Exact Mass: 840.4520504

Exact Mass Matches: 840.4520504

Found 292 metabolites which its exact mass value is equals to given mass value 840.4520504, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Modithromycin

N-(9-{[4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy}-3-ethyl-2-hydroxy-2,6,8,10,16,18-hexamethyl-5,7-dioxo-13-({[6-(1H-pyrazol-1-yl)pyridin-3-yl]methoxy}imino)-4,11,15-trioxabicyclo[8.5.4]nonadecan-17-ylidene)acetamide

C43H64N6O11 (840.4632834)


   

PG(18:2(9Z,11Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(9Z,11Z)-octadeca-9,11-dienoyloxy]-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphinic acid

C44H73O13P (840.4788537999999)


PG(18:2(9Z,11Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:2(9Z,11Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:2(9Z,11Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(9Z,11Z)-octadeca-9,11-dienoyloxy]-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphinic acid

C44H73O13P (840.4788537999999)


PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:2(9Z,11Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:2(9Z,11Z)), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:2(9Z,12Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphinic acid

C44H73O13P (840.4788537999999)


PG(18:2(9Z,12Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:2(9Z,12Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:2(9Z,12Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphinic acid

C44H73O13P (840.4788537999999)


PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:2(9Z,12Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:2(9Z,12Z)), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:3(6Z,9Z,12Z)/PGE2)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphinic acid

C44H73O13P (840.4788537999999)


PG(18:3(6Z,9Z,12Z)/PGE2) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:3(6Z,9Z,12Z)/PGE2), in particular, consists of one chain of one 6Z,9Z,12Z-octadecatrienoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGE2/18:3(6Z,9Z,12Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphinic acid

C44H73O13P (840.4788537999999)


PG(PGE2/18:3(6Z,9Z,12Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGE2/18:3(6Z,9Z,12Z)), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of 6Z,9Z,12Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:3(6Z,9Z,12Z)/PGD2)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphinic acid

C44H73O13P (840.4788537999999)


PG(18:3(6Z,9Z,12Z)/PGD2) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:3(6Z,9Z,12Z)/PGD2), in particular, consists of one chain of one 6Z,9Z,12Z-octadecatrienoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGD2/18:3(6Z,9Z,12Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphinic acid

C44H73O13P (840.4788537999999)


PG(PGD2/18:3(6Z,9Z,12Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGD2/18:3(6Z,9Z,12Z)), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of 6Z,9Z,12Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:3(6Z,9Z,12Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphinic acid

C44H73O13P (840.4788537999999)


PG(18:3(6Z,9Z,12Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:3(6Z,9Z,12Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one 6Z,9Z,12Z-octadecatrienoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:3(6Z,9Z,12Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphinic acid

C44H73O13P (840.4788537999999)


PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:3(6Z,9Z,12Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of 6Z,9Z,12Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:3(9Z,12Z,15Z)/PGE2)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphinic acid

C44H73O13P (840.4788537999999)


PG(18:3(9Z,12Z,15Z)/PGE2) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:3(9Z,12Z,15Z)/PGE2), in particular, consists of one chain of one 9Z,12Z,15Z-octadecatrienoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGE2/18:3(9Z,12Z,15Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphinic acid

C44H73O13P (840.4788537999999)


PG(PGE2/18:3(9Z,12Z,15Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGE2/18:3(9Z,12Z,15Z)), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of 9Z,12Z,15Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:3(9Z,12Z,15Z)/PGD2)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphinic acid

C44H73O13P (840.4788537999999)


PG(18:3(9Z,12Z,15Z)/PGD2) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:3(9Z,12Z,15Z)/PGD2), in particular, consists of one chain of one 9Z,12Z,15Z-octadecatrienoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGD2/18:3(9Z,12Z,15Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphinic acid

C44H73O13P (840.4788537999999)


PG(PGD2/18:3(9Z,12Z,15Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGD2/18:3(9Z,12Z,15Z)), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of 9Z,12Z,15Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:3(9Z,12Z,15Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphinic acid

C44H73O13P (840.4788537999999)


PG(18:3(9Z,12Z,15Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:3(9Z,12Z,15Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one 9Z,12Z,15Z-octadecatrienoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:3(9Z,12Z,15Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphinic acid

C44H73O13P (840.4788537999999)


PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:3(9Z,12Z,15Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of 9Z,12Z,15Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,8Z,11Z,14Z)/5-iso PGF2VI)

[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C44H73O13P (840.4788537999999)


PG(20:4(5Z,8Z,11Z,14Z)/5-iso PGF2VI) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,8Z,11Z,14Z)/5-iso PGF2VI), in particular, consists of one chain of one 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(5-iso PGF2VI/20:4(5Z,8Z,11Z,14Z))

[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C44H73O13P (840.4788537999999)


PG(5-iso PGF2VI/20:4(5Z,8Z,11Z,14Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(5-iso PGF2VI/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(8Z,11Z,14Z,17Z)/5-iso PGF2VI)

[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C44H73O13P (840.4788537999999)


PG(20:4(8Z,11Z,14Z,17Z)/5-iso PGF2VI) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(8Z,11Z,14Z,17Z)/5-iso PGF2VI), in particular, consists of one chain of one 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(5-iso PGF2VI/20:4(8Z,11Z,14Z,17Z))

[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C44H73O13P (840.4788537999999)


PG(5-iso PGF2VI/20:4(8Z,11Z,14Z,17Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(5-iso PGF2VI/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PGP(16:0/18:2(10E,12Z)+=O(9))

[(2S)-3-({[(2R)-3-(hexadecanoyloxy)-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C40H74O14P2 (840.4553564)


PGP(16:0/18:2(10E,12Z)+=O(9)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:0/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(10E,12Z)+=O(9)/16:0)

[(2S)-3-({[(2R)-2-(hexadecanoyloxy)-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C40H74O14P2 (840.4553564)


PGP(18:2(10E,12Z)+=O(9)/16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(10E,12Z)+=O(9)/16:0), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(16:0/18:2(9Z,11E)+=O(13))

[(2S)-3-({[(2R)-3-(hexadecanoyloxy)-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C40H74O14P2 (840.4553564)


PGP(16:0/18:2(9Z,11E)+=O(13)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:0/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,11E)+=O(13)/16:0)

[(2S)-3-({[(2R)-2-(hexadecanoyloxy)-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C40H74O14P2 (840.4553564)


PGP(18:2(9Z,11E)+=O(13)/16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,11E)+=O(13)/16:0), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(16:0/18:3(10,12,15)-OH(9))

[(2S)-3-({[(2R)-3-(hexadecanoyloxy)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C40H74O14P2 (840.4553564)


PGP(16:0/18:3(10,12,15)-OH(9)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:0/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:3(10,12,15)-OH(9)/16:0)

[(2S)-3-({[(2R)-2-(hexadecanoyloxy)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C40H74O14P2 (840.4553564)


PGP(18:3(10,12,15)-OH(9)/16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:3(10,12,15)-OH(9)/16:0), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(16:0/18:3(9,11,15)-OH(13))

[(2S)-3-({[(2R)-3-(hexadecanoyloxy)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C40H74O14P2 (840.4553564)


PGP(16:0/18:3(9,11,15)-OH(13)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:0/18:3(9,11,15)-OH(13)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:3(9,11,15)-OH(13)/16:0)

[(2S)-3-({[(2R)-2-(hexadecanoyloxy)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C40H74O14P2 (840.4553564)


PGP(18:3(9,11,15)-OH(13)/16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:3(9,11,15)-OH(13)/16:0), in particular, consists of one chain of one 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(16:1(9Z)/18:1(12Z)-O(9S,10R))

[(2S)-3-({[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C40H74O14P2 (840.4553564)


PGP(16:1(9Z)/18:1(12Z)-O(9S,10R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:1(9Z)/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one 9Z-hexadecenoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:1(12Z)-O(9S,10R)/16:1(9Z))

[(2S)-3-({[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C40H74O14P2 (840.4553564)


PGP(18:1(12Z)-O(9S,10R)/16:1(9Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(12Z)-O(9S,10R)/16:1(9Z)), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 9Z-hexadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(16:1(9Z)/18:1(9Z)-O(12,13))

[(2S)-3-({[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C40H74O14P2 (840.4553564)


PGP(16:1(9Z)/18:1(9Z)-O(12,13)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(16:1(9Z)/18:1(9Z)-O(12,13)), in particular, consists of one chain of one 9Z-hexadecenoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:1(9Z)-O(12,13)/16:1(9Z))

[(2S)-3-({[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C40H74O14P2 (840.4553564)


PGP(18:1(9Z)-O(12,13)/16:1(9Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(9Z)-O(12,13)/16:1(9Z)), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 9Z-hexadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(a-13:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

[(2S)-3-({[(2R)-2-{[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-3-[(10-methyldodecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C39H70O15P2 (840.418973)


PGP(a-13:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(a-13:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/a-13:0)

[(2S)-3-({[(2R)-3-{[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-2-[(10-methyldodecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C39H70O15P2 (840.418973)


PGP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/a-13:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/a-13:0), in particular, consists of one chain of one Leukotriene B4 at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(a-13:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

[(2S)-3-({[(2R)-2-{[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-3-[(10-methyldodecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C39H70O15P2 (840.418973)


PGP(a-13:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(a-13:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/a-13:0)

[(2S)-3-({[(2R)-3-{[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-2-[(10-methyldodecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C39H70O15P2 (840.418973)


PGP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/a-13:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/a-13:0), in particular, consists of one chain of one 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(a-13:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

[(2S)-3-({[(2R)-2-{[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-3-[(10-methyldodecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C39H70O15P2 (840.418973)


PGP(a-13:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(a-13:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/a-13:0)

[(2S)-3-({[(2R)-3-{[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-2-[(10-methyldodecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C39H70O15P2 (840.418973)


PGP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/a-13:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/a-13:0), in particular, consists of one chain of one 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-13:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

[(2S)-3-({[(2R)-2-{[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-3-[(11-methyldodecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C39H70O15P2 (840.418973)


PGP(i-13:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-13:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-13:0)

[(2S)-3-({[(2R)-3-{[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-2-[(11-methyldodecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C39H70O15P2 (840.418973)


PGP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-13:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-13:0), in particular, consists of one chain of one Leukotriene B4 at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-13:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

[(2S)-3-({[(2R)-2-{[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-3-[(11-methyldodecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C39H70O15P2 (840.418973)


PGP(i-13:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-13:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-13:0)

[(2S)-3-({[(2R)-3-{[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-2-[(11-methyldodecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C39H70O15P2 (840.418973)


PGP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-13:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-13:0), in particular, consists of one chain of one 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-13:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

[(2S)-3-({[(2R)-2-{[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-3-[(11-methyldodecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C39H70O15P2 (840.418973)


PGP(i-13:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-13:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-13:0)

[(2S)-3-({[(2R)-3-{[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-2-[(11-methyldodecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C39H70O15P2 (840.418973)


PGP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-13:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-13:0), in particular, consists of one chain of one 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-14:0/20:3(6,8,11)-OH(5))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-3-[(12-methyltridecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C40H74O14P2 (840.4553564)


PGP(i-14:0/20:3(6,8,11)-OH(5)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-14:0/20:3(6,8,11)-OH(5)), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(6,8,11)-OH(5)/i-14:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-2-[(12-methyltridecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C40H74O14P2 (840.4553564)


PGP(20:3(6,8,11)-OH(5)/i-14:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(6,8,11)-OH(5)/i-14:0), in particular, consists of one chain of one 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-16:0/18:2(10E,12Z)+=O(9))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(14-methylpentadecanoyl)oxy]-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C40H74O14P2 (840.4553564)


PGP(i-16:0/18:2(10E,12Z)+=O(9)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-16:0/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one 14-methylpentadecanoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(10E,12Z)+=O(9)/i-16:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(14-methylpentadecanoyl)oxy]-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C40H74O14P2 (840.4553564)


PGP(18:2(10E,12Z)+=O(9)/i-16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(10E,12Z)+=O(9)/i-16:0), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-16:0/18:2(9Z,11E)+=O(13))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(14-methylpentadecanoyl)oxy]-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C40H74O14P2 (840.4553564)


PGP(i-16:0/18:2(9Z,11E)+=O(13)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-16:0/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one 14-methylpentadecanoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,11E)+=O(13)/i-16:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(14-methylpentadecanoyl)oxy]-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C40H74O14P2 (840.4553564)


PGP(18:2(9Z,11E)+=O(13)/i-16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,11E)+=O(13)/i-16:0), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-16:0/18:3(10,12,15)-OH(9))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-3-[(14-methylpentadecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C40H74O14P2 (840.4553564)


PGP(i-16:0/18:3(10,12,15)-OH(9)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-16:0/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one 14-methylpentadecanoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:3(10,12,15)-OH(9)/i-16:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-2-[(14-methylpentadecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C40H74O14P2 (840.4553564)


PGP(18:3(10,12,15)-OH(9)/i-16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:3(10,12,15)-OH(9)/i-16:0), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-16:0/18:3(9,11,15)-OH(13))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-3-[(14-methylpentadecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C40H74O14P2 (840.4553564)


PGP(i-16:0/18:3(9,11,15)-OH(13)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-16:0/18:3(9,11,15)-OH(13)), in particular, consists of one chain of one 14-methylpentadecanoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:3(9,11,15)-OH(13)/i-16:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-2-[(14-methylpentadecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C40H74O14P2 (840.4553564)


PGP(18:3(9,11,15)-OH(13)/i-16:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:3(9,11,15)-OH(13)/i-16:0), in particular, consists of one chain of one 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   
   
   
   
   

Genkwadaphnin-20-palmitate

Genkwadaphnin-20-palmitate

C50H64O11 (840.4448394)


   
   
   

[(2R,3R,4R,5R,6S)-6-[(6E)-3,7-dimethyl-8-oxo-8-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyocta-1,6-dien-3-yl]oxy-5-hydroxy-4-[(2E)-6-hydroxy-2,6-dimethylocta-2,7-dienoyl]oxy-2-(hydroxymethyl)oxan-3-yl] (2E)-6-hydroxy-2,6-dimethylocta-2,7-dienoate

[(2R,3R,4R,5R,6S)-6-[(6E)-3,7-dimethyl-8-oxo-8-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyocta-1,6-dien-3-yl]oxy-5-hydroxy-4-[(2E)-6-hydroxy-2,6-dimethylocta-2,7-dienoyl]oxy-2-(hydroxymethyl)oxan-3-yl] (2E)-6-hydroxy-2,6-dimethylocta-2,7-dienoate

C42H64O17 (840.4143294)


   

9,13-Dimethyl-17-oxo-14-(5-oxo-2,5-dihydro-3-furanyl)tetracyclo[11.3.1.01,10.04,9]heptadec-6-yl β-D-glucopyranosyl-(1->6)-β-D-glucopyranosyl-(1->4)-2,6-dideoxy-3-O-methyl-D-lyxo-hexopyranosi de

9,13-Dimethyl-17-oxo-14-(5-oxo-2,5-dihydro-3-furanyl)tetracyclo[11.3.1.01,10.04,9]heptadec-6-yl β-D-glucopyranosyl-(1->6)-β-D-glucopyranosyl-(1->4)-2,6-dideoxy-3-O-methyl-D-lyxo-hexopyranosi de

C42H64O17 (840.4143294)


   

PG 42:11

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-glycero-3-phospho-(1-sn-glycerol)

C48H73O10P (840.4941087999999)


Found in mouse small intestine; TwoDicalId=258; MgfFile=160907_Small_Intestine_EPA_Neg_10; MgfId=621

   

5alpha-spirost-25(27)-ene-1beta,3alpha-diol 1-O-{O-alpha-L-rhamnopyranosyl-(1 -> 2)-O-[beta-D-xylopyranosyl-(1 -> 3)]-beta-D-xylopyranoside}

5alpha-spirost-25(27)-ene-1beta,3alpha-diol 1-O-{O-alpha-L-rhamnopyranosyl-(1 -> 2)-O-[beta-D-xylopyranosyl-(1 -> 3)]-beta-D-xylopyranoside}

C43H68O16 (840.4507128)


   
   

Tetrahydrohalichondramide

Tetrahydrohalichondramide

C44H64N4O12 (840.4520504)


   
   

(20S,24R)-epoxycycloartane-3beta,6alpha,16beta,25-tetraol 3-O-[alpha-L-rhamnopyranosyl(1->6)]-beta-D-(2-O-acetyl)-glucopyranoside|cycloascauloside A

(20S,24R)-epoxycycloartane-3beta,6alpha,16beta,25-tetraol 3-O-[alpha-L-rhamnopyranosyl(1->6)]-beta-D-(2-O-acetyl)-glucopyranoside|cycloascauloside A

C44H72O15 (840.4870962)


   
   
   

(25R)-3beta-hydroxyspirost-5-en-1beta-yl 3-O-alpha-L-rhamnopyranosyl-(1->2)-O-beta-D-xylopyranosyl-(1->3)-alpha-L-arabinopyranoside|(25R)-3beta-hydroxyspirost-5-en-1beta-yl O-alpha-L-rhamnopyranosyl-(1->2)-O-[beta-D-xylopyranosyl-(1->3)]-alpha-L-arabinopyranoside

(25R)-3beta-hydroxyspirost-5-en-1beta-yl 3-O-alpha-L-rhamnopyranosyl-(1->2)-O-beta-D-xylopyranosyl-(1->3)-alpha-L-arabinopyranoside|(25R)-3beta-hydroxyspirost-5-en-1beta-yl O-alpha-L-rhamnopyranosyl-(1->2)-O-[beta-D-xylopyranosyl-(1->3)]-alpha-L-arabinopyranoside

C43H68O16 (840.4507128)


   

1-O-(9Z,12Z-octadecadienoyl)-3-O-[beta-D-galactopyranosyl-(1->6)-O-beta-D-galactopyranosyl-(1->6)-O-beta-D-galactopyranosyl]glycerol

1-O-(9Z,12Z-octadecadienoyl)-3-O-[beta-D-galactopyranosyl-(1->6)-O-beta-D-galactopyranosyl-(1->6)-O-beta-D-galactopyranosyl]glycerol

C39H68O19 (840.4354578)


   

Delta16-digitoxigenin beta-gentobiosyl-alpha-L-cymaroside

Delta16-digitoxigenin beta-gentobiosyl-alpha-L-cymaroside

C42H64O17 (840.4143294)


   
   

3-O-[beta-D-glucopyranosyl-(1?2)-beta-D-glucuronopyranosyl]-3beta,11alpha,24-trihydroxyolean-12-en-22-oxo-30-oic acid|sarosiensin I

3-O-[beta-D-glucopyranosyl-(1?2)-beta-D-glucuronopyranosyl]-3beta,11alpha,24-trihydroxyolean-12-en-22-oxo-30-oic acid|sarosiensin I

C42H64O17 (840.4143294)


   

19alpha,23-dihydroxyurs-12-en-28-oic acid 3beta-O-[beta-D-glucuronopyranoside-6-O-methyl ester]-28-O-beta-D-glucopyranosyl ester

19alpha,23-dihydroxyurs-12-en-28-oic acid 3beta-O-[beta-D-glucuronopyranoside-6-O-methyl ester]-28-O-beta-D-glucopyranosyl ester

C43H68O16 (840.4507128)


   

3-O-[beta-D-glucopyranosyl-(1?2)-beta-D-glucuronopyranosyl]-3beta,24,30-trihydroxy-11alpha-methoxyolean-12-en-22-one|sarosiensin IV

3-O-[beta-D-glucopyranosyl-(1?2)-beta-D-glucuronopyranosyl]-3beta,24,30-trihydroxy-11alpha-methoxyolean-12-en-22-one|sarosiensin IV

C43H68O16 (840.4507128)


   

n-henecosanoyl-beta-D-arabinofuranosyl-2-(1?2)-beta-D-arabinopyranosyl-(1?2)-2-beta-D-arabinopyranosyl (1?2)-2-beta-D-arabinopyranoside

n-henecosanoyl-beta-D-arabinofuranosyl-2-(1?2)-beta-D-arabinopyranosyl-(1?2)-2-beta-D-arabinopyranosyl (1?2)-2-beta-D-arabinopyranoside

C40H72O18 (840.4718412)


   

25(S)-ruscogenin 1-O-beta-D-xylopyranosyl-(1?2)-[beta-D-xylopyranosyl-(1?3)]-beta-D-fucopyranoside

25(S)-ruscogenin 1-O-beta-D-xylopyranosyl-(1?2)-[beta-D-xylopyranosyl-(1?3)]-beta-D-fucopyranoside

C43H68O16 (840.4507128)


   

6-O-Acetylsaikosaponin B3

6-O-Acetylsaikosaponin B3

C44H72O15 (840.4870962)


   

3-O-beta-D-glucopyranosylphytolaccagenic acid 28-O-beta-D-glucopyranosyl ester|diploclisin|phytolaccagenic acid 3-O-beta-D-glucopyranosyl-28-O-beta-D-glucopyranoside

3-O-beta-D-glucopyranosylphytolaccagenic acid 28-O-beta-D-glucopyranosyl ester|diploclisin|phytolaccagenic acid 3-O-beta-D-glucopyranosyl-28-O-beta-D-glucopyranoside

C43H68O16 (840.4507128)


   

Syriogenin-3beta-O-(3-O-acetyl-beta-D-digitoxosido-4-beta-D-xylosido-4-alpha-L-rhamnosid)|Syriogenin-3beta-O-<3-O-acetyl-beta-D-digitoxosido-4-beta-D-xylosido-4-alpha-L-rhamnosid>

Syriogenin-3beta-O-(3-O-acetyl-beta-D-digitoxosido-4-beta-D-xylosido-4-alpha-L-rhamnosid)|Syriogenin-3beta-O-<3-O-acetyl-beta-D-digitoxosido-4-beta-D-xylosido-4-alpha-L-rhamnosid>

C42H64O17 (840.4143294)


   
   

Delta16-digitoxigenin beta-gentiobiosyl-beta-D-cymaroside

Delta16-digitoxigenin beta-gentiobiosyl-beta-D-cymaroside

C42H64O17 (840.4143294)


   
   

28-O-beta-D-glucopyranosyl-bayogenin-3-O-6-O-methyl-beta-D-glucuronopyranoside

28-O-beta-D-glucopyranosyl-bayogenin-3-O-6-O-methyl-beta-D-glucuronopyranoside

C43H68O16 (840.4507128)


   

strophanthidin-3-O-beta-digitoxosido-alpha-L-cymarosido-beta-D-glucoside

strophanthidin-3-O-beta-digitoxosido-alpha-L-cymarosido-beta-D-glucoside

C42H64O17 (840.4143294)


   

3-O-beta-glucuronopyranosyl-28-O-beta-glucopyranoside medicagenic acid|medicagenic acid 3-O-beta-D-glucopyranosyl-28-O-beta-D-glucopyranoside

3-O-beta-glucuronopyranosyl-28-O-beta-glucopyranoside medicagenic acid|medicagenic acid 3-O-beta-D-glucopyranosyl-28-O-beta-D-glucopyranoside

C42H64O17 (840.4143294)


   

C42H64O17_2(5H)-Furanone, 4-[(3S,4aR,6aR,9R,10R,12bS)-3-[[O-hexopyranosyl-(1->6)-O-hexopyranosyl-(1->4)-2,6-dideoxy-3-O-methylhexopyranosyl]oxy]tetradecahydro-10,12b-dimethyl-13-oxo-1H-6a,10-methanocycloocta[a]naphthalen-9-yl]

NCGC00168809-03_C42H64O17_2(5H)-Furanone, 4-[(3S,4aR,6aR,9R,10R,12bS)-3-[[O-hexopyranosyl-(1->6)-O-hexopyranosyl-(1->4)-2,6-dideoxy-3-O-methylhexopyranosyl]oxy]tetradecahydro-10,12b-dimethyl-13-oxo-1H-6a,10-methanocycloocta[a]naphthalen-9-yl]-

C42H64O17 (840.4143294)


   

C42H64O17_beta-D-Glucopyranose, 1-O-[(2E)-6-[[3,4-bis-O-[(2E)-6-hydroxy-2,6-dimethyl-1-oxo-2,7-octadien-1-yl]-beta-D-glucopyranosyl]oxy]-2,6-dimethyl-1-oxo-2,7-octadien-1-yl]

NCGC00381024-01_C42H64O17_beta-D-Glucopyranose, 1-O-[(2E)-6-[[3,4-bis-O-[(2E)-6-hydroxy-2,6-dimethyl-1-oxo-2,7-octadien-1-yl]-beta-D-glucopyranosyl]oxy]-2,6-dimethyl-1-oxo-2,7-octadien-1-yl]-

C42H64O17 (840.4143294)


   

C42H64O17_Carda-5,20(22)-dienolide, 3-[[O-beta-D-glucopyranosyl-(1->6)-O-beta-D-glucopyranosyl-(1->4)-2,6-dideoxy-3-O-methyl-alpha-L-arabino-hexopyranosyl]oxy]-14-hydroxy-, (3beta,8xi,9xi)

NCGC00380126-01_C42H64O17_Carda-5,20(22)-dienolide, 3-[[O-beta-D-glucopyranosyl-(1->6)-O-beta-D-glucopyranosyl-(1->4)-2,6-dideoxy-3-O-methyl-alpha-L-arabino-hexopyranosyl]oxy]-14-hydroxy-, (3beta,8xi,9xi)-

C42H64O17 (840.4143294)


   

C42H64O17_2(5H)-Furanone, 4-[3-[[O-beta-D-glucopyranosyl-(1->6)-O-beta-D-glucopyranosyl-(1->4)-2,6-dideoxy-3-O-methyl-D-lyxo-hexopyranosyl]oxy]tetradecahydro-10,12b-dimethyl-13-oxo-1H-6a,10-methanocycloocta[a]naphthalen-9-yl]

NCGC00169683-02_C42H64O17_2(5H)-Furanone, 4-[3-[[O-beta-D-glucopyranosyl-(1->6)-O-beta-D-glucopyranosyl-(1->4)-2,6-dideoxy-3-O-methyl-D-lyxo-hexopyranosyl]oxy]tetradecahydro-10,12b-dimethyl-13-oxo-1H-6a,10-methanocycloocta[a]naphthalen-9-yl]-

C42H64O17 (840.4143294)


   

9,13-Dimethyl-17-oxo-14-(5-oxo-2,5-dihydro-3-furanyl)tetracyclo[11.3.1.01,10.04,9]heptadec-6-yl β-D-glucopyranosyl-(1->6)-β-D-glucopyranosyl-(1->4)-2,6-dideoxy-3-O-methyl-D-lyxo-hexopyranosi de_major

9,13-Dimethyl-17-oxo-14-(5-oxo-2,5-dihydro-3-furanyl)tetracyclo[11.3.1.01,10.04,9]heptadec-6-yl β-D-glucopyranosyl-(1->6)-β-D-glucopyranosyl-(1->4)-2,6-dideoxy-3-O-methyl-D-lyxo-hexopyranosi de_major

C42H64O17 (840.4143294)


   

9,13-Dimethyl-17-oxo-14-(5-oxo-2,5-dihydro-3-furanyl)tetracyclo[11.3.1.01,10.04,9]heptadec-6-yl β-D-glucopyranosyl-(1->6)-β-D-glucopyranosyl-(1->4)-2,6-dideoxy-3-O-methyl-D-lyxo-hexopyranosi de_78.8\\%

9,13-Dimethyl-17-oxo-14-(5-oxo-2,5-dihydro-3-furanyl)tetracyclo[11.3.1.01,10.04,9]heptadec-6-yl β-D-glucopyranosyl-(1->6)-β-D-glucopyranosyl-(1->4)-2,6-dideoxy-3-O-methyl-D-lyxo-hexopyranosi de_78.8\\%

C42H64O17 (840.4143294)


   

9,13-Dimethyl-17-oxo-14-(5-oxo-2,5-dihydro-3-furanyl)tetracyclo[11.3.1.01,10.04,9]heptadec-6-yl β-D-glucopyranosyl-(1->6)-β-D-glucopyranosyl-(1->4)-2,6-dideoxy-3-O-methyl-D-lyxo-hexopyranosi de_69.1\\%

9,13-Dimethyl-17-oxo-14-(5-oxo-2,5-dihydro-3-furanyl)tetracyclo[11.3.1.01,10.04,9]heptadec-6-yl β-D-glucopyranosyl-(1->6)-β-D-glucopyranosyl-(1->4)-2,6-dideoxy-3-O-methyl-D-lyxo-hexopyranosi de_69.1\\%

C42H64O17 (840.4143294)


   

9,13-Dimethyl-17-oxo-14-(5-oxo-2,5-dihydro-3-furanyl)tetracyclo[11.3.1.01,10.04,9]heptadec-6-yl β-D-glucopyranosyl-(1->6)-β-D-glucopyranosyl-(1->4)-2,6-dideoxy-3-O-methyl-D-lyxo-hexopyranosi de_45.7\\%

9,13-Dimethyl-17-oxo-14-(5-oxo-2,5-dihydro-3-furanyl)tetracyclo[11.3.1.01,10.04,9]heptadec-6-yl β-D-glucopyranosyl-(1->6)-β-D-glucopyranosyl-(1->4)-2,6-dideoxy-3-O-methyl-D-lyxo-hexopyranosi de_45.7\\%

C42H64O17 (840.4143294)


   

9,13-Dimethyl-17-oxo-14-(5-oxo-2,5-dihydro-3-furanyl)tetracyclo[11.3.1.01,10.04,9]heptadec-6-yl β-D-glucopyranosyl-(1->6)-β-D-glucopyranosyl-(1->4)-2,6-dideoxy-3-O-methyl-D-lyxo-hexopyranosi de_97.8\\%

9,13-Dimethyl-17-oxo-14-(5-oxo-2,5-dihydro-3-furanyl)tetracyclo[11.3.1.01,10.04,9]heptadec-6-yl β-D-glucopyranosyl-(1->6)-β-D-glucopyranosyl-(1->4)-2,6-dideoxy-3-O-methyl-D-lyxo-hexopyranosi de_97.8\\%

C42H64O17 (840.4143294)


   

9,13-Dimethyl-17-oxo-14-(5-oxo-2,5-dihydro-3-furanyl)tetracyclo[11.3.1.01,10.04,9]heptadec-6-yl β-D-glucopyranosyl-(1->6)-β-D-glucopyranosyl-(1->4)-2,6-dideoxy-3-O-methyl-D-lyxo-hexopyranosi de_39.3\\%

9,13-Dimethyl-17-oxo-14-(5-oxo-2,5-dihydro-3-furanyl)tetracyclo[11.3.1.01,10.04,9]heptadec-6-yl β-D-glucopyranosyl-(1->6)-β-D-glucopyranosyl-(1->4)-2,6-dideoxy-3-O-methyl-D-lyxo-hexopyranosi de_39.3\\%

C42H64O17 (840.4143294)


   

9,13-Dimethyl-17-oxo-14-(5-oxo-2,5-dihydro-3-furanyl)tetracyclo[11.3.1.01,10.04,9]heptadec-6-yl β-D-glucopyranosyl-(1->6)-β-D-glucopyranosyl-(1->4)-2,6-dideoxy-3-O-methyl-D-lyxo-hexopyranosi de_41.3\\%

9,13-Dimethyl-17-oxo-14-(5-oxo-2,5-dihydro-3-furanyl)tetracyclo[11.3.1.01,10.04,9]heptadec-6-yl β-D-glucopyranosyl-(1->6)-β-D-glucopyranosyl-(1->4)-2,6-dideoxy-3-O-methyl-D-lyxo-hexopyranosi de_41.3\\%

C42H64O17 (840.4143294)


   

9,13-Dimethyl-17-oxo-14-(5-oxo-2,5-dihydro-3-furanyl)tetracyclo[11.3.1.01,10.04,9]heptadec-6-yl ?-D-glucopyranosyl-(1->6)-?-D-glucopyranosyl-(1->4)-2,6-dideoxy-3-O-methyl-D-lyxo-hexopyranosi de

9,13-Dimethyl-17-oxo-14-(5-oxo-2,5-dihydro-3-furanyl)tetracyclo[11.3.1.01,10.04,9]heptadec-6-yl ?-D-glucopyranosyl-(1->6)-?-D-glucopyranosyl-(1->4)-2,6-dideoxy-3-O-methyl-D-lyxo-hexopyranosi de

C42H64O17 (840.4143294)


   

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:5(5Z,8Z,11Z,14Z,17Z))

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phospho-(1-sn-glycerol)

C48H73O10P (840.4941087999999)


   

PG(20:5(5Z,8Z,11Z,14Z,17Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-glycero-3-phospho-(1-sn-glycerol)

C48H73O10P (840.4941087999999)


   

PI(13:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

1-tridecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-glycero-3-phospho-(1-myo-inositol)

C44H73O13P (840.4788537999999)


   

PI(15:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z))

1-(9Z-pentadecenoyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phospho-(1-myo-inositol)

C44H73O13P (840.4788537999999)


   

PI(17:2(9Z,12Z)/18:4(6Z,9Z,12Z,15Z))

1-(9Z,12Z-heptadecadienoyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phospho-(1-myo-inositol)

C44H73O13P (840.4788537999999)


   

PI(18:4(6Z,9Z,12Z,15Z)/17:2(9Z,12Z))

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phospho-(1-myo-inositol)

C44H73O13P (840.4788537999999)


   

PI(20:5(5Z,8Z,11Z,14Z,17Z)/15:1(9Z))

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-(9Z-pentadecenoyl)-glycero-3-phospho-(1-myo-inositol)

C44H73O13P (840.4788537999999)


   

PI(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/13:0)

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-tridecanoyl-glycero-3-phospho-(1-myo-inositol)

C44H73O13P (840.4788537999999)


   

Oleaside E(same structure as P12D02)

Oleaside E(same structure as P12D02)

C42H64O17 (840.4143294)


   

PI 35:6

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phospho-(1-myo-inositol)

C44H73O13P (840.4788537999999)


   

rubiarboside G 28-acetate

rubiarboside G 28-acetate

C44H72O15 (840.4870962)


A triterpenoid saponin with an arborinane-type terpenoid as the aglycone. It has been isolated from the roots of Rubia yunnanensis.

   
   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C48H73O10P (840.4941087999999)


   

N-[(13E)-9-[4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy-3-ethyl-2-hydroxy-2,6,8,10,16,18-hexamethyl-5,7-dioxo-13-[(6-pyrazol-1-ylpyridin-3-yl)methoxyimino]-4,11,15-trioxabicyclo[8.5.4]nonadecan-17-ylidene]acetamide

N-[(13E)-9-[4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy-3-ethyl-2-hydroxy-2,6,8,10,16,18-hexamethyl-5,7-dioxo-13-[(6-pyrazol-1-ylpyridin-3-yl)methoxyimino]-4,11,15-trioxabicyclo[8.5.4]nonadecan-17-ylidene]acetamide

C43H64N6O11 (840.4632834)


   
   
   
   
   
   
   
   
   

PG(20:4(5Z,8Z,11Z,14Z)/5-iso PGF2VI)

PG(20:4(5Z,8Z,11Z,14Z)/5-iso PGF2VI)

C44H73O13P (840.4788537999999)


   

PG(5-iso PGF2VI/20:4(5Z,8Z,11Z,14Z))

PG(5-iso PGF2VI/20:4(5Z,8Z,11Z,14Z))

C44H73O13P (840.4788537999999)


   

PG(20:4(8Z,11Z,14Z,17Z)/5-iso PGF2VI)

PG(20:4(8Z,11Z,14Z,17Z)/5-iso PGF2VI)

C44H73O13P (840.4788537999999)


   

PG(5-iso PGF2VI/20:4(8Z,11Z,14Z,17Z))

PG(5-iso PGF2VI/20:4(8Z,11Z,14Z,17Z))

C44H73O13P (840.4788537999999)


   

PGP(i-16:0/18:2(10E,12Z)+=O(9))

PGP(i-16:0/18:2(10E,12Z)+=O(9))

C40H74O14P2 (840.4553564)


   

PGP(18:2(10E,12Z)+=O(9)/i-16:0)

PGP(18:2(10E,12Z)+=O(9)/i-16:0)

C40H74O14P2 (840.4553564)


   

PGP(i-16:0/18:2(9Z,11E)+=O(13))

PGP(i-16:0/18:2(9Z,11E)+=O(13))

C40H74O14P2 (840.4553564)


   

PGP(18:2(9Z,11E)+=O(13)/i-16:0)

PGP(18:2(9Z,11E)+=O(13)/i-16:0)

C40H74O14P2 (840.4553564)


   

PGP(16:0/18:2(10E,12Z)+=O(9))

PGP(16:0/18:2(10E,12Z)+=O(9))

C40H74O14P2 (840.4553564)


   

PGP(18:2(10E,12Z)+=O(9)/16:0)

PGP(18:2(10E,12Z)+=O(9)/16:0)

C40H74O14P2 (840.4553564)


   

PGP(16:0/18:2(9Z,11E)+=O(13))

PGP(16:0/18:2(9Z,11E)+=O(13))

C40H74O14P2 (840.4553564)


   

PGP(18:2(9Z,11E)+=O(13)/16:0)

PGP(18:2(9Z,11E)+=O(13)/16:0)

C40H74O14P2 (840.4553564)


   

PGP(16:1(9Z)/18:1(12Z)-O(9S,10R))

PGP(16:1(9Z)/18:1(12Z)-O(9S,10R))

C40H74O14P2 (840.4553564)


   

PGP(18:1(12Z)-O(9S,10R)/16:1(9Z))

PGP(18:1(12Z)-O(9S,10R)/16:1(9Z))

C40H74O14P2 (840.4553564)


   

PGP(i-14:0/20:3(6,8,11)-OH(5))

PGP(i-14:0/20:3(6,8,11)-OH(5))

C40H74O14P2 (840.4553564)


   

PGP(20:3(6,8,11)-OH(5)/i-14:0)

PGP(20:3(6,8,11)-OH(5)/i-14:0)

C40H74O14P2 (840.4553564)


   

PGP(16:0/18:3(10,12,15)-OH(9))

PGP(16:0/18:3(10,12,15)-OH(9))

C40H74O14P2 (840.4553564)


   

PGP(18:3(10,12,15)-OH(9)/16:0)

PGP(18:3(10,12,15)-OH(9)/16:0)

C40H74O14P2 (840.4553564)


   

PGP(16:0/18:3(9,11,15)-OH(13))

PGP(16:0/18:3(9,11,15)-OH(13))

C40H74O14P2 (840.4553564)


   

PGP(18:3(9,11,15)-OH(13)/16:0)

PGP(18:3(9,11,15)-OH(13)/16:0)

C40H74O14P2 (840.4553564)


   

PGP(16:1(9Z)/18:1(9Z)-O(12,13))

PGP(16:1(9Z)/18:1(9Z)-O(12,13))

C40H74O14P2 (840.4553564)


   

PGP(18:1(9Z)-O(12,13)/16:1(9Z))

PGP(18:1(9Z)-O(12,13)/16:1(9Z))

C40H74O14P2 (840.4553564)


   

PGP(i-16:0/18:3(10,12,15)-OH(9))

PGP(i-16:0/18:3(10,12,15)-OH(9))

C40H74O14P2 (840.4553564)


   

PGP(18:3(10,12,15)-OH(9)/i-16:0)

PGP(18:3(10,12,15)-OH(9)/i-16:0)

C40H74O14P2 (840.4553564)


   

PGP(i-16:0/18:3(9,11,15)-OH(13))

PGP(i-16:0/18:3(9,11,15)-OH(13))

C40H74O14P2 (840.4553564)


   

PGP(18:3(9,11,15)-OH(13)/i-16:0)

PGP(18:3(9,11,15)-OH(13)/i-16:0)

C40H74O14P2 (840.4553564)


   

PGP(a-13:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

PGP(a-13:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

C39H70O15P2 (840.418973)


   

PGP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/a-13:0)

PGP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/a-13:0)

C39H70O15P2 (840.418973)


   

PGP(a-13:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

PGP(a-13:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

C39H70O15P2 (840.418973)


   

PGP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/a-13:0)

PGP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/a-13:0)

C39H70O15P2 (840.418973)


   

PGP(a-13:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

PGP(a-13:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

C39H70O15P2 (840.418973)


   

PGP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/a-13:0)

PGP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/a-13:0)

C39H70O15P2 (840.418973)


   

PGP(i-13:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

PGP(i-13:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

C39H70O15P2 (840.418973)


   

PGP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-13:0)

PGP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-13:0)

C39H70O15P2 (840.418973)


   

PGP(i-13:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

PGP(i-13:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

C39H70O15P2 (840.418973)


   

PGP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-13:0)

PGP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-13:0)

C39H70O15P2 (840.418973)


   

PGP(i-13:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

PGP(i-13:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

C39H70O15P2 (840.418973)


   

PGP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-13:0)

PGP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-13:0)

C39H70O15P2 (840.418973)


   

PG(18:2(9Z,11Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PG(18:2(9Z,11Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C44H73O13P (840.4788537999999)


   

PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:2(9Z,11Z))

PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:2(9Z,11Z))

C44H73O13P (840.4788537999999)


   

PG(18:2(9Z,12Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PG(18:2(9Z,12Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C44H73O13P (840.4788537999999)


   

PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:2(9Z,12Z))

PG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:2(9Z,12Z))

C44H73O13P (840.4788537999999)


   

PG(18:3(6Z,9Z,12Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

PG(18:3(6Z,9Z,12Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C44H73O13P (840.4788537999999)


   

PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:3(6Z,9Z,12Z))

PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:3(6Z,9Z,12Z))

C44H73O13P (840.4788537999999)


   

PG(18:3(9Z,12Z,15Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

PG(18:3(9Z,12Z,15Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C44H73O13P (840.4788537999999)


   

PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:3(9Z,12Z,15Z))

PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:3(9Z,12Z,15Z))

C44H73O13P (840.4788537999999)


   

3-[6-[(4R,5S,6R)-4-methoxy-6-methyl-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxyoxan-2-yl]oxy-9,13-dimethyl-17-oxo-14-tetracyclo[11.3.1.01,10.04,9]heptadecanyl]-2H-furan-5-one

3-[6-[(4R,5S,6R)-4-methoxy-6-methyl-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxyoxan-2-yl]oxy-9,13-dimethyl-17-oxo-14-tetracyclo[11.3.1.01,10.04,9]heptadecanyl]-2H-furan-5-one

C42H64O17 (840.4143294)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-(2-hydroxy-3-tetradecanoyloxypropoxy)phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (7Z,9Z,11E,13E)-hexadeca-7,9,11,13-tetraenoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-(2-hydroxy-3-tetradecanoyloxypropoxy)phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (7Z,9Z,11E,13E)-hexadeca-7,9,11,13-tetraenoate

C39H70O15P2 (840.418973)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (9Z,11E,13E)-hexadeca-9,11,13-trienoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (9Z,11E,13E)-hexadeca-9,11,13-trienoate

C39H70O15P2 (840.418973)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C48H73O10P (840.4941087999999)


   

[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C44H72O15 (840.4870962)


   

[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C44H72O15 (840.4870962)


   

[1-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C44H72O15 (840.4870962)


   

[1-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[1-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C44H72O15 (840.4870962)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (9Z,12Z)-nonadeca-9,12-dienoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (9Z,12Z)-nonadeca-9,12-dienoate

C44H73O13P (840.4788537999999)


   

[1-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C44H73O13P (840.4788537999999)


   

[1-[(Z)-heptadec-9-enoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-[(Z)-heptadec-9-enoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C44H73O13P (840.4788537999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C44H73O13P (840.4788537999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C44H73O13P (840.4788537999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C44H73O13P (840.4788537999999)


   

[(2S)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2S)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C44H73O13P (840.4788537999999)


   

[1-[(E)-tridec-8-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate

[1-[(E)-tridec-8-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate

C44H72O15 (840.4870962)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-nonadec-9-enoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-nonadec-9-enoate

C44H73O13P (840.4788537999999)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoate

C48H73O10P (840.4941087999999)


   

[1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

[1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

C44H72O15 (840.4870962)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (7E,9E)-nonadeca-7,9-dienoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (7E,9E)-nonadeca-7,9-dienoate

C44H73O13P (840.4788537999999)


   

[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C44H73O13P (840.4788537999999)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C44H73O13P (840.4788537999999)


   

[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-1-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C44H73O13P (840.4788537999999)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoate

C44H73O13P (840.4788537999999)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C48H73O10P (840.4941087999999)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C44H73O13P (840.4788537999999)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C48H73O10P (840.4941087999999)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C48H73O10P (840.4941087999999)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tridecanoyloxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tridecanoyloxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C44H73O13P (840.4788537999999)


   

[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C44H73O13P (840.4788537999999)


   

[(2S)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2S)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C44H73O13P (840.4788537999999)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (10E,13E,16E)-nonadeca-10,13,16-trienoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (10E,13E,16E)-nonadeca-10,13,16-trienoate

C44H73O13P (840.4788537999999)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

A71623

A71623

C44H56N8O9 (840.4170046)


A71623, a CCK-4-based peptide, is a potent and highly selective CCK-A full agonist. The IC50s for A-71623 are 3.7 nM in guinea pig pancreas (CCK-A) and 4500 nM in cerebral cortex (CCK-B) in radioligand binding assays, respectively[1].

   

2-{[9,14-dihydroxy-7,7,12,16-tetramethyl-15-(6-methyl-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hept-5-en-2-yl)pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate

2-{[9,14-dihydroxy-7,7,12,16-tetramethyl-15-(6-methyl-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hept-5-en-2-yl)pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate

C44H72O15 (840.4870962)


   

[(1r,3r,3as,3bs,5s,5ar,6r,7s,9as,9br,11ar)-3,3b,6,7-tetrahydroxy-1-[(2r,5s)-5-{[(2r,3r,4s,5r)-4-hydroxy-3-{[(2s,3r,4s,5r)-4-hydroxy-3,5-dimethoxyoxan-2-yl]oxy}-5-(hydroxymethyl)oxolan-2-yl]oxy}-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-5-yl]oxidanesulfonic acid

[(1r,3r,3as,3bs,5s,5ar,6r,7s,9as,9br,11ar)-3,3b,6,7-tetrahydroxy-1-[(2r,5s)-5-{[(2r,3r,4s,5r)-4-hydroxy-3-{[(2s,3r,4s,5r)-4-hydroxy-3,5-dimethoxyoxan-2-yl]oxy}-5-(hydroxymethyl)oxolan-2-yl]oxy}-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-5-yl]oxidanesulfonic acid

C39H68O17S (840.4176998)


   

(1s,2s,3ar,3bs,9as,9bs,11ar)-8-{[(2r,3s,4s,5r,6s)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1-[(2s)-2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl]-2-hydroxy-3a,6,6,9b,11a-pentamethyl-1h,2h,3h,3bh,4h,9ah,11h-cyclopenta[a]phenanthrene-7,10-dione

(1s,2s,3ar,3bs,9as,9bs,11ar)-8-{[(2r,3s,4s,5r,6s)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1-[(2s)-2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl]-2-hydroxy-3a,6,6,9b,11a-pentamethyl-1h,2h,3h,3bh,4h,9ah,11h-cyclopenta[a]phenanthrene-7,10-dione

C42H64O17 (840.4143294)


   

4-(acetyloxy)-5-hydroxy-2-({14-hydroxy-15-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-12,16-dimethyl-9-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl}oxy)oxan-3-yl acetate

4-(acetyloxy)-5-hydroxy-2-({14-hydroxy-15-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-12,16-dimethyl-9-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl}oxy)oxan-3-yl acetate

C43H68O16 (840.4507128)


   

[(2r,3s,4s,5r,6r)-6-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-9,14-dihydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]methyl acetate

[(2r,3s,4s,5r,6r)-6-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-9,14-dihydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]methyl acetate

C44H72O15 (840.4870962)


   

(1r,2r,3as,3bs,9ar,9br,11ar)-8-{[(2s,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1-[(2r)-2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl]-2-hydroxy-3a,6,6,9b,11a-pentamethyl-1h,2h,3h,3bh,4h,9ah,11h-cyclopenta[a]phenanthrene-7,10-dione

(1r,2r,3as,3bs,9ar,9br,11ar)-8-{[(2s,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1-[(2r)-2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl]-2-hydroxy-3a,6,6,9b,11a-pentamethyl-1h,2h,3h,3bh,4h,9ah,11h-cyclopenta[a]phenanthrene-7,10-dione

C42H64O17 (840.4143294)


   

6''-o-acetylsaikosaponin b3

NA

C44H72O15 (840.4870962)


{"Ingredient_id": "HBIN012609","Ingredient_name": "6''-o-acetylsaikosaponin b3","Alias": "NA","Ingredient_formula": "C44H72O15","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "499","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

astraverrucin v

NA

C44H72O15 (840.4870962)


{"Ingredient_id": "HBIN017258","Ingredient_name": "astraverrucin v","Alias": "NA","Ingredient_formula": "C44H72O15","Ingredient_Smile": "CC1C(C(C(C(O1)OC2C(OC(C(C2OC(=O)C)O)OC3CCC45CC46CCC7(C(C(CC7(C6CC(C5C3(C)C)O)C)O)C8(CCC(O8)C(C)(C)O)C)C)CO)O)O)O","Ingredient_weight": "841.03","OB_score": "NA","CAS_id": "220997-49-9","SymMap_id": "NA","TCMID_id": "NA","TCMSP_id": "NA","TCM_ID_id": "6509","PubChem_id": "100956034","DrugBank_id": "NA"}

   

astraverrucin vi

NA

C44H72O15 (840.4870962)


{"Ingredient_id": "HBIN017259","Ingredient_name": "astraverrucin vi","Alias": "NA","Ingredient_formula": "C44H72O15","Ingredient_Smile": "CC1C(C(C(C(O1)OC2C(OC(C(C2O)O)OC3CCC45CC46CCC7(C(C(CC7(C6CC(C5C3(C)C)O)C)O)C8(CCC(O8)C(C)(C)O)C)C)COC(=O)C)O)O)O","Ingredient_weight": "841.03","OB_score": "NA","CAS_id": "220997-50-2","SymMap_id": "NA","TCMID_id": "NA","TCMSP_id": "NA","TCM_ID_id": "6508","PubChem_id": "100956035","DrugBank_id": "NA"}

   

[6-({9,14-dihydroxy-15-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl}oxy)-3,4-dihydroxy-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]methyl acetate

[6-({9,14-dihydroxy-15-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl}oxy)-3,4-dihydroxy-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]methyl acetate

C44H72O15 (840.4870962)


   

4-{6-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-9,13-dimethyl-17-oxotetracyclo[11.3.1.0¹,¹⁰.0⁴,⁹]heptadecan-14-yl}-5h-furan-2-one

4-{6-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-9,13-dimethyl-17-oxotetracyclo[11.3.1.0¹,¹⁰.0⁴,⁹]heptadecan-14-yl}-5h-furan-2-one

C42H64O17 (840.4143294)


   

methyl 3,4,5-trihydroxy-6-{[2-hydroxy-4-(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}oxane-2-carboxylate

methyl 3,4,5-trihydroxy-6-{[2-hydroxy-4-(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}oxane-2-carboxylate

C43H68O16 (840.4507128)


   

(2s,3s,4r,5r,6s)-2-{[(1s,3r,6s,8s,9s,11s,12s,14s,15r,16s)-9,14-dihydroxy-7,7,12,16-tetramethyl-15-[(2s,5e)-6-methyl-7-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hept-5-en-2-yl]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate

(2s,3s,4r,5r,6s)-2-{[(1s,3r,6s,8s,9s,11s,12s,14s,15r,16s)-9,14-dihydroxy-7,7,12,16-tetramethyl-15-[(2s,5e)-6-methyl-7-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hept-5-en-2-yl]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate

C44H72O15 (840.4870962)


   

2-methyl 4a-(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2s,4ar,6as,6br,8ar,9r,10s,12ar,12br,14bs)-9-(hydroxymethyl)-2,6a,6b,9,12a-pentamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-2,4a-dicarboxylate

2-methyl 4a-(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2s,4ar,6as,6br,8ar,9r,10s,12ar,12br,14bs)-9-(hydroxymethyl)-2,6a,6b,9,12a-pentamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-2,4a-dicarboxylate

C43H68O16 (840.4507128)


   

(1r,3as,3br,5as,7s,9as,9bs,11ar)-3a,5a-dihydroxy-7-{[(2r,4s,5s,6r)-4-hydroxy-5-{[(2s,4r,5s,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde

(1r,3as,3br,5as,7s,9as,9bs,11ar)-3a,5a-dihydroxy-7-{[(2r,4s,5s,6r)-4-hydroxy-5-{[(2s,4r,5s,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde

C42H64O17 (840.4143294)


   

n-(11-{12,16-dihydroxy-10-methoxy-11,21-dimethyl-18-oxo-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1²,⁵.1⁶,⁹]hentriaconta-1(28),2(31),4,6(30),8,24,26(29)-heptaen-20-yl}-4,10-dimethoxy-5,9-dimethyl-6-oxoundec-1-en-1-yl)-n-methylformamide

n-(11-{12,16-dihydroxy-10-methoxy-11,21-dimethyl-18-oxo-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1²,⁵.1⁶,⁹]hentriaconta-1(28),2(31),4,6(30),8,24,26(29)-heptaen-20-yl}-4,10-dimethoxy-5,9-dimethyl-6-oxoundec-1-en-1-yl)-n-methylformamide

C44H64N4O12 (840.4520504)


   

(2r,3r,4s,5s,6r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-9,14-dihydroxy-15-[(2s,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-4,5-dihydroxy-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-3-yl acetate

(2r,3r,4s,5s,6r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-9,14-dihydroxy-15-[(2s,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-4,5-dihydroxy-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-3-yl acetate

C44H72O15 (840.4870962)


   

(2r,3r,4s,6s)-6-{[(1r,3as,3bs,5as,7s,9as,9bs,11r,11as)-3a,11-dihydroxy-9a,11a-dimethyl-1-(5-oxo-2h-furan-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-3-{[(2s,3r,4r,5r)-3,4-dihydroxy-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-2-methyloxan-4-yl acetate

(2r,3r,4s,6s)-6-{[(1r,3as,3bs,5as,7s,9as,9bs,11r,11as)-3a,11-dihydroxy-9a,11a-dimethyl-1-(5-oxo-2h-furan-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-3-{[(2s,3r,4r,5r)-3,4-dihydroxy-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-2-methyloxan-4-yl acetate

C42H64O17 (840.4143294)


   

3a,5a-dihydroxy-7-({4-hydroxy-5-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde

3a,5a-dihydroxy-7-({4-hydroxy-5-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde

C42H64O17 (840.4143294)


   

(1r,2s,6s,7s,8s,10r,11s,12r,14s,16s,17s,18r)-8-[(hexadecanoyloxy)methyl]-6,7-dihydroxy-4,18-dimethyl-5-oxo-14-phenyl-16-(prop-1-en-2-yl)-9,13,15,19-tetraoxahexacyclo[12.4.1.0¹,¹¹.0²,⁶.0⁸,¹⁰.0¹²,¹⁶]nonadec-3-en-17-yl benzoate

(1r,2s,6s,7s,8s,10r,11s,12r,14s,16s,17s,18r)-8-[(hexadecanoyloxy)methyl]-6,7-dihydroxy-4,18-dimethyl-5-oxo-14-phenyl-16-(prop-1-en-2-yl)-9,13,15,19-tetraoxahexacyclo[12.4.1.0¹,¹¹.0²,⁶.0⁸,¹⁰.0¹²,¹⁶]nonadec-3-en-17-yl benzoate

C50H64O11 (840.4448394)


   

4-[(1s,4r,6s,9s,10r,13r,14r)-6-{[(2r,4r,5s,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9,13-dimethyl-17-oxotetracyclo[11.3.1.0¹,¹⁰.0⁴,⁹]heptadecan-14-yl]-5h-furan-2-one

4-[(1s,4r,6s,9s,10r,13r,14r)-6-{[(2r,4r,5s,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9,13-dimethyl-17-oxotetracyclo[11.3.1.0¹,¹⁰.0⁴,⁹]heptadecan-14-yl]-5h-furan-2-one

C42H64O17 (840.4143294)


   

(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s)-5-hydroxy-2-[(1's,2r,2's,4's,5s,7's,8'r,9's,12's,13'r,14'r,16'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-16'-oloxy]-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s)-5-hydroxy-2-[(1's,2r,2's,4's,5s,7's,8'r,9's,12's,13'r,14'r,16'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-16'-oloxy]-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C43H68O16 (840.4507128)


   

4-[(3as,3br,5ar,7s,9as,9bs,11ar)-3a-hydroxy-7-{[(2r,4s,5r,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3s,4s,5r,6r)-3,4,5,6-tetrahydroxyoxan-2-yl]methoxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-3h,3bh,4h,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

4-[(3as,3br,5ar,7s,9as,9bs,11ar)-3a-hydroxy-7-{[(2r,4s,5r,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3s,4s,5r,6r)-3,4,5,6-tetrahydroxyoxan-2-yl]methoxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-3h,3bh,4h,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

C42H64O17 (840.4143294)


   

4-[(1s,3r,6r,7r,10r,11s,14s,16r)-14-{[(2r,4r,5s,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-7,11-dimethyl-2-oxapentacyclo[8.8.0.0¹,³.0³,⁷.0¹¹,¹⁶]octadecan-6-yl]-5h-furan-2-one

4-[(1s,3r,6r,7r,10r,11s,14s,16r)-14-{[(2r,4r,5s,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-7,11-dimethyl-2-oxapentacyclo[8.8.0.0¹,³.0³,⁷.0¹¹,¹⁶]octadecan-6-yl]-5h-furan-2-one

C42H64O17 (840.4143294)


   

(1s,3ar,3bs,7s,9ar,9br,11r,11as)-1-acetyl-1,3a,3b-trihydroxy-7-{[(2r,4s,5s,6r)-4-hydroxy-5-{[(2s,4s,5r,6s)-5-{[(2s,4s,5r,6r)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-9a,11a-dimethyl-2h,3h,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-11-yl acetate

(1s,3ar,3bs,7s,9ar,9br,11r,11as)-1-acetyl-1,3a,3b-trihydroxy-7-{[(2r,4s,5s,6r)-4-hydroxy-5-{[(2s,4s,5r,6s)-5-{[(2s,4s,5r,6r)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-9a,11a-dimethyl-2h,3h,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-11-yl acetate

C43H68O16 (840.4507128)


   

[(2r,3s,4s,5r,6r)-6-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-9,14-dihydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]methyl acetate

[(2r,3s,4s,5r,6r)-6-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-9,14-dihydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]methyl acetate

C44H72O15 (840.4870962)


   

4-[(1s,3r,7r,10r,11s,16r)-14-{[(2r)-4-methoxy-6-methyl-5-{[(2s)-3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-7,11-dimethyl-2-oxapentacyclo[8.8.0.0¹,³.0³,⁷.0¹¹,¹⁶]octadecan-6-yl]-5h-furan-2-one

4-[(1s,3r,7r,10r,11s,16r)-14-{[(2r)-4-methoxy-6-methyl-5-{[(2s)-3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-7,11-dimethyl-2-oxapentacyclo[8.8.0.0¹,³.0³,⁷.0¹¹,¹⁶]octadecan-6-yl]-5h-furan-2-one

C42H64O17 (840.4143294)


   

4-[(3as,3br,5ar,7s,9as,9bs,11ar)-3a-hydroxy-7-{[(2r,4r,5s,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-3h,3bh,4h,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

4-[(3as,3br,5ar,7s,9as,9bs,11ar)-3a-hydroxy-7-{[(2r,4r,5s,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-3h,3bh,4h,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

C42H64O17 (840.4143294)


   

(2s,3r,4s,4ar,6ar,6bs,8as,12as,14ar,14br)-3-{[(2r,3r,4s,5r,6r)-4-{[(2r,3r,4s,5s,6s)-6-carboxy-3,4,5-trihydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-hydroxy-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4,8a-dicarboxylic acid

(2s,3r,4s,4ar,6ar,6bs,8as,12as,14ar,14br)-3-{[(2r,3r,4s,5r,6r)-4-{[(2r,3r,4s,5s,6s)-6-carboxy-3,4,5-trihydroxyoxan-2-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-hydroxy-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4,8a-dicarboxylic acid

C42H64O17 (840.4143294)


   

8-{[3,4-dihydroxy-6-(hydroxymethyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1-(2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl)-2-hydroxy-3a,6,6,9b,11a-pentamethyl-1h,2h,3h,3bh,4h,9ah,11h-cyclopenta[a]phenanthrene-7,10-dione

8-{[3,4-dihydroxy-6-(hydroxymethyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1-(2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl)-2-hydroxy-3a,6,6,9b,11a-pentamethyl-1h,2h,3h,3bh,4h,9ah,11h-cyclopenta[a]phenanthrene-7,10-dione

C42H64O17 (840.4143294)


   

2-methyl 4a-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] 9-(hydroxymethyl)-2,6a,6b,9,12a-pentamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-2,4a-dicarboxylate

2-methyl 4a-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] 9-(hydroxymethyl)-2,6a,6b,9,12a-pentamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-2,4a-dicarboxylate

C43H68O16 (840.4507128)


   

2-hydroxy-2-[2-hydroxy-6-methyl-5-(2-methylbutyl)oxan-2-yl]-n-{5,7,21-trihydroxy-17-isopropyl-6,20-dimethyl-2,8,15,19,22-pentaoxo-18-oxa-1,4,7,13,14,21,27-heptaazatricyclo[21.4.0.0⁹,¹⁴]heptacos-4-en-16-yl}propanimidic acid

2-hydroxy-2-[2-hydroxy-6-methyl-5-(2-methylbutyl)oxan-2-yl]-n-{5,7,21-trihydroxy-17-isopropyl-6,20-dimethyl-2,8,15,19,22-pentaoxo-18-oxa-1,4,7,13,14,21,27-heptaazatricyclo[21.4.0.0⁹,¹⁴]heptacos-4-en-16-yl}propanimidic acid

C38H64N8O13 (840.4592614)


   

n-[(1e)-11-[(12e,23e)-6,15-dihydroxy-9-methoxy-10,20-dimethyl-8,11,17-trioxo-3,18,26-trioxa-7,28,29-triazatricyclo[23.2.1.1²,⁵]nonacosa-1(27),2(29),4,6,12,23,25(28)-heptaen-19-yl]-4,10-dimethoxy-5,9-dimethyl-6-oxoundec-1-en-1-yl]-n-methylformamide

n-[(1e)-11-[(12e,23e)-6,15-dihydroxy-9-methoxy-10,20-dimethyl-8,11,17-trioxo-3,18,26-trioxa-7,28,29-triazatricyclo[23.2.1.1²,⁵]nonacosa-1(27),2(29),4,6,12,23,25(28)-heptaen-19-yl]-4,10-dimethoxy-5,9-dimethyl-6-oxoundec-1-en-1-yl]-n-methylformamide

C43H60N4O13 (840.415667)


   

(1r,2r,3as,3br,9ar,9br,11ar)-8-{[(2s,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1-[(2r)-2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl]-2-hydroxy-3a,6,6,9b,11a-pentamethyl-1h,2h,3h,3bh,4h,9ah,11h-cyclopenta[a]phenanthrene-7,10-dione

(1r,2r,3as,3br,9ar,9br,11ar)-8-{[(2s,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1-[(2r)-2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl]-2-hydroxy-3a,6,6,9b,11a-pentamethyl-1h,2h,3h,3bh,4h,9ah,11h-cyclopenta[a]phenanthrene-7,10-dione

C42H64O17 (840.4143294)


   

4-{14-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-7,11-dimethyl-2-oxapentacyclo[8.8.0.0¹,³.0³,⁷.0¹¹,¹⁶]octadecan-6-yl}-5h-furan-2-one

4-{14-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-7,11-dimethyl-2-oxapentacyclo[8.8.0.0¹,³.0³,⁷.0¹¹,¹⁶]octadecan-6-yl}-5h-furan-2-one

C42H64O17 (840.4143294)


   

6-{[4-carboxy-2-hydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

6-{[4-carboxy-2-hydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C42H64O17 (840.4143294)


   

2-[(5-hydroxy-2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-16'-oloxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

2-[(5-hydroxy-2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-16'-oloxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

C43H68O16 (840.4507128)


   

n-[(1e,4r,5r,9s,10s)-11-[(10s,11s,12s,16s,20s,21s,24e)-12,16-dihydroxy-10-methoxy-11,21-dimethyl-18-oxo-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1²,⁵.1⁶,⁹]hentriaconta-1(28),2(31),4,6(30),8,24,26(29)-heptaen-20-yl]-4,10-dimethoxy-5,9-dimethyl-6-oxoundec-1-en-1-yl]-n-methylformamide

n-[(1e,4r,5r,9s,10s)-11-[(10s,11s,12s,16s,20s,21s,24e)-12,16-dihydroxy-10-methoxy-11,21-dimethyl-18-oxo-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1²,⁵.1⁶,⁹]hentriaconta-1(28),2(31),4,6(30),8,24,26(29)-heptaen-20-yl]-4,10-dimethoxy-5,9-dimethyl-6-oxoundec-1-en-1-yl]-n-methylformamide

C44H64N4O12 (840.4520504)


   

(1r,2r,3as,3bs,9ar,9br,11ar)-8-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1-[(2r)-2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl]-2-hydroxy-3a,6,6,9b,11a-pentamethyl-1h,2h,3h,3bh,4h,9ah,11h-cyclopenta[a]phenanthrene-7,10-dione

(1r,2r,3as,3bs,9ar,9br,11ar)-8-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1-[(2r)-2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl]-2-hydroxy-3a,6,6,9b,11a-pentamethyl-1h,2h,3h,3bh,4h,9ah,11h-cyclopenta[a]phenanthrene-7,10-dione

C42H64O17 (840.4143294)


   

(1r,2r,3as,3bs,9br,11ar)-1-[(2r,3s,4e)-2,3-dihydroxy-6-methoxy-6-methylhept-4-en-2-yl]-2,7-dihydroxy-3a,6,9b,11a-tetramethyl-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,5h,11h-cyclopenta[a]phenanthren-10-one

(1r,2r,3as,3bs,9br,11ar)-1-[(2r,3s,4e)-2,3-dihydroxy-6-methoxy-6-methylhept-4-en-2-yl]-2,7-dihydroxy-3a,6,9b,11a-tetramethyl-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,5h,11h-cyclopenta[a]phenanthren-10-one

C42H64O17 (840.4143294)


   

2-({6-[(acetyloxy)methyl]-2,4,5-trihydroxyoxan-3-yl}oxy)-5-[(3-hydroxy-2-methylbutanoyl)oxy]-6-methyl-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl 11-hydroxytetradecanoate

2-({6-[(acetyloxy)methyl]-2,4,5-trihydroxyoxan-3-yl}oxy)-5-[(3-hydroxy-2-methylbutanoyl)oxy]-6-methyl-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl 11-hydroxytetradecanoate

C39H68O19 (840.4354578)


   

2-({9,14-dihydroxy-15-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl}oxy)-4,5-dihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-3-yl acetate

2-({9,14-dihydroxy-15-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl}oxy)-4,5-dihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-3-yl acetate

C44H72O15 (840.4870962)


   

(3r,4s,5r,6s)-6-{[(1s,4r,5r,7r,9r,13s,14s,15s)-4-hydroxy-5,8,8,14-tetramethyl-9-[(1e,3e)-5-methylhexa-1,3-dien-1-yl]-3,11-dioxo-10,17,18-trioxatricyclo[11.3.1.1⁴,⁷]octadecan-15-yl]oxy}-5-methoxy-4-{[(2s,3s,4r,5r,6s)-3,4,5-trimethoxy-6-methyloxan-2-yl]oxy}oxan-3-yl acetate

(3r,4s,5r,6s)-6-{[(1s,4r,5r,7r,9r,13s,14s,15s)-4-hydroxy-5,8,8,14-tetramethyl-9-[(1e,3e)-5-methylhexa-1,3-dien-1-yl]-3,11-dioxo-10,17,18-trioxatricyclo[11.3.1.1⁴,⁷]octadecan-15-yl]oxy}-5-methoxy-4-{[(2s,3s,4r,5r,6s)-3,4,5-trimethoxy-6-methyloxan-2-yl]oxy}oxan-3-yl acetate

C43H68O16 (840.4507128)


   

6-{[3a,11-dihydroxy-9a,11a-dimethyl-1-(5-oxo-2h-furan-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-3-({3,4-dihydroxy-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-2-methyloxan-4-yl acetate

6-{[3a,11-dihydroxy-9a,11a-dimethyl-1-(5-oxo-2h-furan-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-3-({3,4-dihydroxy-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-2-methyloxan-4-yl acetate

C42H64O17 (840.4143294)


   

n-[(1e,4s,5s,9r,10s)-11-[(9r,10r,12e,15s,19s,20s,23z)-6,15-dihydroxy-9-methoxy-10,20-dimethyl-8,11,17-trioxo-3,18,26-trioxa-7,28,29-triazatricyclo[23.2.1.1²,⁵]nonacosa-1(27),2(29),4,6,12,23,25(28)-heptaen-19-yl]-4,10-dimethoxy-5,9-dimethyl-6-oxoundec-1-en-1-yl]-n-methylformamide

n-[(1e,4s,5s,9r,10s)-11-[(9r,10r,12e,15s,19s,20s,23z)-6,15-dihydroxy-9-methoxy-10,20-dimethyl-8,11,17-trioxo-3,18,26-trioxa-7,28,29-triazatricyclo[23.2.1.1²,⁵]nonacosa-1(27),2(29),4,6,12,23,25(28)-heptaen-19-yl]-4,10-dimethoxy-5,9-dimethyl-6-oxoundec-1-en-1-yl]-n-methylformamide

C43H60N4O13 (840.415667)


   

(1r,2r,6s,7s,8r,10s,11s,12r,14s,16s,17r,18r)-8-[(hexadecanoyloxy)methyl]-6,7-dihydroxy-4,18-dimethyl-5-oxo-14-phenyl-16-(prop-1-en-2-yl)-9,13,15,19-tetraoxahexacyclo[12.4.1.0¹,¹¹.0²,⁶.0⁸,¹⁰.0¹²,¹⁶]nonadec-3-en-17-yl benzoate

(1r,2r,6s,7s,8r,10s,11s,12r,14s,16s,17r,18r)-8-[(hexadecanoyloxy)methyl]-6,7-dihydroxy-4,18-dimethyl-5-oxo-14-phenyl-16-(prop-1-en-2-yl)-9,13,15,19-tetraoxahexacyclo[12.4.1.0¹,¹¹.0²,⁶.0⁸,¹⁰.0¹²,¹⁶]nonadec-3-en-17-yl benzoate

C50H64O11 (840.4448394)


   

[(2r,3s,4r,5r,6r)-6-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-9,14-dihydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]methyl acetate

[(2r,3s,4r,5r,6r)-6-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-9,14-dihydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]methyl acetate

C44H72O15 (840.4870962)


   

(2r)-2-hydroxy-2-[(2r,5r,6r)-2-hydroxy-6-methyl-5-[(2s)-2-methylbutyl]oxan-2-yl]-n-[(6s,9r,16s,17s,20r,23s)-5,7,21-trihydroxy-17-isopropyl-6,20-dimethyl-2,8,15,19,22-pentaoxo-18-oxa-1,4,7,13,14,21,27-heptaazatricyclo[21.4.0.0⁹,¹⁴]heptacos-4-en-16-yl]propanimidic acid

(2r)-2-hydroxy-2-[(2r,5r,6r)-2-hydroxy-6-methyl-5-[(2s)-2-methylbutyl]oxan-2-yl]-n-[(6s,9r,16s,17s,20r,23s)-5,7,21-trihydroxy-17-isopropyl-6,20-dimethyl-2,8,15,19,22-pentaoxo-18-oxa-1,4,7,13,14,21,27-heptaazatricyclo[21.4.0.0⁹,¹⁴]heptacos-4-en-16-yl]propanimidic acid

C38H64N8O13 (840.4592614)


   

(2r,3r,4r,5r,6r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-9,14-dihydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-3-hydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-4-yl acetate

(2r,3r,4r,5r,6r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-9,14-dihydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-3-hydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-4-yl acetate

C44H72O15 (840.4870962)


   

methyl (2s,3s,4s,5r,6r)-6-{[(2s,3r,4r,4ar,6ar,6bs,8as,12as,14ar,14br)-2-hydroxy-4-(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylate

methyl (2s,3s,4s,5r,6r)-6-{[(2s,3r,4r,4ar,6ar,6bs,8as,12as,14ar,14br)-2-hydroxy-4-(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylate

C43H68O16 (840.4507128)


   

8-[(hexadecanoyloxy)methyl]-6,7-dihydroxy-4,18-dimethyl-5-oxo-14-phenyl-16-(prop-1-en-2-yl)-9,13,15,19-tetraoxahexacyclo[12.4.1.0¹,¹¹.0²,⁶.0⁸,¹⁰.0¹²,¹⁶]nonadec-3-en-17-yl benzoate

8-[(hexadecanoyloxy)methyl]-6,7-dihydroxy-4,18-dimethyl-5-oxo-14-phenyl-16-(prop-1-en-2-yl)-9,13,15,19-tetraoxahexacyclo[12.4.1.0¹,¹¹.0²,⁶.0⁸,¹⁰.0¹²,¹⁶]nonadec-3-en-17-yl benzoate

C50H64O11 (840.4448394)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8as,10r,11s,12ar,14ar,14br)-11-carboxy-10-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-{[(2r,3r,4s,5s,6s)-6-carboxy-3,4,5-trihydroxyoxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8as,10r,11s,12ar,14ar,14br)-11-carboxy-10-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-{[(2r,3r,4s,5s,6s)-6-carboxy-3,4,5-trihydroxyoxan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

C42H64O17 (840.4143294)


   

[(1r,3r,3as,3bs,5s,5ar,6r,7s,9as,9br,11ar)-3,3b,6,7-tetrahydroxy-1-[(2r,5s)-5-{[(2s,3s,4s,5s)-4-hydroxy-3-{[(2s,3r,4s,5r)-4-hydroxy-3,5-dimethoxyoxan-2-yl]oxy}-5-(hydroxymethyl)oxolan-2-yl]oxy}-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-5-yl]oxidanesulfonic acid

[(1r,3r,3as,3bs,5s,5ar,6r,7s,9as,9br,11ar)-3,3b,6,7-tetrahydroxy-1-[(2r,5s)-5-{[(2s,3s,4s,5s)-4-hydroxy-3-{[(2s,3r,4s,5r)-4-hydroxy-3,5-dimethoxyoxan-2-yl]oxy}-5-(hydroxymethyl)oxolan-2-yl]oxy}-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-5-yl]oxidanesulfonic acid

C39H68O17S (840.4176998)


   

3,5-bis(acetyloxy)-6-[(1-{[(2r,3r,4r,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}octadecan-2-yl)oxy]hexanoic acid

3,5-bis(acetyloxy)-6-[(1-{[(2r,3r,4r,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}octadecan-2-yl)oxy]hexanoic acid

C40H72O18 (840.4718412)


   

(2r)-2-hydroxy-2-[(2r,5r,6r)-2-hydroxy-6-methyl-5-[(2s)-2-methylbutyl]oxan-2-yl]-n-[(6s,16s,17s,20r)-5,7,21-trihydroxy-17-isopropyl-6,20-dimethyl-2,8,15,19,22-pentaoxo-18-oxa-1,4,7,13,14,21,27-heptaazatricyclo[21.4.0.0⁹,¹⁴]heptacos-4-en-16-yl]propanimidic acid

(2r)-2-hydroxy-2-[(2r,5r,6r)-2-hydroxy-6-methyl-5-[(2s)-2-methylbutyl]oxan-2-yl]-n-[(6s,16s,17s,20r)-5,7,21-trihydroxy-17-isopropyl-6,20-dimethyl-2,8,15,19,22-pentaoxo-18-oxa-1,4,7,13,14,21,27-heptaazatricyclo[21.4.0.0⁹,¹⁴]heptacos-4-en-16-yl]propanimidic acid

C38H64N8O13 (840.4592614)


   

4-[(3as,3br,5ar,7s,9as,9bs,11ar)-3a-hydroxy-7-{[(2r,4s,5r,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-3h,3bh,4h,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

4-[(3as,3br,5ar,7s,9as,9bs,11ar)-3a-hydroxy-7-{[(2r,4s,5r,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-3h,3bh,4h,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

C42H64O17 (840.4143294)


   

(2r,3s,4r,5s)-2-{[(2r,3r,4s,5s,6r)-5-{[(2s,4s,5r,6s)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-4-hydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}oxane-3,4,5-triol

(2r,3s,4r,5s)-2-{[(2r,3r,4s,5s,6r)-5-{[(2s,4s,5r,6s)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-4-hydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}oxane-3,4,5-triol

C44H72O15 (840.4870962)


   

6-{[11-carboxy-10-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-[(6-carboxy-3,4,5-trihydroxyoxan-2-yl)oxy]-3,4-dihydroxyoxane-2-carboxylic acid

6-{[11-carboxy-10-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-[(6-carboxy-3,4,5-trihydroxyoxan-2-yl)oxy]-3,4-dihydroxyoxane-2-carboxylic acid

C42H64O17 (840.4143294)


   

4-[3a-hydroxy-7-({4-methoxy-6-methyl-5-[(3,4,5-trihydroxy-6-{[(3,4,5,6-tetrahydroxyoxan-2-yl)methoxy]methyl}oxan-2-yl)oxy]oxan-2-yl}oxy)-9a,11a-dimethyl-3h,3bh,4h,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

4-[3a-hydroxy-7-({4-methoxy-6-methyl-5-[(3,4,5-trihydroxy-6-{[(3,4,5,6-tetrahydroxyoxan-2-yl)methoxy]methyl}oxan-2-yl)oxy]oxan-2-yl}oxy)-9a,11a-dimethyl-3h,3bh,4h,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

C42H64O17 (840.4143294)


   

(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s)-5-hydroxy-2-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,14'r,16'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-16'-oloxy]-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s)-5-hydroxy-2-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,14'r,16'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-16'-oloxy]-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C43H68O16 (840.4507128)


   

(2s,3s,4s,5r,6r)-6-{[(2s,3r,4s,4ar,6ar,6bs,8as,12as,14ar,14br)-4-carboxy-2-hydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(2s,3r,4s,4ar,6ar,6bs,8as,12as,14ar,14br)-4-carboxy-2-hydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C42H64O17 (840.4143294)


   

4-{3a-hydroxy-7-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-9a,11a-dimethyl-3h,3bh,4h,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-5h-furan-2-one

4-{3a-hydroxy-7-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-9a,11a-dimethyl-3h,3bh,4h,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-5h-furan-2-one

C42H64O17 (840.4143294)


   

(2r,3r,4s,5r,6r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-9,14-dihydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-3-hydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-4-yl acetate

(2r,3r,4s,5r,6r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-9,14-dihydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-3-hydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-4-yl acetate

C44H72O15 (840.4870962)