Exact Mass: 848.5414506

Exact Mass Matches: 848.5414506

Found 500 metabolites which its exact mass value is equals to given mass value 848.5414506, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PG(18:0/PGF2alpha)

[(2R)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-(octadecanoyloxy)propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C44H81O13P (848.5414506)


PG(18:0/PGF2alpha) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:0/PGF2alpha), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGF2alpha/18:0)

[(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-(octadecanoyloxy)propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C44H81O13P (848.5414506)


PG(PGF2alpha/18:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGF2alpha/18:0), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:0/PGE1)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-3-(octadecanoyloxy)propoxy]phosphinic acid

C44H81O13P (848.5414506)


PG(18:0/PGE1) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:0/PGE1), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGE1/18:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-2-(octadecanoyloxy)propoxy]phosphinic acid

C44H81O13P (848.5414506)


PG(PGE1/18:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGE1/18:0), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:0/PGD1)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-3-(octadecanoyloxy)propoxy]phosphinic acid

C44H81O13P (848.5414506)


PG(18:0/PGD1) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:0/PGD1), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGD1/18:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-2-(octadecanoyloxy)propoxy]phosphinic acid

C44H81O13P (848.5414506)


PG(PGD1/18:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGD1/18:0), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:1(11Z)/PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-[(11Z)-octadec-11-enoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C44H81O13P (848.5414506)


PG(18:1(11Z)/PGF1alpha) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:1(11Z)/PGF1alpha), in particular, consists of one chain of one 11Z-octadecenoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGF1alpha/18:1(11Z))

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-2-[(11Z)-octadec-11-enoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C44H81O13P (848.5414506)


PG(PGF1alpha/18:1(11Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGF1alpha/18:1(11Z)), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:1(9Z)/PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-[(9Z)-octadec-9-enoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C44H81O13P (848.5414506)


PG(18:1(9Z)/PGF1alpha) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:1(9Z)/PGF1alpha), in particular, consists of one chain of one 9Z-octadecenoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGF1alpha/18:1(9Z))

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-2-[(9Z)-octadec-9-enoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C44H81O13P (848.5414506)


PG(PGF1alpha/18:1(9Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGF1alpha/18:1(9Z)), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-18:0/PGF2alpha)

[(2R)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-[(16-methylheptadecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C44H81O13P (848.5414506)


PG(i-18:0/PGF2alpha) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-18:0/PGF2alpha), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGF2alpha/i-18:0)

[(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-[(16-methylheptadecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C44H81O13P (848.5414506)


PG(PGF2alpha/i-18:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGF2alpha/i-18:0), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-18:0/PGE1)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-3-[(16-methylheptadecanoyl)oxy]propoxy]phosphinic acid

C44H81O13P (848.5414506)


PG(i-18:0/PGE1) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-18:0/PGE1), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGE1/i-18:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-2-[(16-methylheptadecanoyl)oxy]propoxy]phosphinic acid

C44H81O13P (848.5414506)


PG(PGE1/i-18:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGE1/i-18:0), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-18:0/PGD1)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-3-[(16-methylheptadecanoyl)oxy]propoxy]phosphinic acid

C44H81O13P (848.5414506)


PG(i-18:0/PGD1) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-18:0/PGD1), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGD1/i-18:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-2-[(16-methylheptadecanoyl)oxy]propoxy]phosphinic acid

C44H81O13P (848.5414506)


PG(PGD1/i-18:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGD1/i-18:0), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/5-iso PGF2VI)

[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-[(18-methylnonadecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C44H81O13P (848.5414506)


PG(i-20:0/5-iso PGF2VI) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/5-iso PGF2VI), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(5-iso PGF2VI/i-20:0)

[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-[(18-methylnonadecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C44H81O13P (848.5414506)


PG(5-iso PGF2VI/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(5-iso PGF2VI/i-20:0), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PI(16:0/18:2(10E,12Z)+=O(9))

[(2R)-3-(hexadecanoyloxy)-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C43H77O14P (848.5050672)


PI(16:0/18:2(10E,12Z)+=O(9)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(16:0/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of hexadecanoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(18:2(10E,12Z)+=O(9)/16:0)

PI(18:2(10E,12Z)+=O(9)/16:0)

C43H77O14P (848.5050672)


PI(18:2(10E,12Z)+=O(9)/16:0) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:2(10E,12Z)+=O(9)/16:0), in particular, consists of one chain of 9-oxo-octadecadienoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(16:0/18:2(9Z,11E)+=O(13))

[(2R)-3-(hexadecanoyloxy)-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C43H77O14P (848.5050672)


PI(16:0/18:2(9Z,11E)+=O(13)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(16:0/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of hexadecanoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(18:2(9Z,11E)+=O(13)/16:0)

[(2R)-2-(hexadecanoyloxy)-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C43H77O14P (848.5050672)


PI(18:2(9Z,11E)+=O(13)/16:0) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:2(9Z,11E)+=O(13)/16:0), in particular, consists of one chain of 13-oxo-octadecadienoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(16:0/18:3(10,12,15)-OH(9))

[(2R)-3-(hexadecanoyloxy)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C43H77O14P (848.5050672)


PI(16:0/18:3(10,12,15)-OH(9)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(16:0/18:3(10,12,15)-OH(9)), in particular, consists of one chain of hexadecanoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(18:3(10,12,15)-OH(9)/16:0)

[(2R)-2-(hexadecanoyloxy)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C43H77O14P (848.5050672)


PI(18:3(10,12,15)-OH(9)/16:0) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:3(10,12,15)-OH(9)/16:0), in particular, consists of one chain of 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(16:0/18:3(9,11,15)-OH(13))

[(2R)-3-(hexadecanoyloxy)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C43H77O14P (848.5050672)


PI(16:0/18:3(9,11,15)-OH(13)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(16:0/18:3(9,11,15)-OH(13)), in particular, consists of one chain of hexadecanoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(18:3(9,11,15)-OH(13)/16:0)

[(2R)-2-(hexadecanoyloxy)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C43H77O14P (848.5050672)


PI(18:3(9,11,15)-OH(13)/16:0) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:3(9,11,15)-OH(13)/16:0), in particular, consists of one chain of 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(16:1(9Z)/18:1(12Z)-O(9S,10R))

[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C43H77O14P (848.5050672)


PI(16:1(9Z)/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(16:1(9Z)/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of 9Z-hexadecenoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(18:1(12Z)-O(9S,10R)/16:1(9Z))

[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C43H77O14P (848.5050672)


PI(18:1(12Z)-O(9S,10R)/16:1(9Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:1(12Z)-O(9S,10R)/16:1(9Z)), in particular, consists of one chain of 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 9Z-hexadecenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(16:1(9Z)/18:1(9Z)-O(12,13))

[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C43H77O14P (848.5050672)


PI(16:1(9Z)/18:1(9Z)-O(12,13)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(16:1(9Z)/18:1(9Z)-O(12,13)), in particular, consists of one chain of 9Z-hexadecenoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(18:1(9Z)-O(12,13)/16:1(9Z))

[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C43H77O14P (848.5050672)


PI(18:1(9Z)-O(12,13)/16:1(9Z)) is an oxidized phosphatidylinositol (PI). Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PI(18:1(9Z)-O(12,13)/16:1(9Z)), in particular, consists of one chain of 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 9Z-hexadecenoyl at the C-2 position. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   
   
   

PI 35:2

1-(9Z,12Z-octadecadienoyl)-2-heptadecanoyl-glycero-3-phospho-(1-myo-inositol)

C44H81O13P (848.5414506)


Found in mouse heart; TwoDicalId=1898; MgfFile=160902_Heart_DHA_Neg_15; MgfId=540

   
   

12-O-Dodecanoyl-13-O-acetylphorbol-20-linolenat

12-O-Dodecanoyl-13-O-acetylphorbol-20-linolenat

C52H80O9 (848.5802030000001)


   

chikusetsusaponin IVa butyl ester

chikusetsusaponin IVa butyl ester

C47H76O13 (848.5285646)


   

TMC-151 A monoacetate

TMC-151 A monoacetate

C43H76O16 (848.5133096)


   

PG(20:1(11Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

1-(11Z-eicosenoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-glycero-3-phospho-(1-sn-glycerol)

C48H81O10P (848.5567056)


   

PG(20:3(8Z,11Z,14Z)/22:4(7Z,10Z,13Z,16Z))

1-(8Z,11Z,14Z-eicosatrienoyl)-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-glycero-3-phospho-(1-sn-glycerol)

C48H81O10P (848.5567056)


   

PG(20:5(5Z,8Z,11Z,14Z,17Z)/22:2(13Z,16Z))

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-(13Z,16Z-docosadienoyl)-glycero-3-phospho-(1-sn-glycerol)

C48H81O10P (848.5567056)


   

PG(22:2(13Z,16Z)/20:5(5Z,8Z,11Z,14Z,17Z))

1-(13Z,16Z-docosadienoyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phospho-(1-sn-glycerol)

C48H81O10P (848.5567056)


   

PG(22:4(7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z))

1-(7Z,10Z,13Z,16Z-docosatetraenoyl)-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phospho-(1-sn-glycerol)

C48H81O10P (848.5567056)


   

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:1(11Z))

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-(11Z-eicosenoyl)-glycero-3-phospho-(1-sn-glycerol)

C48H81O10P (848.5567056)


   

PI(13:0/22:2(13Z,16Z))

1-tridecanoyl-2-(13Z,16Z-docosadienoyl)-glycero-3-phospho-(1-myo-inositol)

C44H81O13P (848.5414506)


   

PI(15:0/20:2(11Z,14Z))

1-pentadecanoyl-2-(11Z,14Z-eicosadienoyl)-glycero-3-phospho-(1-myo-inositol)

C44H81O13P (848.5414506)


   

PI(15:1(9Z)/20:1(11Z))

1-(9Z-pentadecenoyl)-2-(11Z-eicosenoyl)-glycero-3-phospho-(1-myo-inositol)

C44H81O13P (848.5414506)


   

PI(16:1(9Z)/19:1(9Z))

1-(9Z-hexadecenoyl)-2-(9Z-nonadecenoyl)-glycero-3-phospho-(1-myo-inositol)

C44H81O13P (848.5414506)


   

PI(17:0/18:2(9Z,12Z))

1-heptadecanoyl-2-(9Z,12Z-octadecadienoyl)-glycero-3-phospho-(1-myo-inositol)

C44H81O13P (848.5414506)


   

PI(17:1(9Z)/18:1(9Z))

1-(9Z-heptadecenoyl)-2-(9Z-octadecenoyl)-glycero-3-phospho-(1-myo-inositol)

C44H81O13P (848.5414506)


   

PI(17:2(9Z,12Z)/18:0)

1-(9Z,12Z-heptadecadienoyl)-2-octadecanoyl-glycero-3-phospho-(1-myo-inositol)

C44H81O13P (848.5414506)


   

PI(18:0/17:2(9Z,12Z))

1-octadecanoyl-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phospho-(1-myo-inositol)

C44H81O13P (848.5414506)


   

PI(18:1(9Z)/17:1(9Z))

1-(9Z-octadecenoyl)-2-(9Z-heptadecenoyl)-glycero-3-phospho-(1-myo-inositol)

C44H81O13P (848.5414506)


   

PI(18:2(9Z,12Z)/17:0)

1-(9Z,12Z-octadecadienoyl)-2-heptadecanoyl-glycero-3-phospho-(1-myo-inositol)

C44H81O13P (848.5414506)


   

PI(19:1(9Z)/16:1(9Z))

1-(9Z-nonadecenoyl)-2-(9Z-hexadecenoyl)-glycero-3-phospho-(1-myo-inositol)

C44H81O13P (848.5414506)


   

PI(20:1(11Z)/15:1(9Z))

1-(11Z-eicosenoyl)-2-(9Z-pentadecenoyl)-glycero-3-phospho-(1-myo-inositol)

C44H81O13P (848.5414506)


   

PI(20:2(11Z,14Z)/15:0)

1-(11Z,14Z-eicosadienoyl)-2-pentadecanoyl-glycero-3-phospho-(1-myo-inositol)

C44H81O13P (848.5414506)


   

PI(22:2(13Z,16Z)/13:0)

1-(13Z,16Z-docosadienoyl)-2-tridecanoyl-glycero-3-phospho-(1-myo-inositol)

C44H81O13P (848.5414506)


   

PI(O-16:0/20:2(11Z,14Z))

1-hexadecyl-2-(11Z,14Z-eicosadienoyl)-glycero-3-phospho-(1-myo-inositol)

C45H85O12P (848.5778339999999)


   

PI(O-18:0/18:2(9Z,12Z))

1-octadecyl-2-(9Z,12Z-octadecadienoyl)-glycero-3-phospho-(1-myo-inositol)

C45H85O12P (848.5778339999999)


   

PI(P-16:0/20:1(11Z))

1-(1Z-hexadecenyl)-2-(11Z-eicosenoyl)-glycero-3-phospho-(1-myo-inositol)

C45H85O12P (848.5778339999999)


   

PI(P-20:0/16:1(9Z))

1-(1Z-eicosenyl)-2-(9Z-hexadecenoyl)-glycero-3-phospho-(1-myo-inositol)

C45H85O12P (848.5778339999999)


   

PI(P-18:0/18:1(9Z))

1-(1Z-octadecenyl)-2-(9Z-octadecenoyl)-glycero-3-phospho-(1-myo-inositol)

C45H85O12P (848.5778339999999)


   

PG 42:7

1-(7Z,10Z,13Z,16Z-docosatetraenoyl)-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phospho-(1-sn-glycerol)

C48H81O10P (848.5567056)


   

PI O-36:2

1-(1Z-octadecenyl)-2-(9Z-octadecenoyl)-glycero-3-phospho-(1-myo-inositol)

C45H85O12P (848.5778339999999)


   

PI 34:3;O

1-hexadecanoyl-2-(9-[1E,3Z-dien-1-yloxy]-non-8E-enoyl)-sn-glycero-3-phospho-(1-myo-inositol)

C43H77O14P (848.5050672)


   

O(1),O(3)-Bis(Ethoxycarbonylmethyl)-O(2),O(4)-Dimethyl-p-Tert-Butylcalix[4]Arene

O(1),O(3)-Bis(Ethoxycarbonylmethyl)-O(2),O(4)-Dimethyl-p-Tert-Butylcalix[4]Arene

C54H72O8 (848.5226912)


   

[1-heptadecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-heptadecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C44H81O13P (848.5414506)


   
   
   
   
   
   
   
   
   

PG(18:1(9Z)/PGF1alpha)

PG(18:1(9Z)/PGF1alpha)

C44H81O13P (848.5414506)


   

PG(PGF1alpha/18:1(9Z))

PG(PGF1alpha/18:1(9Z))

C44H81O13P (848.5414506)


   
   
   
   
   

PG(18:1(11Z)/PGF1alpha)

PG(18:1(11Z)/PGF1alpha)

C44H81O13P (848.5414506)


   

PG(PGF1alpha/18:1(11Z))

PG(PGF1alpha/18:1(11Z))

C44H81O13P (848.5414506)


   

PG(i-20:0/5-iso PGF2VI)

PG(i-20:0/5-iso PGF2VI)

C44H81O13P (848.5414506)


   

PG(5-iso PGF2VI/i-20:0)

PG(5-iso PGF2VI/i-20:0)

C44H81O13P (848.5414506)


   

PI(16:0/18:2(10E,12Z)+=O(9))

PI(16:0/18:2(10E,12Z)+=O(9))

C43H77O14P (848.5050672)


   

PI(18:2(10E,12Z)+=O(9)/16:0)

PI(18:2(10E,12Z)+=O(9)/16:0)

C43H77O14P (848.5050672)


   

PI(16:0/18:2(9Z,11E)+=O(13))

PI(16:0/18:2(9Z,11E)+=O(13))

C43H77O14P (848.5050672)


   

PI(18:2(9Z,11E)+=O(13)/16:0)

PI(18:2(9Z,11E)+=O(13)/16:0)

C43H77O14P (848.5050672)


   

PI(16:1(9Z)/18:1(12Z)-O(9S,10R))

PI(16:1(9Z)/18:1(12Z)-O(9S,10R))

C43H77O14P (848.5050672)


   

PI(18:1(12Z)-O(9S,10R)/16:1(9Z))

PI(18:1(12Z)-O(9S,10R)/16:1(9Z))

C43H77O14P (848.5050672)


   

[(2R)-1-hexadecanoyloxy-3-[hydroxy-[(2R,3R,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate

[(2R)-1-hexadecanoyloxy-3-[hydroxy-[(2R,3R,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate

C43H77O14P (848.5050672)


   

[(2R)-2-hexadecanoyloxy-3-[hydroxy-[(2R,3R,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate

[(2R)-2-hexadecanoyloxy-3-[hydroxy-[(2R,3R,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate

C43H77O14P (848.5050672)


   

[(2R)-1-hexadecanoyloxy-3-[hydroxy-[(2R,3R,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate

[(2R)-1-hexadecanoyloxy-3-[hydroxy-[(2R,3R,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate

C43H77O14P (848.5050672)


   

[(2R)-2-hexadecanoyloxy-3-[hydroxy-[(2R,3R,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate

[(2R)-2-hexadecanoyloxy-3-[hydroxy-[(2R,3R,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate

C43H77O14P (848.5050672)


   

PI(16:1(9Z)/18:1(9Z)-O(12,13))

PI(16:1(9Z)/18:1(9Z)-O(12,13))

C43H77O14P (848.5050672)


   

PI(18:1(9Z)-O(12,13)/16:1(9Z))

PI(18:1(9Z)-O(12,13)/16:1(9Z))

C43H77O14P (848.5050672)


   

2-[[(2R)-2-[7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]-6-oxoheptanoyl]oxy-3-hexadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]-6-oxoheptanoyl]oxy-3-hexadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H83NO12P+ (848.5652587999999)


   

2-[[(2R)-3-[7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]-6-oxoheptanoyl]oxy-2-hexadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]-6-oxoheptanoyl]oxy-2-hexadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H83NO12P+ (848.5652587999999)


   

2-[[(2R)-2-[(Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]oxan-3-yl]hept-5-enoyl]oxy-3-hexadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]oxan-3-yl]hept-5-enoyl]oxy-3-hexadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H83NO12P+ (848.5652587999999)


   

2-[[(2R)-3-[(Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]oxan-3-yl]hept-5-enoyl]oxy-2-hexadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]oxan-3-yl]hept-5-enoyl]oxy-2-hexadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H83NO12P+ (848.5652587999999)


   

2-[hydroxy-[(2R)-2-[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-octadec-11-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-octadec-11-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy-2-[(Z)-octadec-11-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy-2-[(Z)-octadec-11-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy-3-[(Z)-octadec-11-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy-3-[(Z)-octadec-11-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy-2-[(Z)-octadec-11-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy-2-[(Z)-octadec-11-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy-3-[(Z)-octadec-11-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy-3-[(Z)-octadec-11-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy-2-[(Z)-octadec-11-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy-2-[(Z)-octadec-11-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy-3-[(Z)-octadec-11-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy-3-[(Z)-octadec-11-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy-2-[(Z)-octadec-11-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy-2-[(Z)-octadec-11-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(Z)-octadec-11-enoyl]oxy-2-[(4Z,7Z,10Z,13Z)-15-[3-[(Z)-pent-2-enyl]oxiran-2-yl]pentadeca-4,7,10,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(Z)-octadec-11-enoyl]oxy-2-[(4Z,7Z,10Z,13Z)-15-[3-[(Z)-pent-2-enyl]oxiran-2-yl]pentadeca-4,7,10,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(Z)-octadec-11-enoyl]oxy-3-[(4Z,7Z,10Z,13Z)-15-[3-[(Z)-pent-2-enyl]oxiran-2-yl]pentadeca-4,7,10,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(Z)-octadec-11-enoyl]oxy-3-[(4Z,7Z,10Z,13Z)-15-[3-[(Z)-pent-2-enyl]oxiran-2-yl]pentadeca-4,7,10,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(Z)-octadec-9-enoyl]oxy-2-[(4Z,7Z,10Z,13Z)-15-[3-[(Z)-pent-2-enyl]oxiran-2-yl]pentadeca-4,7,10,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(Z)-octadec-9-enoyl]oxy-2-[(4Z,7Z,10Z,13Z)-15-[3-[(Z)-pent-2-enyl]oxiran-2-yl]pentadeca-4,7,10,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(Z)-octadec-9-enoyl]oxy-3-[(4Z,7Z,10Z,13Z)-15-[3-[(Z)-pent-2-enyl]oxiran-2-yl]pentadeca-4,7,10,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(Z)-octadec-9-enoyl]oxy-3-[(4Z,7Z,10Z,13Z)-15-[3-[(Z)-pent-2-enyl]oxiran-2-yl]pentadeca-4,7,10,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-2-[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-2-[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C46H75NO11P+ (848.507747)


   

2-[hydroxy-[(2R)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C46H75NO11P+ (848.507747)


   

2-[hydroxy-[(2R)-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-2-[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-2-[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-2-[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-2-[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxy-2-[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxy-2-[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxy-3-[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxy-3-[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxy-2-[(5Z,8Z)-10-[3-[(Z)-oct-2-enyl]oxiran-2-yl]deca-5,8-dienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxy-2-[(5Z,8Z)-10-[3-[(Z)-oct-2-enyl]oxiran-2-yl]deca-5,8-dienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxy-3-[(5Z,8Z)-10-[3-[(Z)-oct-2-enyl]oxiran-2-yl]deca-5,8-dienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxy-3-[(5Z,8Z)-10-[3-[(Z)-oct-2-enyl]oxiran-2-yl]deca-5,8-dienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxy-2-[(Z)-7-[3-[(2Z,5Z)-undeca-2,5-dienyl]oxiran-2-yl]hept-5-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxy-2-[(Z)-7-[3-[(2Z,5Z)-undeca-2,5-dienyl]oxiran-2-yl]hept-5-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxy-3-[(Z)-7-[3-[(2Z,5Z)-undeca-2,5-dienyl]oxiran-2-yl]hept-5-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxy-3-[(Z)-7-[3-[(2Z,5Z)-undeca-2,5-dienyl]oxiran-2-yl]hept-5-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxy-3-[4-[3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trienyl]oxiran-2-yl]butanoyloxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxy-3-[4-[3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trienyl]oxiran-2-yl]butanoyloxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxy-2-[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxy-2-[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxy-3-[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxy-3-[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxy-2-[(5Z,8Z)-10-[3-[(Z)-oct-2-enyl]oxiran-2-yl]deca-5,8-dienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxy-2-[(5Z,8Z)-10-[3-[(Z)-oct-2-enyl]oxiran-2-yl]deca-5,8-dienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxy-3-[(5Z,8Z)-10-[3-[(Z)-oct-2-enyl]oxiran-2-yl]deca-5,8-dienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxy-3-[(5Z,8Z)-10-[3-[(Z)-oct-2-enyl]oxiran-2-yl]deca-5,8-dienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxy-2-[(Z)-7-[3-[(2Z,5Z)-undeca-2,5-dienyl]oxiran-2-yl]hept-5-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxy-2-[(Z)-7-[3-[(2Z,5Z)-undeca-2,5-dienyl]oxiran-2-yl]hept-5-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxy-3-[(Z)-7-[3-[(2Z,5Z)-undeca-2,5-dienyl]oxiran-2-yl]hept-5-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxy-3-[(Z)-7-[3-[(2Z,5Z)-undeca-2,5-dienyl]oxiran-2-yl]hept-5-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxy-2-[4-[3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trienyl]oxiran-2-yl]butanoyloxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxy-2-[4-[3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trienyl]oxiran-2-yl]butanoyloxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxy-3-[4-[3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trienyl]oxiran-2-yl]butanoyloxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxy-3-[4-[3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trienyl]oxiran-2-yl]butanoyloxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H83NO9P+ (848.5805138)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-decoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

[1-decoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

C45H85O12P (848.5778339999999)


   

[1-[(11Z,14Z)-henicosa-11,14-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] pentadecanoate

[1-[(11Z,14Z)-henicosa-11,14-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] pentadecanoate

C45H85O12P (848.5778339999999)


   

[1-[(15Z,18Z)-hexacosa-15,18-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] decanoate

[1-[(15Z,18Z)-hexacosa-15,18-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] decanoate

C45H85O12P (848.5778339999999)


   

[1-[(Z)-henicos-11-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-pentadec-9-enoate

[1-[(Z)-henicos-11-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-pentadec-9-enoate

C45H85O12P (848.5778339999999)


   

[1-hexadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-hexadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C45H85O12P (848.5778339999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-icosoxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-icosoxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C45H85O12P (848.5778339999999)


   

[1-heptadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-heptadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C45H85O12P (848.5778339999999)


   

[1-[(13Z,16Z)-docosa-13,16-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] tetradecanoate

[1-[(13Z,16Z)-docosa-13,16-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] tetradecanoate

C45H85O12P (848.5778339999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonadecoxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonadecoxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C45H85O12P (848.5778339999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] hexadecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] hexadecanoate

C45H85O12P (848.5778339999999)


   

[1-[(9Z,12Z)-hexadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] icosanoate

[1-[(9Z,12Z)-hexadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] icosanoate

C45H85O12P (848.5778339999999)


   

[1-[(Z)-docos-13-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tetradec-9-enoate

[1-[(Z)-docos-13-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tetradec-9-enoate

C45H85O12P (848.5778339999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (Z)-docos-13-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (Z)-docos-13-enoate

C45H85O12P (848.5778339999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propan-2-yl] dodecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propan-2-yl] dodecanoate

C45H85O12P (848.5778339999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] octadecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] octadecanoate

C45H85O12P (848.5778339999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] heptadecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] heptadecanoate

C45H85O12P (848.5778339999999)


   

[1-[(Z)-heptadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-nonadec-9-enoate

[1-[(Z)-heptadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-nonadec-9-enoate

C45H85O12P (848.5778339999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octadecoxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octadecoxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C45H85O12P (848.5778339999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (Z)-octadec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (Z)-octadec-9-enoate

C45H85O12P (848.5778339999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (Z)-henicos-11-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (Z)-henicos-11-enoate

C45H85O12P (848.5778339999999)


   

[1-[(9Z,12Z)-heptadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] nonadecanoate

[1-[(9Z,12Z)-heptadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] nonadecanoate

C45H85O12P (848.5778339999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecoxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecoxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C45H85O12P (848.5778339999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentadecoxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentadecoxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C45H85O12P (848.5778339999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (Z)-hexadec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (Z)-hexadec-9-enoate

C45H85O12P (848.5778339999999)


   

[1-dodecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-dodecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C45H85O12P (848.5778339999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] (Z)-heptadec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] (Z)-heptadec-9-enoate

C45H85O12P (848.5778339999999)


   

[1-[(Z)-hexadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-icos-11-enoate

[1-[(Z)-hexadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-icos-11-enoate

C45H85O12P (848.5778339999999)


   
   
   

[1-octanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-henicos-11-enoate

[1-octanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-henicos-11-enoate

C44H80O15 (848.549693)


   

[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-icos-11-enoate

[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-icos-11-enoate

C44H80O15 (848.549693)


   

[1-propanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-hexacos-15-enoate

[1-propanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-hexacos-15-enoate

C44H80O15 (848.549693)


   

[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-docos-13-enoate

[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-docos-13-enoate

C44H80O15 (848.549693)


   

[1-pentanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-tetracos-13-enoate

[1-pentanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-tetracos-13-enoate

C44H80O15 (848.549693)


   

[1-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C51H76O10 (848.5438196)


   

[1-tetradecanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-pentadec-9-enoate

[1-tetradecanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-pentadec-9-enoate

C44H80O15 (848.549693)


   

[6-[3-henicosanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-henicosanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[6-[2-[(Z)-heptadec-9-enoyl]oxy-3-nonadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(Z)-heptadec-9-enoyl]oxy-3-nonadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[6-[3-heptadecanoyloxy-2-[(Z)-nonadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-heptadecanoyloxy-2-[(Z)-nonadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[3,4,5-trihydroxy-6-[3-tricosanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[3-tricosanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[1-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (Z)-octadec-9-enoate

[1-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (Z)-octadec-9-enoate

C44H80O15 (848.549693)


   

[2-[(Z)-tetradec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] pentadecanoate

[2-[(Z)-tetradec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] pentadecanoate

C44H80O15 (848.549693)


   

[6-[2-[(Z)-henicos-11-enoyl]oxy-3-pentadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(Z)-henicos-11-enoyl]oxy-3-pentadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[2-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] hexadecanoate

[2-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] hexadecanoate

C44H80O15 (848.549693)


   

[6-[2-[(Z)-hexadec-9-enoyl]oxy-3-icosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(Z)-hexadec-9-enoyl]oxy-3-icosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[3,4,5-trihydroxy-6-[3-octadecanoyloxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[3-octadecanoyloxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[6-[3-dodecanoyloxy-2-[(Z)-tetracos-13-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-dodecanoyloxy-2-[(Z)-tetracos-13-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[6-[2-[(Z)-docos-13-enoyl]oxy-3-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(Z)-docos-13-enoyl]oxy-3-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[1-dodecanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-heptadec-9-enoate

[1-dodecanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-heptadec-9-enoate

C44H80O15 (848.549693)


   

[6-[3-docosanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-docosanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[1-decanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-nonadec-9-enoate

[1-decanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-nonadec-9-enoate

C44H80O15 (848.549693)


   

[1-tridecanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-hexadec-9-enoate

[1-tridecanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-hexadec-9-enoate

C44H80O15 (848.549693)


   

[6-[3-hexadecanoyloxy-2-[(Z)-icos-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-hexadecanoyloxy-2-[(Z)-icos-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-icos-11-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-icos-11-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C48H81O10P (848.5567056)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C48H81O10P (848.5567056)


   

[1-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

[1-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C48H81O10P (848.5567056)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C48H81O10P (848.5567056)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C48H81O10P (848.5567056)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C48H81O10P (848.5567056)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C48H81O10P (848.5567056)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C48H81O10P (848.5567056)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (Z)-docos-13-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (Z)-docos-13-enoate

C44H81O13P (848.5414506)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (Z)-henicos-11-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (Z)-henicos-11-enoate

C44H81O13P (848.5414506)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C48H81O10P (848.5567056)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (13Z,16Z)-docosa-13,16-dienoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (13Z,16Z)-docosa-13,16-dienoate

C48H81O10P (848.5567056)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C48H81O10P (848.5567056)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C48H81O10P (848.5567056)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (Z)-icos-11-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (Z)-icos-11-enoate

C44H81O13P (848.5414506)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C44H81O13P (848.5414506)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (13Z,16Z)-tetracosa-13,16-dienoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (13Z,16Z)-tetracosa-13,16-dienoate

C48H81O10P (848.5567056)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C48H81O10P (848.5567056)


   

[1-hexadecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-hexadecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C44H81O13P (848.5414506)


   

[1-[(Z)-heptadec-9-enoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate

[1-[(Z)-heptadec-9-enoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate

C44H81O13P (848.5414506)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C44H81O13P (848.5414506)


   

[1-[(Z)-hexadec-9-enoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-nonadec-9-enoate

[1-[(Z)-hexadec-9-enoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-nonadec-9-enoate

C44H81O13P (848.5414506)


   

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] nonadecanoate

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] nonadecanoate

C44H81O13P (848.5414506)


   

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] octadecanoate

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] octadecanoate

C44H81O13P (848.5414506)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C44H81O13P (848.5414506)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C48H81O10P (848.5567056)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C44H81O13P (848.5414506)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C48H81O10P (848.5567056)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonanoyloxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonanoyloxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

C44H81O13P (848.5414506)


   

[(2S)-1-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2S)-1-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C51H76O10 (848.5438196)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,8E)-icosa-5,8-dienoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,8E)-icosa-5,8-dienoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C48H81O10P (848.5567056)


   

[(2S,3S,6S)-6-[(2S)-2-hexadecanoyloxy-3-[(E)-icos-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-hexadecanoyloxy-3-[(E)-icos-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2S)-1-heptadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

[(2S)-1-heptadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

C44H81O13P (848.5414506)


   

[(2S)-1-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (E)-pentadec-9-enoate

[(2S)-1-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (E)-pentadec-9-enoate

C44H80O15 (848.549693)


   

[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-9-enoate

[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-9-enoate

C44H81O13P (848.5414506)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C48H81O10P (848.5567056)


   

[(2S)-2-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-heptadec-9-enoate

[(2S)-2-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-heptadec-9-enoate

C44H80O15 (848.549693)


   

[(2S,3S,6S)-6-[(2S)-2-hexadecanoyloxy-3-[(E)-icos-13-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-hexadecanoyloxy-3-[(E)-icos-13-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C48H81O10P (848.5567056)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-octadecanoyloxy-2-[(E)-octadec-11-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-octadecanoyloxy-2-[(E)-octadec-11-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate

C48H81O10P (848.5567056)


   

[(2S)-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-2-undecanoyloxypropyl] (E)-octadec-9-enoate

[(2S)-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-2-undecanoyloxypropyl] (E)-octadec-9-enoate

C44H80O15 (848.549693)


   

[(2R)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C51H76O10 (848.5438196)


   

[(2S)-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-2-undecanoyloxypropyl] (E)-octadec-7-enoate

[(2S)-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-2-undecanoyloxypropyl] (E)-octadec-7-enoate

C44H80O15 (848.549693)


   

[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-[(E)-hexacos-5-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-[(E)-hexacos-5-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C48H81O10P (848.5567056)


   

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (E)-octadec-6-enoate

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (E)-octadec-6-enoate

C44H80O15 (848.549693)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(11E,14E)-icosa-11,14-dienoyl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(11E,14E)-icosa-11,14-dienoyl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C48H81O10P (848.5567056)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-octadecanoyloxy-3-[(E)-octadec-13-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-octadecanoyloxy-3-[(E)-octadec-13-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (13E,16E)-docosa-13,16-dienoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (13E,16E)-docosa-13,16-dienoate

C48H81O10P (848.5567056)


   

[(2S,3S,6S)-6-[(2S)-3-henicosanoyloxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-henicosanoyloxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-docos-13-enoyl]oxy-2-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-docos-13-enoyl]oxy-2-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-nonadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-nonadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] octadec-17-enoate

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] octadec-17-enoate

C44H81O13P (848.5414506)


   

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-13-enoate

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-13-enoate

C44H81O13P (848.5414506)


   

[(2S)-2-heptadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (2E,4E)-octadeca-2,4-dienoate

[(2S)-2-heptadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (2E,4E)-octadeca-2,4-dienoate

C44H81O13P (848.5414506)


   

[(2S,3S,6S)-6-[(2S)-3-hexadecanoyloxy-2-[(E)-icos-13-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-hexadecanoyloxy-2-[(E)-icos-13-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C48H81O10P (848.5567056)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (17E,20E,23E)-hexacosa-17,20,23-trienoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (17E,20E,23E)-hexacosa-17,20,23-trienoate

C48H81O10P (848.5567056)


   

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (E)-octadec-11-enoate

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (E)-octadec-11-enoate

C44H80O15 (848.549693)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-octadecanoyloxy-2-[(E)-octadec-7-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-octadecanoyloxy-2-[(E)-octadec-7-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2S)-1-heptadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

[(2S)-1-heptadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

C44H81O13P (848.5414506)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-octadecanoyloxy-3-[(E)-octadec-4-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-octadecanoyloxy-3-[(E)-octadec-4-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] nonadecanoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] nonadecanoate

C44H81O13P (848.5414506)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,8E)-icosa-5,8-dienoyl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,8E)-icosa-5,8-dienoyl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C48H81O10P (848.5567056)


   

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (E)-octadec-4-enoate

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (E)-octadec-4-enoate

C44H80O15 (848.549693)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (E)-icos-11-enoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (E)-icos-11-enoate

C44H81O13P (848.5414506)


   

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (E)-octadec-9-enoate

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (E)-octadec-9-enoate

C44H80O15 (848.549693)


   

[(2S)-2-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-hexadec-9-enoate

[(2S)-2-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-hexadec-9-enoate

C44H80O15 (848.549693)


   

[(2S)-2-heptadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (6E,9E)-octadeca-6,9-dienoate

[(2S)-2-heptadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (6E,9E)-octadeca-6,9-dienoate

C44H81O13P (848.5414506)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-octadecanoyloxy-2-[(E)-octadec-13-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-octadecanoyloxy-2-[(E)-octadec-13-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

C44H81O13P (848.5414506)


   

[(2S)-2-heptadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (9E,11E)-octadeca-9,11-dienoate

[(2S)-2-heptadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (9E,11E)-octadeca-9,11-dienoate

C44H81O13P (848.5414506)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoate

C51H76O10 (848.5438196)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-octadecanoyloxy-3-octadec-17-enoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-octadecanoyloxy-3-octadec-17-enoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(11E,14E)-icosa-11,14-dienoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(11E,14E)-icosa-11,14-dienoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C48H81O10P (848.5567056)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C48H81O10P (848.5567056)


   

[(2S)-2-[(E)-tetradec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] pentadecanoate

[(2S)-2-[(E)-tetradec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] pentadecanoate

C44H80O15 (848.549693)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-9-enoyl]oxy-2-icosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-9-enoyl]oxy-2-icosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-9-enoate

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-9-enoate

C44H81O13P (848.5414506)


   

[(2S)-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-2-undecanoyloxypropyl] (E)-octadec-4-enoate

[(2S)-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-2-undecanoyloxypropyl] (E)-octadec-4-enoate

C44H80O15 (848.549693)


   

[(2S)-1-[(E)-tetradec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] pentadecanoate

[(2S)-1-[(E)-tetradec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] pentadecanoate

C44H80O15 (848.549693)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-octadecanoyloxy-3-[(E)-octadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-octadecanoyloxy-3-[(E)-octadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (E)-octadec-13-enoate

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (E)-octadec-13-enoate

C44H80O15 (848.549693)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-octadecanoyloxy-2-octadec-17-enoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-octadecanoyloxy-2-octadec-17-enoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-icos-13-enoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-icos-13-enoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C48H81O10P (848.5567056)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C48H81O10P (848.5567056)


   

[(2S)-1-heptadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

[(2S)-1-heptadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

C44H81O13P (848.5414506)


   

[(2S)-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-2-undecanoyloxypropyl] (E)-octadec-6-enoate

[(2S)-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-2-undecanoyloxypropyl] (E)-octadec-6-enoate

C44H80O15 (848.549693)


   

[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-4-enoate

[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-4-enoate

C44H81O13P (848.5414506)


   

[(2S)-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-2-undecanoyloxypropyl] (E)-octadec-13-enoate

[(2S)-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-2-undecanoyloxypropyl] (E)-octadec-13-enoate

C44H80O15 (848.549693)


   

[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-7-enoate

[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-7-enoate

C44H81O13P (848.5414506)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoate

C48H81O10P (848.5567056)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E)-icosa-5,8-dienoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E)-icosa-5,8-dienoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C48H81O10P (848.5567056)


   

[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] octadec-17-enoate

[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] octadec-17-enoate

C44H81O13P (848.5414506)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tridecanoyloxypropyl] (13E,16E)-docosa-13,16-dienoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tridecanoyloxypropyl] (13E,16E)-docosa-13,16-dienoate

C44H81O13P (848.5414506)


   

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (E)-octadec-7-enoate

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (E)-octadec-7-enoate

C44H80O15 (848.549693)


   

[(2S,3S,6S)-6-[(2S)-2-henicosanoyloxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-henicosanoyloxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-octadecanoyloxy-3-[(E)-octadec-6-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-octadecanoyloxy-3-[(E)-octadec-6-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-heptadec-9-enoyl]oxy-2-nonadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-heptadec-9-enoyl]oxy-2-nonadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E)-icosa-5,8-dienoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E)-icosa-5,8-dienoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C48H81O10P (848.5567056)


   

[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-13-enoate

[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-13-enoate

C44H81O13P (848.5414506)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-icosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-icosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-octadecanoyloxy-2-[(E)-octadec-4-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-octadecanoyloxy-2-[(E)-octadec-4-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2R)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] octadecanoate

[(2R)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] octadecanoate

C44H81O13P (848.5414506)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-octadecanoyloxy-2-[(E)-octadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-octadecanoyloxy-2-[(E)-octadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2S)-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-2-undecanoyloxypropyl] (E)-octadec-11-enoate

[(2S)-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-2-undecanoyloxypropyl] (E)-octadec-11-enoate

C44H80O15 (848.549693)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C48H81O10P (848.5567056)


   

[(2S)-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-2-undecanoyloxypropyl] octadec-17-enoate

[(2S)-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-2-undecanoyloxypropyl] octadec-17-enoate

C44H80O15 (848.549693)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-icosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-icosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-octadecanoyloxy-3-[(E)-octadec-11-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-octadecanoyloxy-3-[(E)-octadec-11-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-6-enoate

[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-6-enoate

C44H81O13P (848.5414506)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (5E,8E)-icosa-5,8-dienoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (5E,8E)-icosa-5,8-dienoate

C44H81O13P (848.5414506)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-octadecanoyloxy-3-[(E)-octadec-7-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-octadecanoyloxy-3-[(E)-octadec-7-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-docos-13-enoyl]oxy-3-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-docos-13-enoyl]oxy-3-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2S)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] octadecanoate

[(2S)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] octadecanoate

C44H81O13P (848.5414506)


   

[(2S)-1-heptadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

[(2S)-1-heptadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

C44H81O13P (848.5414506)


   

[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (E)-heptadec-9-enoate

[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (E)-heptadec-9-enoate

C44H80O15 (848.549693)


   

[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (E)-hexadec-7-enoate

[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (E)-hexadec-7-enoate

C44H80O15 (848.549693)


   

[(2S)-2-heptadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (9E,12E)-octadeca-9,12-dienoate

[(2S)-2-heptadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (9E,12E)-octadeca-9,12-dienoate

C44H81O13P (848.5414506)


   

[(2S,3S,6S)-6-[(2S)-2-dodecanoyloxy-3-[(E)-tetracos-15-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-dodecanoyloxy-3-[(E)-tetracos-15-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-icos-11-enoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-icos-11-enoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C48H81O10P (848.5567056)


   

[(2S)-2-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-pentadec-9-enoate

[(2S)-2-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-pentadec-9-enoate

C44H80O15 (848.549693)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-icos-11-enoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-icos-11-enoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C48H81O10P (848.5567056)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C48H81O10P (848.5567056)


   

[(2S)-2-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-hexadec-7-enoate

[(2S)-2-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-hexadec-7-enoate

C44H80O15 (848.549693)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C51H76O10 (848.5438196)


   

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-11-enoate

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-11-enoate

C44H81O13P (848.5414506)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-octadecanoyloxy-2-[(E)-octadec-6-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-octadecanoyloxy-2-[(E)-octadec-6-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate

[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate

C44H81O13P (848.5414506)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-icos-13-enoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-icos-13-enoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C48H81O10P (848.5567056)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (11E,14E)-hexacosa-11,14-dienoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (11E,14E)-hexacosa-11,14-dienoate

C48H81O10P (848.5567056)


   

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-6-enoate

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-6-enoate

C44H81O13P (848.5414506)


   

[(2S,3S,6S)-6-[(2S)-3-docosanoyloxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-docosanoyloxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C48H81O10P (848.5567056)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (E)-icos-11-enoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (E)-icos-11-enoate

C44H81O13P (848.5414506)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (E)-icos-13-enoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (E)-icos-13-enoate

C44H81O13P (848.5414506)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoate

C48H81O10P (848.5567056)


   

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] octadec-17-enoate

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] octadec-17-enoate

C44H80O15 (848.549693)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C48H81O10P (848.5567056)


   

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-4-enoate

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-4-enoate

C44H81O13P (848.5414506)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (E)-icos-13-enoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (E)-icos-13-enoate

C44H81O13P (848.5414506)


   

[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (E)-hexadec-9-enoate

[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (E)-hexadec-9-enoate

C44H80O15 (848.549693)


   

[(2S,3S,6S)-6-[(2S)-3-hexadecanoyloxy-2-[(E)-icos-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-hexadecanoyloxy-2-[(E)-icos-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2R,3R,6R)-6-[(2S)-2-decanoyloxy-3-[(E)-hexacos-5-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2R,3R,6R)-6-[(2S)-2-decanoyloxy-3-[(E)-hexacos-5-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2S,3S,6S)-6-[(2S)-3-dodecanoyloxy-2-[(E)-tetracos-15-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-dodecanoyloxy-2-[(E)-tetracos-15-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (11E,14E)-icosa-11,14-dienoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (11E,14E)-icosa-11,14-dienoate

C44H81O13P (848.5414506)


   

[(2S,3S,6S)-6-[(2S)-2-docosanoyloxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-docosanoyloxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-11-enoate

[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-11-enoate

C44H81O13P (848.5414506)


   

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-7-enoate

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-7-enoate

C44H81O13P (848.5414506)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-7-enoyl]oxy-2-icosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-7-enoyl]oxy-2-icosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H84O12S (848.5683184000001)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate

C44H81O13P (848.5414506)


   

2-[[2-[(Z)-7-[4,6-dihydroxy-2-[(E)-3-hydroxyoct-1-enyl]oxan-3-yl]hept-5-enoyl]oxy-3-hexadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(Z)-7-[4,6-dihydroxy-2-[(E)-3-hydroxyoct-1-enyl]oxan-3-yl]hept-5-enoyl]oxy-3-hexadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H83NO12P+ (848.5652587999999)


   

1-tridecanoyl-2-(13Z,16Z-docosadienoyl)-glycero-3-phospho-(1-myo-inositol)

1-tridecanoyl-2-(13Z,16Z-docosadienoyl)-glycero-3-phospho-(1-myo-inositol)

C44H81O13P (848.5414506)


   

1-(1Z-eicosenyl)-2-(9Z-hexadecenoyl)-glycero-3-phospho-(1-myo-inositol)

1-(1Z-eicosenyl)-2-(9Z-hexadecenoyl)-glycero-3-phospho-(1-myo-inositol)

C45H85O12P (848.5778339999999)


   

1-(1Z-octadecenyl)-2-(9Z-octadecenoyl)-glycero-3-phospho-(1-myo-inositol)

1-(1Z-octadecenyl)-2-(9Z-octadecenoyl)-glycero-3-phospho-(1-myo-inositol)

C45H85O12P (848.5778339999999)


   

1-(1Z-hexadecenyl)-2-(11Z-eicosenoyl)-glycero-3-phospho-(1-myo-inositol)

1-(1Z-hexadecenyl)-2-(11Z-eicosenoyl)-glycero-3-phospho-(1-myo-inositol)

C45H85O12P (848.5778339999999)