Exact Mass: 842.4217361999999

Exact Mass Matches: 842.4217361999999

Found 82 metabolites which its exact mass value is equals to given mass value 842.4217361999999, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

26-(2-Glucosyl-6-acetylglucosyl]-1,3,11,22-tetrahydroxyergosta-5,24-dien-26-oate

6-[(Acetyloxy)methyl]-4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl (2Z)-5-hydroxy-2,3-dimethyl-6-{3,5,17-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-14-yl}hept-2-enoic acid

C42H66O17 (842.4299786000001)


26-(2-Glucosyl-6-acetylglucosyl]-1,3,11,22-tetrahydroxyergosta-5,24-dien-26-oate is found in fruits. 26-(2-Glucosyl-6-acetylglucosyl]-1,3,11,22-tetrahydroxyergosta-5,24-dien-26-oate is a constituent of Physalis peruviana (Cape gooseberry).

   

Ginseng

4,8a-Bis[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] 2,3-dihydroxy-6b-(hydroxymethyl)-4,6a,11,11,14b-pentamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicene-4,8a-dicarboxylic acid

C42H66O17 (842.4299786000001)


   

PGP(16:0/18:1(12Z)-O(9S,10R))

[(2S)-3-({[(2R)-3-(hexadecanoyloxy)-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C40H76O14P2 (842.4710056)


PGP(16:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:1(12Z)-O(9S,10R)/16:0)

[(2S)-3-({[(2R)-2-(hexadecanoyloxy)-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C40H76O14P2 (842.4710056)


PGP(18:1(12Z)-O(9S,10R)/16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(12Z)-O(9S,10R)/16:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(16:0/18:1(9Z)-O(12,13))

[(2S)-3-({[(2R)-3-(hexadecanoyloxy)-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C40H76O14P2 (842.4710056)


PGP(16:0/18:1(9Z)-O(12,13)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:1(9Z)-O(12,13)/16:0)

[(2S)-3-({[(2R)-2-(hexadecanoyloxy)-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C40H76O14P2 (842.4710056)


PGP(18:1(9Z)-O(12,13)/16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(9Z)-O(12,13)/16:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(a-13:0/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2S)-3-({[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-[(10-methyldodecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C39H72O15P2 (842.4346222)


PGP(a-13:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(a-13:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/a-13:0)

[(2S)-3-({[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-[(10-methyldodecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C39H72O15P2 (842.4346222)


PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/a-13:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/a-13:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-12:0/PGE2)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O16P2 (842.3982388000001)


PGP(i-12:0/PGE2) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-12:0/PGE2), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(PGE2/i-12:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O16P2 (842.3982388000001)


PGP(PGE2/i-12:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGE2/i-12:0), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-12:0/PGD2)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O16P2 (842.3982388000001)


PGP(i-12:0/PGD2) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-12:0/PGD2), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(PGD2/i-12:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O16P2 (842.3982388000001)


PGP(PGD2/i-12:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(PGD2/i-12:0), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-12:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(10-methylundecanoyl)oxy]-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O16P2 (842.3982388000001)


PGP(i-12:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-12:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-12:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(10-methylundecanoyl)oxy]-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O16P2 (842.3982388000001)


PGP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-12:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-12:0), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-13:0/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2S)-3-({[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-[(11-methyldodecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C39H72O15P2 (842.4346222)


PGP(i-13:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-13:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/i-13:0)

[(2S)-3-({[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-[(11-methyldodecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C39H72O15P2 (842.4346222)


PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/i-13:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/i-13:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-16:0/18:1(12Z)-O(9S,10R))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(14-methylpentadecanoyl)oxy]-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C40H76O14P2 (842.4710056)


PGP(i-16:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-16:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one 14-methylpentadecanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:1(12Z)-O(9S,10R)/i-16:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(14-methylpentadecanoyl)oxy]-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C40H76O14P2 (842.4710056)


PGP(18:1(12Z)-O(9S,10R)/i-16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(12Z)-O(9S,10R)/i-16:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-16:0/18:1(9Z)-O(12,13))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(14-methylpentadecanoyl)oxy]-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C40H76O14P2 (842.4710056)


PGP(i-16:0/18:1(9Z)-O(12,13)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-16:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one 14-methylpentadecanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:1(9Z)-O(12,13)/i-16:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(14-methylpentadecanoyl)oxy]-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C40H76O14P2 (842.4710056)


PGP(18:1(9Z)-O(12,13)/i-16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(9Z)-O(12,13)/i-16:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   
   
   
   
   
   

(23R,24S)-24-acetoxy-3-O-alpha-L-arabinopyranosyloxy-16,23-epoxy-9,19-cyclolanostane-15alpha,16xi,25-triol 15-O-beta-D-glucopyranoside

(23R,24S)-24-acetoxy-3-O-alpha-L-arabinopyranosyloxy-16,23-epoxy-9,19-cyclolanostane-15alpha,16xi,25-triol 15-O-beta-D-glucopyranoside

C43H70O16 (842.466362)


   
   

12beta-Hydroxy-oleandrigenin-3beta-O-(beta-D-digitoxosido-beta-D-xylosido-beta-D-apiosid)|12beta-Hydroxy-oleandrigenin-3beta-O-

12beta-Hydroxy-oleandrigenin-3beta-O-(beta-D-digitoxosido-beta-D-xylosido-beta-D-apiosid)|12beta-Hydroxy-oleandrigenin-3beta-O-

C41H62O18 (842.3935951999999)


   

(25S)-5alpha-spirostane-1beta,3alpha-diol 1-O-{O-alpha-L-rhamnopyranosyl-(1 -> 2)-O-[beta-D-xylopyranosyl-(1 -> 3)]-beta-D-xylopyranoside}

(25S)-5alpha-spirostane-1beta,3alpha-diol 1-O-{O-alpha-L-rhamnopyranosyl-(1 -> 2)-O-[beta-D-xylopyranosyl-(1 -> 3)]-beta-D-xylopyranoside}

C43H70O16 (842.466362)


   
   
   

3-O-{[??-D-Xylopyranosyl(1鈥樏傗垎4)][??-L-arabinopyranosyl(1鈥樏傗垎6)]-??-D-glucopyranosyl}-(25S)-5??-spirostan-3??-ol

3-O-{[??-D-Xylopyranosyl(1鈥樏傗垎4)][??-L-arabinopyranosyl(1鈥樏傗垎6)]-??-D-glucopyranosyl}-(25S)-5??-spirostan-3??-ol

C43H70O16 (842.466362)


   

(25S)-5beta-spirostane-3beta-ol 3-O-beta-D-xylopyranosyl-(1->2)-[beta-D-xylopyranosyl-(1->4)]-beta-D-glucopyranoside

(25S)-5beta-spirostane-3beta-ol 3-O-beta-D-xylopyranosyl-(1->2)-[beta-D-xylopyranosyl-(1->4)]-beta-D-glucopyranoside

C43H70O16 (842.466362)


   

Adda-D-Glu(gamma)-Mdhb-D-MeAsp(beta)-L-Arg-OH

Adda-D-Glu(gamma)-Mdhb-D-MeAsp(beta)-L-Arg-OH

C41H62N8O11 (842.4537822)


   

(25S)-5beta-spirostan-3beta-yl-3-O-beta-D-xylopyranosyl(1?3)-O-beta-D-xylopyranosyl(1?4)-beta-D-galactopyranoside

(25S)-5beta-spirostan-3beta-yl-3-O-beta-D-xylopyranosyl(1?3)-O-beta-D-xylopyranosyl(1?4)-beta-D-galactopyranoside

C43H70O16 (842.466362)


   
   

suavissimoside R1-3-O-glucopyranoside

suavissimoside R1-3-O-glucopyranoside

C42H66O17 (842.4299786000001)


   

Methyl 3-O-??-laminaribiosyl polygalacate

Methyl 3-O-??-laminaribiosyl polygalacate

C43H70O16 (842.466362)


   
   

thevetiogenin 3-O-beta-gentiobiosyl-(1->4)-alpha-L-rhamnopyranoside

thevetiogenin 3-O-beta-gentiobiosyl-(1->4)-alpha-L-rhamnopyranoside

C41H62O18 (842.3935951999999)


   

C42H66O17_Card-20(22)-enolide, 3-[[O-hexopyranosyl-(1->6)-O-hexopyranosyl-(1->4)-2,6-dideoxy-3-O-methylhexopyranosyl]oxy]-14-hydroxy-, (3beta,8xi,9xi,14xi,17xi)

NCGC00168912-02_C42H66O17_Card-20(22)-enolide, 3-[[O-hexopyranosyl-(1->6)-O-hexopyranosyl-(1->4)-2,6-dideoxy-3-O-methylhexopyranosyl]oxy]-14-hydroxy-, (3beta,8xi,9xi,14xi,17xi)-

C42H66O17 (842.4299786000001)


   

3-[(3S,10S,13R)-14-hydroxy-3-[4-methoxy-6-methyl-5-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxyoxan-2-yl]oxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-2H-furan-5-one

3-[(3S,10S,13R)-14-hydroxy-3-[4-methoxy-6-methyl-5-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxyoxan-2-yl]oxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-2H-furan-5-one

C42H66O17 (842.4299786000001)


   

26-(2-Glucosyl-6-acetylglucosyl]-1,3,11,22-tetrahydroxyergosta-5,24-dien-26-oate

6-[(acetyloxy)methyl]-4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl (2Z)-5-hydroxy-2,3-dimethyl-6-{3,5,17-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-14-yl}hept-2-enoate

C42H66O17 (842.4299786000001)


   

okadaic acid potassium salt

okadaic acid potassium salt

C44H67KO13 (842.4218512)


   
   

prosapogenin

Prosapogenin (Ginseng)

C42H66O17 (842.4299786000001)


   

histidyl-arginyl-alanyl-tryptophyl-phenylalanyl-lysinamide

histidyl-arginyl-alanyl-tryptophyl-phenylalanyl-lysinamide

C41H58N14O6 (842.4663528000001)


   
   
   
   
   

PGP(16:0/18:1(12Z)-O(9S,10R))

PGP(16:0/18:1(12Z)-O(9S,10R))

C40H76O14P2 (842.4710056)


   

PGP(18:1(12Z)-O(9S,10R)/16:0)

PGP(18:1(12Z)-O(9S,10R)/16:0)

C40H76O14P2 (842.4710056)


   

PGP(i-16:0/18:1(12Z)-O(9S,10R))

PGP(i-16:0/18:1(12Z)-O(9S,10R))

C40H76O14P2 (842.4710056)


   

PGP(18:1(12Z)-O(9S,10R)/i-16:0)

PGP(18:1(12Z)-O(9S,10R)/i-16:0)

C40H76O14P2 (842.4710056)


   

PGP(i-16:0/18:1(9Z)-O(12,13))

PGP(i-16:0/18:1(9Z)-O(12,13))

C40H76O14P2 (842.4710056)


   

PGP(18:1(9Z)-O(12,13)/i-16:0)

PGP(18:1(9Z)-O(12,13)/i-16:0)

C40H76O14P2 (842.4710056)


   

PGP(16:0/18:1(9Z)-O(12,13))

PGP(16:0/18:1(9Z)-O(12,13))

C40H76O14P2 (842.4710056)


   

PGP(18:1(9Z)-O(12,13)/16:0)

PGP(18:1(9Z)-O(12,13)/16:0)

C40H76O14P2 (842.4710056)


   

PGP(a-13:0/20:3(8Z,11Z,14Z)-2OH(5,6))

PGP(a-13:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C39H72O15P2 (842.4346222)


   

PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/a-13:0)

PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/a-13:0)

C39H72O15P2 (842.4346222)


   

PGP(i-13:0/20:3(8Z,11Z,14Z)-2OH(5,6))

PGP(i-13:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C39H72O15P2 (842.4346222)


   

PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/i-13:0)

PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/i-13:0)

C39H72O15P2 (842.4346222)


   

PGP(i-12:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

PGP(i-12:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C38H68O16P2 (842.3982388000001)


   

PGP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-12:0)

PGP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-12:0)

C38H68O16P2 (842.3982388000001)


   

oct-7-en-1-yl 2-acetamido-2-deoxy-alpha-D-galactopyranosyl-(1->3)-[6-deoxy-alpha-L-galactopyranosyl-(1->2)]-beta-D-galactopyranosyl-(1->4)-2-acetamido-2-deoxy-beta-D-glucopyranoside

oct-7-en-1-yl 2-acetamido-2-deoxy-alpha-D-galactopyranosyl-(1->3)-[6-deoxy-alpha-L-galactopyranosyl-(1->2)]-beta-D-galactopyranosyl-(1->4)-2-acetamido-2-deoxy-beta-D-glucopyranoside

C36H62N2O20 (842.3895732000001)


   

oct-7-en-1-yl 2-acetamido-2-deoxy-alpha-D-galactopyranosyl-(1->3)-[6-deoxy-alpha-L-galactopyranosyl-(1->2)]-beta-D-galactopyranosyl-(1->3)-2-acetamido-2-deoxy-alpha-D-galactopyranoside

oct-7-en-1-yl 2-acetamido-2-deoxy-alpha-D-galactopyranosyl-(1->3)-[6-deoxy-alpha-L-galactopyranosyl-(1->2)]-beta-D-galactopyranosyl-(1->3)-2-acetamido-2-deoxy-alpha-D-galactopyranoside

C36H62N2O20 (842.3895732000001)


   

oct-7-en-1-yl 2-acetamido-2-deoxy-alpha-D-galactopyranosyl-(1->3)-[6-deoxy-alpha-L-galactopyranosyl-(1->2)]-beta-D-galactopyranosyl-(1->3)-2-acetamido-2-deoxy-beta-D-glucopyranoside

oct-7-en-1-yl 2-acetamido-2-deoxy-alpha-D-galactopyranosyl-(1->3)-[6-deoxy-alpha-L-galactopyranosyl-(1->2)]-beta-D-galactopyranosyl-(1->3)-2-acetamido-2-deoxy-beta-D-glucopyranoside

C36H62N2O20 (842.3895732000001)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-(2-hydroxy-3-tetradecanoyloxypropoxy)phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (9Z,11E,13E)-hexadeca-9,11,13-trienoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-(2-hydroxy-3-tetradecanoyloxypropoxy)phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (9Z,11E,13E)-hexadeca-9,11,13-trienoate

C39H72O15P2 (842.4346222)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (4E,7Z)-hexadeca-4,7-dienoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (4E,7Z)-hexadeca-4,7-dienoate

C39H72O15P2 (842.4346222)


   
   
   
   
   
   
   

4-[(1r,3as,3br,5ar,7s,9as,9bs,11ar)-3a-hydroxy-7-{[(2r,4r,5s,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

4-[(1r,3as,3br,5ar,7s,9as,9bs,11ar)-3a-hydroxy-7-{[(2r,4r,5s,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

C42H66O17 (842.4299786000001)