Exact Mass: 844.3857

Exact Mass Matches: 844.3857

Found 62 metabolites which its exact mass value is equals to given mass value 844.3857, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Urdamycin A

Kerriamycin B

C43H56O17 (844.3517)


   

PGP(i-12:0/PGF2alpha)

[(2S)-3-({[(2R)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C38H70O16P2 (844.4139)


PGP(i-12:0/PGF2alpha) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-12:0/PGF2alpha), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(PGF2alpha/i-12:0)

[(2S)-3-({[(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C38H70O16P2 (844.4139)


PGP(PGF2alpha/i-12:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGF2alpha/i-12:0), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-12:0/PGE1)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-3-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H70O16P2 (844.4139)


PGP(i-12:0/PGE1) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-12:0/PGE1), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(PGE1/i-12:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-2-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H70O16P2 (844.4139)


PGP(PGE1/i-12:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGE1/i-12:0), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-12:0/PGD1)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-3-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H70O16P2 (844.4139)


PGP(i-12:0/PGD1) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-12:0/PGD1), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(PGD1/i-12:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-2-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H70O16P2 (844.4139)


PGP(PGD1/i-12:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGD1/i-12:0), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-14:0/5-iso PGF2VI)

[(2S)-3-({[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-[(12-methyltridecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C38H70O16P2 (844.4139)


PGP(i-14:0/5-iso PGF2VI) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-14:0/5-iso PGF2VI), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(5-iso PGF2VI/i-14:0)

[(2S)-3-({[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-[(12-methyltridecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C38H70O16P2 (844.4139)


PGP(5-iso PGF2VI/i-14:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(5-iso PGF2VI/i-14:0), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

Cuscutic acid C

(-)-Cuscutic acid C

C38H68O20 (844.4304)


   
   

ENTANDROPHRAGMIN

ENTANDROPHRAGMIN

C43H56O17 (844.3517)


   

Gitorocellobioside

Gitorocellobioside

C41H64O18 (844.4092)


   

cellobiosyl-digigulomethyloside

cellobiosyl-digigulomethyloside

C41H64O18 (844.4092)


   
   
   

3beta-[O4-(O6-beta-D-Glucopyranosyl-beta-D-glucopyranosyl)-alpha-L-rhamnopyranosyloxy]-14-hydroxy-5beta.14beta-card-20(22)-enolid|3beta-[O4-(O6-beta-D-glucopyranosyl-beta-D-glucopyranosyl)-alpha-L-rhamnopyranosyloxy]-14-hydroxy-5beta.14beta-card-20(22)-enolide

3beta-[O4-(O6-beta-D-Glucopyranosyl-beta-D-glucopyranosyl)-alpha-L-rhamnopyranosyloxy]-14-hydroxy-5beta.14beta-card-20(22)-enolid|3beta-[O4-(O6-beta-D-glucopyranosyl-beta-D-glucopyranosyl)-alpha-L-rhamnopyranosyloxy]-14-hydroxy-5beta.14beta-card-20(22)-enolide

C41H64O18 (844.4092)


   

cyclotheonamide E2

cyclotheonamide E2

C42H56N10O9 (844.4232)


   

(3beta,5alpha,11alpha,12beta,14beta,17alpha)-12-acetoxy-3-[(2,6-dideoxy-4-O-(6-deoxy-3-O-methyl-beta-D-allopyranosyl)-3-O-methyl-beta-D-arabino-hexopyranosyl)oxy]-20-oxo-8,14-epoxypregnan-11-yl (4-hydroxyphenyl)acetate|12-O-acetyl-11-O-[(4-hydroxyphenyl)acetyl]-3-O-pachybiosyltenacigenin B|marsdenoside J

(3beta,5alpha,11alpha,12beta,14beta,17alpha)-12-acetoxy-3-[(2,6-dideoxy-4-O-(6-deoxy-3-O-methyl-beta-D-allopyranosyl)-3-O-methyl-beta-D-arabino-hexopyranosyl)oxy]-20-oxo-8,14-epoxypregnan-11-yl (4-hydroxyphenyl)acetate|12-O-acetyl-11-O-[(4-hydroxyphenyl)acetyl]-3-O-pachybiosyltenacigenin B|marsdenoside J

C45H64O15 (844.4245)


   

H-Leu-DLeu-His-Asp-His-Pro-Asn-OH|L-(D-Leu)-HDHPN

H-Leu-DLeu-His-Asp-His-Pro-Asn-OH|L-(D-Leu)-HDHPN

C37H56N12O11 (844.4191)


   
   

Entandrophragmin_32.6\\%

Entandrophragmin_32.6\\%

C43H56O17 (844.3517)


   

Entandrophragmin_major

Entandrophragmin_major

C43H56O17 (844.3517)


   

Entandrophragmin_28.5\\%

Entandrophragmin_28.5\\%

C43H56O17 (844.3517)


   

Entandrophragmin_50.6\\%

Entandrophragmin_50.6\\%

C43H56O17 (844.3517)


   

disodium glycyrrhizate

disodium glycyrrhizate

C42H61NaO16 (844.3857)


   

(E)-N-[(2S,3R,4R,5R,6R)-2-[(2R,3R,4R,5S,6R)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-[2-[(2R,3S,4R,5R)-5-(2,4-dioxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl]-4,5-dihydroxyoxan-3-yl]hexadec-2-enamide

(E)-N-[(2S,3R,4R,5R,6R)-2-[(2R,3R,4R,5S,6R)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-[2-[(2R,3S,4R,5R)-5-(2,4-dioxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl]-4,5-dihydroxyoxan-3-yl]hexadec-2-enamide

C39H64N4O16 (844.4317)


   

(E)-N-[(2S,3R,4R,5R,6R)-2-[(2R,3R,4R,5S,6R)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-[2-[(2R,3S,4R,5R)-5-(2,4-dioxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl]-4,5-dihydroxyoxan-3-yl]-14-methylpentadec-2-enamide

(E)-N-[(2S,3R,4R,5R,6R)-2-[(2R,3R,4R,5S,6R)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-[2-[(2R,3S,4R,5R)-5-(2,4-dioxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl]-4,5-dihydroxyoxan-3-yl]-14-methylpentadec-2-enamide

C39H64N4O16 (844.4317)


   

PGP(i-12:0/PGF2alpha)

PGP(i-12:0/PGF2alpha)

C38H70O16P2 (844.4139)


   

PGP(PGF2alpha/i-12:0)

PGP(PGF2alpha/i-12:0)

C38H70O16P2 (844.4139)


   
   
   
   
   

PGP(i-14:0/5-iso PGF2VI)

PGP(i-14:0/5-iso PGF2VI)

C38H70O16P2 (844.4139)


   

PGP(5-iso PGF2VI/i-14:0)

PGP(5-iso PGF2VI/i-14:0)

C38H70O16P2 (844.4139)


   
   

tunicamycin C2

tunicamycin C2

C39H64N4O16 (844.4317)


A nucleoside that is one of the homologues in the mixture that is tunicamycin, characterised by a hexadec-2-enoyl fatty acyl substituent on the amino group of the tunicamine moiety.

   

ZINC tetramesitylporphyrin

ZINC tetramesitylporphyrin

C56H52N4Zn (844.3483)


   

(2S,4S,5R,6R)-5-acetamido-2-[(2R,3R,4S,5S,6R)-2-[(2R,3S,4R,5R,6R)-5-acetamido-3-hydroxy-2-(hydroxymethyl)-6-(9-methoxy-9-oxononoxy)oxan-4-yl]oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-4-hydroxy-6-[(1R,2R)-1,2,3-trihydroxypropyl]oxane-2-carboxylic acid

(2S,4S,5R,6R)-5-acetamido-2-[(2R,3R,4S,5S,6R)-2-[(2R,3S,4R,5R,6R)-5-acetamido-3-hydroxy-2-(hydroxymethyl)-6-(9-methoxy-9-oxononoxy)oxan-4-yl]oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-4-hydroxy-6-[(1R,2R)-1,2,3-trihydroxypropyl]oxane-2-carboxylic acid

C35H60N2O21 (844.3688)


   

(2S,4S,5R,6R)-5-acetamido-2-[(2S,3R,4S,5S,6R)-2-[(2R,3S,4R,5R,6R)-5-acetamido-4-hydroxy-2-(hydroxymethyl)-6-(9-methoxy-9-oxononoxy)oxan-3-yl]oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-4-hydroxy-6-[(1R,2R)-1,2,3-trihydroxypropyl]oxane-2-carboxylic acid

(2S,4S,5R,6R)-5-acetamido-2-[(2S,3R,4S,5S,6R)-2-[(2R,3S,4R,5R,6R)-5-acetamido-4-hydroxy-2-(hydroxymethyl)-6-(9-methoxy-9-oxononoxy)oxan-3-yl]oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-4-hydroxy-6-[(1R,2R)-1,2,3-trihydroxypropyl]oxane-2-carboxylic acid

C35H60N2O21 (844.3688)


   
   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoate

C45H65O13P (844.4163)


   

tunicamycin C1

tunicamycin C1

C39H64N4O16 (844.4317)


A nucleoside that is one of the homologues in the mixture that is tunicamycin, characterised by a 14-methylpentadec-2-enoyl fatty acyl substituent on the amino group of the tunicamine moiety.

   
   

PI 20:4/12:3;O3

PI 20:4/12:3;O3

C41H65O16P (844.401)


   

PI 20:5/12:2;O3

PI 20:5/12:2;O3

C41H65O16P (844.401)


   
   

(3r,4ar,12bs)-9-[(4r,5r,6r)-4-{[(2s,5s,6s)-5-{[(2s,4r,5s,6r)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-5-hydroxy-6-methyloxan-2-yl]-3,4a,8-trihydroxy-12b-{[(2s,5s,6s)-5-hydroxy-6-methyloxan-2-yl]oxy}-3-methyl-2,4-dihydrotetraphene-1,7,12-trione

(3r,4ar,12bs)-9-[(4r,5r,6r)-4-{[(2s,5s,6s)-5-{[(2s,4r,5s,6r)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-5-hydroxy-6-methyloxan-2-yl]-3,4a,8-trihydroxy-12b-{[(2s,5s,6s)-5-hydroxy-6-methyloxan-2-yl]oxy}-3-methyl-2,4-dihydrotetraphene-1,7,12-trione

C43H56O17 (844.3517)


   

(3r,4ar,12bs)-9-[(2s,4r,5s,6s)-4-{[(2s,5s,6s)-5-{[(2r,4s,5r,6s)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-5-hydroxy-6-methyloxan-2-yl]-3,4a,8-trihydroxy-12b-{[(2s,5s,6r)-5-hydroxy-6-methyloxan-2-yl]oxy}-3-methyl-2,4-dihydrotetraphene-1,7,12-trione

(3r,4ar,12bs)-9-[(2s,4r,5s,6s)-4-{[(2s,5s,6s)-5-{[(2r,4s,5r,6s)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-5-hydroxy-6-methyloxan-2-yl]-3,4a,8-trihydroxy-12b-{[(2s,5s,6r)-5-hydroxy-6-methyloxan-2-yl]oxy}-3-methyl-2,4-dihydrotetraphene-1,7,12-trione

C43H56O17 (844.3517)


   

12b-[(5-{[4-({5-[(4,5-dihydroxy-6-methyloxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)-5-hydroxy-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl)oxy]-3,4a,8-trihydroxy-3-methyl-2,4-dihydrotetraphene-1,7,12-trione

12b-[(5-{[4-({5-[(4,5-dihydroxy-6-methyloxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)-5-hydroxy-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl)oxy]-3,4a,8-trihydroxy-3-methyl-2,4-dihydrotetraphene-1,7,12-trione

C43H56O17 (844.3517)


   

n-[2-({4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)oxan-2-yl}oxy)-6-{2-[3,4-dihydroxy-5-(4-hydroxy-2-oxopyrimidin-1-yl)oxolan-2-yl]-2-hydroxyethyl}-4,5-dihydroxyoxan-3-yl]-14-methylpentadec-2-enimidic acid

n-[2-({4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)oxan-2-yl}oxy)-6-{2-[3,4-dihydroxy-5-(4-hydroxy-2-oxopyrimidin-1-yl)oxolan-2-yl]-2-hydroxyethyl}-4,5-dihydroxyoxan-3-yl]-14-methylpentadec-2-enimidic acid

C39H64N4O16 (844.4317)


   

(2e)-n-[(2s,3r,4r,5r,6r)-2-{[(2s,3s,4s,5r,6s)-4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)oxan-2-yl]oxy}-6-[(2r)-2-[(2r,3s,4r,5r)-3,4-dihydroxy-5-(4-hydroxy-2-oxopyrimidin-1-yl)oxolan-2-yl]-2-hydroxyethyl]-4,5-dihydroxyoxan-3-yl]-14-methylpentadec-2-enimidic acid

(2e)-n-[(2s,3r,4r,5r,6r)-2-{[(2s,3s,4s,5r,6s)-4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)oxan-2-yl]oxy}-6-[(2r)-2-[(2r,3s,4r,5r)-3,4-dihydroxy-5-(4-hydroxy-2-oxopyrimidin-1-yl)oxolan-2-yl]-2-hydroxyethyl]-4,5-dihydroxyoxan-3-yl]-14-methylpentadec-2-enimidic acid

C39H64N4O16 (844.4317)


   

11-{[3-({4,5-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl}oxy)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}tetradecanoic acid

11-{[3-({4,5-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl}oxy)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}tetradecanoic acid

C38H68O20 (844.4304)


   

11-[(3-{[3-({3,5-dihydroxy-6-methyl-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl)oxy]tetradecanoic acid

11-[(3-{[3-({3,5-dihydroxy-6-methyl-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl)oxy]tetradecanoic acid

C38H68O20 (844.4304)


   

4-[(1r,3br,5ar,7s,9as,9bs,11ar)-3a-hydroxy-7-{[(2r,3r,4r,5s,6s)-5-hydroxy-6-methyl-3,4-bis({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

4-[(1r,3br,5ar,7s,9as,9bs,11ar)-3a-hydroxy-7-{[(2r,3r,4r,5s,6s)-5-hydroxy-6-methyl-3,4-bis({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

C41H64O18 (844.4092)


   

(2e)-n-[(2s,3r,4r,5r,6r)-2-{[(2r,3r,4r,5s,6r)-4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)oxan-2-yl]oxy}-6-[(2r)-2-[(2r,3s,4r,5r)-3,4-dihydroxy-5-(4-hydroxy-2-oxopyrimidin-1-yl)oxolan-2-yl]-2-hydroxyethyl]-4,5-dihydroxyoxan-3-yl]-14-methylpentadec-2-enimidic acid

(2e)-n-[(2s,3r,4r,5r,6r)-2-{[(2r,3r,4r,5s,6r)-4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)oxan-2-yl]oxy}-6-[(2r)-2-[(2r,3s,4r,5r)-3,4-dihydroxy-5-(4-hydroxy-2-oxopyrimidin-1-yl)oxolan-2-yl]-2-hydroxyethyl]-4,5-dihydroxyoxan-3-yl]-14-methylpentadec-2-enimidic acid

C39H64N4O16 (844.4317)


   

[(3r,4r,5r,6s)-6-{[(1s,2s,5r,6s,9s,10s,13s,16s,18r)-5,10-dihydroxy-2,6,13,17,17-pentamethyl-6-(4-methylpent-3-en-1-yl)-8-oxo-7-oxapentacyclo[10.8.0.0²,⁹.0⁵,⁹.0¹³,¹⁸]icos-11-en-16-yl]oxy}-4-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxidanesulfonic acid

[(3r,4r,5r,6s)-6-{[(1s,2s,5r,6s,9s,10s,13s,16s,18r)-5,10-dihydroxy-2,6,13,17,17-pentamethyl-6-(4-methylpent-3-en-1-yl)-8-oxo-7-oxapentacyclo[10.8.0.0²,⁹.0⁵,⁹.0¹³,¹⁸]icos-11-en-16-yl]oxy}-4-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxidanesulfonic acid

C41H64O16S (844.3915)


   

(3r,4ar,12bs)-12b-{[(2s,5s,6s)-5-{[(2s,4r,5r,6r)-4-{[(2r,5r,6r)-5-{[(2r,4s,5r,6s)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-5-hydroxy-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-3,4a,8-trihydroxy-3-methyl-2,4-dihydrotetraphene-1,7,12-trione

(3r,4ar,12bs)-12b-{[(2s,5s,6s)-5-{[(2s,4r,5r,6r)-4-{[(2r,5r,6r)-5-{[(2r,4s,5r,6s)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-5-hydroxy-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-3,4a,8-trihydroxy-3-methyl-2,4-dihydrotetraphene-1,7,12-trione

C43H56O17 (844.3517)


   

9-[4-({5-[(4,5-dihydroxy-6-methyloxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)-5-hydroxy-6-methyloxan-2-yl]-3,4a,8-trihydroxy-12b-[(5-hydroxy-6-methyloxan-2-yl)oxy]-3-methyl-2,4-dihydrotetraphene-1,7,12-trione

9-[4-({5-[(4,5-dihydroxy-6-methyloxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)-5-hydroxy-6-methyloxan-2-yl]-3,4a,8-trihydroxy-12b-[(5-hydroxy-6-methyloxan-2-yl)oxy]-3-methyl-2,4-dihydrotetraphene-1,7,12-trione

C43H56O17 (844.3517)


   

(2e)-n-[(2s,3r,4r,5r,6r)-2-{[(3r,4r,5s,6r)-4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)oxan-2-yl]oxy}-6-[(2r)-2-[(2r,3s,4r,5r)-3,4-dihydroxy-5-(4-hydroxy-2-oxopyrimidin-1-yl)oxolan-2-yl]-2-hydroxyethyl]-4,5-dihydroxyoxan-3-yl]-14-methylpentadec-2-enimidic acid

(2e)-n-[(2s,3r,4r,5r,6r)-2-{[(3r,4r,5s,6r)-4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)oxan-2-yl]oxy}-6-[(2r)-2-[(2r,3s,4r,5r)-3,4-dihydroxy-5-(4-hydroxy-2-oxopyrimidin-1-yl)oxolan-2-yl]-2-hydroxyethyl]-4,5-dihydroxyoxan-3-yl]-14-methylpentadec-2-enimidic acid

C39H64N4O16 (844.4317)


   

(11s)-11-{[(2r,3r,4s,5s,6r)-3-{[(2s,3r,4s,5r,6r)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl]oxy}tetradecanoic acid

(11s)-11-{[(2r,3r,4s,5s,6r)-3-{[(2s,3r,4s,5r,6r)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl]oxy}tetradecanoic acid

C38H68O20 (844.4304)