4(7Z,10Z,13Z,16Z)/20:0), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of arachidic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(24:0/18:4(6Z,9Z,12Z,15Z))
PE-NMe2(24:0/18:4(6Z,9Z,12Z,15Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(24:0/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of lignoceric acid at the C-1 position and one chain of stearidonic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(24:1(15Z)/18:3(6Z,9Z,12Z))
PE-NMe2(24:1(15Z)/18:3(6Z,9Z,12Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(24:1(15Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of gamma-linolenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(24:1(15Z)/18:3(9Z,12Z,15Z))
PE-NMe2(24:1(15Z)/18:3(9Z,12Z,15Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(24:1(15Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of alpha-linolenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PC(19:0/22:4(7Z,10Z,13Z,16Z))
PC(20:4(5Z,8Z,11Z,14Z)/21:0)
PC(21:0/20:4(5Z,8Z,11Z,14Z))
PC(22:4(7Z,10Z,13Z,16Z)/19:0)
PC(O-20:0/22:4(7Z,10Z,13Z,16Z))
C50H94NO7P (851.6767543999999)
PC O-42:4
C50H94NO7P (851.6767543999999)
2-(2-Hydroxytetracosanoylamino)-octadecane-1,3,4-triol tetraacetate
[2-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoyl]oxy-3-tetradecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
2-[3-octanoyloxy-2-[(10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-10,13,16,19,22,25,28,31-octaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-decanoyloxy-2-[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-dodecanoyloxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
(4E,8E,12E)-3-hydroxy-2-(2-hydroxyhexacosanoylamino)pentacosa-4,8,12-triene-1-sulfonic acid
C51H97NO6S (851.7036221999999)
(4E,8E)-3-hydroxy-2-[[(Z)-2-hydroxyhexacos-11-enoyl]amino]pentacosa-4,8-diene-1-sulfonic acid
C51H97NO6S (851.7036221999999)
(4E,8E,12E)-3-hydroxy-2-(2-hydroxypentacosanoylamino)hexacosa-4,8,12-triene-1-sulfonic acid
C51H97NO6S (851.7036221999999)
(4E,8E)-3-hydroxy-2-[[(Z)-2-hydroxypentacos-11-enoyl]amino]hexacosa-4,8-diene-1-sulfonic acid
C51H97NO6S (851.7036221999999)
(E)-3-hydroxy-2-[[(11Z,14Z)-2-hydroxyhexacosa-11,14-dienoyl]amino]pentacos-4-ene-1-sulfonic acid
C51H97NO6S (851.7036221999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]propan-2-yl] nonadecanoate
C50H94NO7P (851.6767543999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate
C50H94NO7P (851.6767543999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoxy]propan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate
C50H94NO7P (851.6767543999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] (16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoate
C50H94NO7P (851.6767543999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-henicosoxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate
C50H94NO7P (851.6767543999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate
C50H94NO7P (851.6767543999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate
C50H94NO7P (851.6767543999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(15Z,18Z)-hexacosa-15,18-dienoxy]propan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate
C50H94NO7P (851.6767543999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tricosoxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
C50H94NO7P (851.6767543999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]propan-2-yl] (Z)-nonadec-9-enoate
C50H94NO7P (851.6767543999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(17Z,20Z)-octacosa-17,20-dienoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate
C50H94NO7P (851.6767543999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptacosoxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
C50H94NO7P (851.6767543999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentacosoxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
C50H94NO7P (851.6767543999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecoxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate
C50H94NO7P (851.6767543999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propan-2-yl] (Z)-henicos-11-enoate
C50H94NO7P (851.6767543999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propan-2-yl] henicosanoate
C50H94NO7P (851.6767543999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] (17Z,20Z)-octacosa-17,20-dienoate
C50H94NO7P (851.6767543999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate
C50H94NO7P (851.6767543999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoxy]propan-2-yl] (Z)-heptadec-9-enoate
C50H94NO7P (851.6767543999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] (14Z,17Z,20Z)-octacosa-14,17,20-trienoate
C50H94NO7P (851.6767543999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoxy]propan-2-yl] heptadecanoate
C50H94NO7P (851.6767543999999)
[2-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]oxy-3-[(Z)-hexadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[2-[(Z)-hexacos-15-enoyl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(Z)-icos-11-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]-2-[(Z)-hexadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[3-docosoxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[3-[(15Z,18Z)-hexacosa-15,18-dienoxy]-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[3-[(Z)-hexacos-15-enoxy]-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[2-[(Z)-octadec-9-enoyl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[3-[(11Z,14Z)-henicosa-11,14-dienoxy]-2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[2-octadecanoyloxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[3-hexacosoxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[3-[(Z)-docos-13-enoxy]-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[3-[(Z)-octadec-9-enoxy]-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[3-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoxy]-2-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]-2-hexadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[2-hexacosanoyloxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-[(Z)-tetracos-13-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-tetracosoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-icosoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[3-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoxy]-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[2-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoyl]oxy-3-[(Z)-tetradec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decanoyloxypropan-2-yl] (22Z,25Z,28Z,31Z)-tetratriaconta-22,25,28,31-tetraenoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropan-2-yl] (14Z,17Z,20Z)-octacosa-14,17,20-trienoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoyl]oxypropan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (18Z,21Z,24Z,27Z)-triaconta-18,21,24,27-tetraenoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoyl]oxypropan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropan-2-yl] (17Z,20Z)-octacosa-17,20-dienoate
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] (Z)-octacos-17-enoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoate
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] octacosanoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (16Z,19Z,22Z)-triaconta-16,19,22-trienoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (20Z,23Z,26Z,29Z)-dotriaconta-20,23,26,29-tetraenoate
4-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-henicos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] pentacosanoate
C50H94NO7P (851.6767543999999)
[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]-2-tetracosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[3-[(9Z,12Z)-octadeca-9,12-dienoxy]-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-[(Z)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[2-[(Z)-docos-13-enoyl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-hexadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]-2-[(Z)-tetracos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[3-octadecoxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]propan-2-yl] tricosanoate
C50H94NO7P (851.6767543999999)
[2-docosanoyloxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C50H94NO7P (851.6767543999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] heptacosanoate
C50H94NO7P (851.6767543999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (24Z,27Z,30Z,33Z)-hexatriaconta-24,27,30,33-tetraenoate
[2-[(20Z,23Z,26Z,29Z)-dotriaconta-20,23,26,29-tetraenoyl]oxy-3-nonanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(13Z,16Z)-docosa-13,16-dienoyl]oxypropyl] (13Z,16Z)-docosa-13,16-dienoate
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxypropyl] docosanoate
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropyl] (Z)-tetracos-13-enoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecanoyloxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] hexacosanoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-icosanoyloxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] (Z)-hexacos-15-enoate
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropyl] tetracosanoate
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxypropyl] (Z)-docos-13-enoate
[3-[(Z)-heptadec-9-enoyl]oxy-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(18Z,21Z,24Z,27Z)-triaconta-18,21,24,27-tetraenoyl]oxy-3-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-henicosanoyloxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-tricosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-pentacosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[(Z)-henicos-11-enoyl]oxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-heptadecanoyloxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
4-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-henicosanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-3-henicosanoyloxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (E)-hexacos-5-enoate
[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(E)-pentacos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
4-[2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxy-3-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] (E)-hexacos-5-enoate
4-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(E)-henicos-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-3-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-icosanoyloxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate
4-[3-[(E)-nonadec-9-enoyl]oxy-2-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(E)-octadec-11-enoyl]oxy-3-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-3-[(15E,18E,21E)-tetracosa-15,18,21-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(E)-heptadec-7-enoyl]oxy-2-[(8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-2-tricosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-3-henicosanoyloxy-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
4-[3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-2-[(15E,18E,21E)-tetracosa-15,18,21-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(14E,16E)-tricosa-14,16-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] hexacosanoate
4-[3-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-2-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-heptadecanoyloxy-2-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropan-2-yl] (E)-tetracos-15-enoate
4-[3-[(10E,12E)-octadeca-10,12-dienoyl]oxy-2-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropyl] tetracosanoate
4-[3-[(14E,16E)-docosa-14,16-dienoyl]oxy-2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropyl] (5E,9E)-hexacosa-5,9-dienoate
4-[3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-2-[(18E,21E)-tetracosa-18,21-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropan-2-yl] (E)-tetracos-15-enoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] hexacosanoate
[(2R)-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-2-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
4-[3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(14E,16E)-docosa-14,16-dienoyl]oxy-3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-tricosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropan-2-yl] tetracosanoate
4-[2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-2-henicosanoyloxy-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
4-[2-[(7E,9E)-nonadeca-7,9-dienoyl]oxy-3-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(13E,16E)-docosa-13,16-dienoyl]oxypropyl] (13E,16E)-docosa-13,16-dienoate
[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-tricosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropyl] (5E,9E)-hexacosa-5,9-dienoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] hexacosanoate
4-[2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-[(18E,21E)-tetracosa-18,21-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-2-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(11E,14E)-pentacosa-11,14-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
4-[2-[(10E,12E)-octadeca-10,12-dienoyl]oxy-3-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-heptadecanoyloxy-3-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxypropan-2-yl] docosanoate
2-[hydroxy-[(2S,3R)-3-hydroxy-2-[[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]amino]henicosoxy]phosphoryl]oxyethyl-trimethylazanium
4-[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropyl] tetracosanoate
4-[2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(13E,16E,19E)-pentacosa-13,16,19-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(E)-heptadec-7-enoyl]oxy-3-[(8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxy-2-[(13E,16E,19E,22E)-pentacosa-13,16,19,22-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] hexacosanoate
4-[2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(9E,11E)-henicosa-9,11-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropyl] (E)-tetracos-15-enoate
[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-icosanoyloxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropan-2-yl] (E)-hexacos-5-enoate
4-[2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(14E,16E)-tricosa-14,16-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-3-heptadecanoyloxy-2-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
4-[3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-2-[(E)-tricos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-2-[(14E,17E,20E)-tricosa-14,17,20-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxy-3-[(13E,16E,19E,22E)-pentacosa-13,16,19,22-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-2-tricosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropan-2-yl] (5E,9E)-hexacosa-5,9-dienoate
4-[2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(11E,14E)-pentacosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-2-[(13E,16E,19E)-pentacosa-13,16,19-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(E)-icos-11-enoyl]oxy-2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-3-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
4-[3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(9E,11E)-henicosa-9,11-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-[(14E,17E,20E)-tricosa-14,17,20-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxy-2-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropyl] (5E,9E)-hexacosa-5,9-dienoate
4-[2-[(E)-nonadec-9-enoyl]oxy-3-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-3-[(11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropyl] (5E,9E)-hexacosa-5,9-dienoate
[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropyl] (E)-tetracos-15-enoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropan-2-yl] tetracosanoate
4-[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropan-2-yl] (5E,9E)-hexacosa-5,9-dienoate
[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-pentacosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2S)-2-heptadecanoyloxy-3-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] (E)-hexacos-5-enoate
4-[2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-3-[(E)-tricos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-2-[(11E,14E)-pentacosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(E)-henicos-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-henicosanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(E)-icos-11-enoyl]oxy-3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropan-2-yl] (5E,9E)-hexacosa-5,9-dienoate
[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxypropyl] docosanoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropan-2-yl] (5E,9E)-hexacosa-5,9-dienoate
4-[2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-3-[(14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-2-henicosanoyloxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
4-[3-[(E)-octadec-11-enoyl]oxy-2-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(7E,9E)-nonadeca-7,9-dienoyl]oxy-2-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
2-[[(4E,8E)-2-[[(4Z,7Z)-hexadeca-4,7-dienoyl]amino]-3-hydroxynonacosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E,12E)-2-[[(Z)-hexadec-7-enoyl]amino]-3-hydroxynonacosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(18Z,21Z)-tetracosa-18,21-dienoyl]amino]henicosa-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-triacont-15-enoyl]amino]pentadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(13Z,16Z)-octacosa-13,16-dienoyl]amino]heptadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(10Z,12Z)-octadeca-10,12-dienoyl]amino]heptacosa-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-pentadec-9-enoyl]amino]triaconta-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E,12E)-2-[[(Z)-docos-11-enoyl]amino]-3-hydroxytricosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E,12E)-2-[[(Z)-hentriacont-16-enoyl]amino]-3-hydroxytetradeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E)-2-[[(11Z,14Z)-hexacosa-11,14-dienoyl]amino]-3-hydroxynonadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(15Z,18Z)-triaconta-15,18-dienoyl]amino]pentadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E)-2-[[(14Z,16Z)-docosa-14,16-dienoyl]amino]-3-hydroxytricosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E,12E)-2-[[(Z)-heptacos-12-enoyl]amino]-3-hydroxyoctadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tricos-11-enoyl]amino]docosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tetracos-11-enoyl]amino]henicosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E,12E)-2-[[(Z)-hexacos-11-enoyl]amino]-3-hydroxynonadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-nonadec-9-enoyl]amino]hexacosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E,12E)-2-[[(Z)-henicos-9-enoyl]amino]-3-hydroxytetracosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(11Z,14Z)-icosa-11,14-dienoyl]amino]pentacosa-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-icos-11-enoyl]amino]pentacosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-octadec-11-enoyl]amino]heptacosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-octacos-13-enoyl]amino]heptadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-nonacos-14-enoyl]amino]hexadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-pentacos-11-enoyl]amino]icosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E)-2-[[(9Z,12Z)-hexadeca-9,12-dienoyl]amino]-3-hydroxynonacosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-octacos-17-enoyl]amino]heptadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E,12E)-2-[[(Z)-hexadec-9-enoyl]amino]-3-hydroxynonacosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(19Z,22Z)-triaconta-19,22-dienoyl]amino]pentadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-hydroxy-2-[[(18Z,21Z,24Z,27Z)-triaconta-18,21,24,27-tetraenoyl]amino]pentadecoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-[[(20Z,23Z,26Z,29Z)-dotriaconta-20,23,26,29-tetraenoyl]amino]-3-hydroxytridecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E)-2-[[(9Z,12Z)-heptadeca-9,12-dienoyl]amino]-3-hydroxyoctacosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]heptacosoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(9Z,12Z)-octadeca-9,12-dienoyl]amino]heptacosa-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxytricosoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E)-2-[[(11Z,14Z)-henicosa-11,14-dienoyl]amino]-3-hydroxytetracosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(E)-2-[[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]amino]-3-hydroxynonadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E,12E)-2-[[(Z)-heptadec-9-enoyl]amino]-3-hydroxyoctacosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-[[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]amino]henicos-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tetradec-9-enoyl]amino]hentriaconta-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-octadec-9-enoyl]amino]heptacosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E)-2-[[(13Z,16Z)-docosa-13,16-dienoyl]amino]-3-hydroxytricosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(8E,12E)-2-[[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]amino]-3,4-dihydroxyoctadeca-8,12-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-hydroxy-2-[[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]amino]henicosoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E,12E)-2-[[(Z)-docos-13-enoyl]amino]-3-hydroxytricosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]pentacosoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]heptacos-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(8E,12E,16E)-2-[[(15Z,18Z)-hexacosa-15,18-dienoyl]amino]-3,4-dihydroxyoctadeca-8,12,16-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-[[(20Z,23Z,26Z)-tetratriaconta-20,23,26-trienoyl]amino]undec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E,12E)-2-[[(Z)-henicos-11-enoyl]amino]-3-hydroxytetracosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tetracos-13-enoyl]amino]henicosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(E)-2-[[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]amino]-3,4-dihydroxyoctadec-8-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-hydroxy-2-[[(22Z,25Z,28Z,31Z)-tetratriaconta-22,25,28,31-tetraenoyl]amino]undecoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tridec-9-enoyl]amino]dotriaconta-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxynonacos-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(13Z,16Z)-tetracosa-13,16-dienoyl]amino]henicosa-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-[[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]amino]-3-hydroxynonadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(17Z,20Z)-octacosa-17,20-dienoyl]amino]heptadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(E)-2-[[(18Z,21Z,24Z)-dotriaconta-18,21,24-trienoyl]amino]-3-hydroxytridec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-[[(16Z,19Z,22Z)-triaconta-16,19,22-trienoyl]amino]pentadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]pentacos-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E,12E)-2-[[(Z)-hexacos-15-enoyl]amino]-3-hydroxynonadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3,4-dihydroxyoctadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-hydroxy-2-[[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoyl]amino]heptadecoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-[[(14Z,17Z,20Z)-octacosa-14,17,20-trienoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(9Z,12Z)-nonadeca-9,12-dienoyl]amino]hexacosa-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-triacont-19-enoyl]amino]pentadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E)-2-[[(15Z,18Z)-hexacosa-15,18-dienoyl]amino]-3-hydroxynonadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxynonacosoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(E)-2-[[(22Z,25Z,28Z)-hexatriaconta-22,25,28-trienoyl]amino]-3-hydroxynon-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(E)-2-[[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]amino]-3-hydroxytricos-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-[[(24Z,27Z,30Z,33Z)-hexatriaconta-24,27,30,33-tetraenoyl]amino]-3-hydroxynonoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E)-2-[[(21Z,24Z)-dotriaconta-21,24-dienoyl]amino]-3-hydroxytrideca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
1-icosyl-2-[(7Z,10Z,13Z,16Z)-docosatetraenoyl]-sn-glycero-3-phosphocholine
C50H94NO7P (851.6767543999999)
A phosphatidylcholine O-42:4 in which the alkyl and acyl group specified at positions 1 and 2 are icosyl and (7Z,10Z,13Z,16Z)-docosatetraenoyl respectively.
phosphatidylethanolamine 44:4 zwitterion
A 1,2-diacyl-sn-glycero-3-phosphoethanolamine zwitterion in which the acyl groups at C-1 and C-2 contain 44 carbons in total with 4 double bonds.
phosphatidylcholine O-42:4
C50H94NO7P (851.6767543999999)
An alkyl,acyl-sn-glycero-3-phosphocholine in which the alkyl or acyl groups at positions 1 and 2 contain a total of 42 carbons and 4 double bonds.
MePC(41:4)
C50H94NO7P (851.6767543999999)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
MePC(40:4)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
dMePE(42:4)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
Hex1Cer(44:3)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved