Exact Mass: 834.5492988

Exact Mass Matches: 834.5492988

Found 500 metabolites which its exact mass value is equals to given mass value 834.5492988, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PI(16:0/18:2)

[(2R)-3-(hexadecanoyloxy)-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C43H79O13P (834.5258014)


PI(16:0/18:2(9Z,12Z)) is a phosphatidylinositol. Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PI(16:0/18:2(9Z,12Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of linoleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the linoleic acid moiety is derived from seed oils. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs contain almost exclusively stearic acid at carbon 1 and arachidonic acid at carbon 2. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

Dirithromycin

(1S,2R,3R,6R,7R,8R,9R,10R,12R,13S,15R,17R)-9-{[(2S,3R,4S,6R)-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy}-3-ethyl-2,10-dihydroxy-7-{[(2R,4R,5S,6S)-5-hydroxy-4-methoxy-4,6-dimethyloxan-2-yl]oxy}-15-[(2-methoxyethoxy)methyl]-2,6,8,10,12,17-hexamethyl-4,16-dioxa-14-azabicyclo[11.3.1]heptadecan-5-one

C42H78N2O14 (834.5452768)


Dirithromycin is only found in individuals that have used or taken this drug. It is a macrolide glycopeptide antibiotic. It is used to treat many different types of bacterial infections, such as bronchitis, pneumonia, tonsillitis, and even skin infections.Dirithromycin prevents bacteria from growing, by interfering with their protein synthesis. Dirithromycin binds to the 50S subunit of the 70S bacterial ribosome, and thus inhibits the translocation of peptides. Dirithromycin has over 10 times higher affinity to the subunit 50S than erythromycin. In addition, dirithromycin binds simultaneously in to two domains of 23S RNA of the ribosomal subunit 50S, where older macrolides bind only in one. Dirithromycin can also inhibit the formation of ribosomal subunits 50S and 30S. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01F - Macrolides, lincosamides and streptogramins > J01FA - Macrolides D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents

   

PI(16:1(9Z)/18:1(11Z))

[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-[(11Z)-octadec-11-enoyloxy]propoxy]({[(1s,3R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C43H79O13P (834.5258014)


PI(16:1(9Z)/18:1(11Z)) is a phosphatidylinositol. Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PI(16:1(9Z)/18:1(11Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the vaccenic acid moiety is derived from butter fat and animal fat. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs contain almost exclusively stearic acid at carbon 1 and arachidonic acid at carbon 2. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol. PI(16:1(9Z)/18:1(11Z)) is a phosphatidylinositol. Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PI(16:1(9Z)/18:1(11Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the vaccenic acid moiety is derived from butter fat and animal fat. In most organisms, the stereochemical form of the last is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes.

   

PI(16:1(9Z)/18:1(9Z))

[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-[(9Z)-octadec-9-enoyloxy]propoxy]({[(1s,3R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C43H79O13P (834.5258014)


PI(16:1(9Z)/18:1(9Z)) is a phosphatidylinositol. Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PI(16:1(9Z)/18:1(9Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of oleic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs contain almost exclusively stearic acid at carbon 1 and arachidonic acid at carbon 2. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol. PI(16:1(9Z)/18:1(9Z))is a phosphatidylinositol. Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common.PI(16:1(9Z)/18:1(9Z)), in particular, consists of one 9Z-hexadecenoyl chain to the C-1 atom, and one 9Z-octadecenoyl to the C-2 atom. In most organisms, the stereochemical form of the last is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs contain almost exclusively stearic acid at carbon 1 and arachidonic acid at carbon 2. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(16:2(9Z,12Z)/18:0)

[(2R)-3-[(9Z,12Z)-hexadeca-9,12-dienoyloxy]-2-(octadecanoyloxy)propoxy]({[(1s,3R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C43H79O13P (834.5258014)


PI(16:2(9Z,12Z)/18:0) is a phosphatidylinositol. Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PI(16:2(9Z,12Z)/18:0), in particular, consists of one chain of (9Z,12Z-hexadecadienoate) at the C-1 position and one chain of stearic acid at the C-2 position. The (9Z,12Z-hexadecadienoate) moiety is derived from fish oils, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs contain almost exclusively stearic acid at carbon 1 and arachidonic acid at carbon 2. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(18:0/16:2(9Z,12Z))

[(2R)-2-[(9Z,12Z)-hexadeca-9,12-dienoyloxy]-3-(octadecanoyloxy)propoxy]({[(1s,3R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C43H79O13P (834.5258014)


PI(18:0/16:2(9Z,12Z)) is a phosphatidylinositol. Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PI(18:0/16:2(9Z,12Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of (9Z,12Z-hexadecadienoate) at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the (9Z,12Z-hexadecadienoate) moiety is derived from fish oils. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs contain almost exclusively stearic acid at carbon 1 and arachidonic acid at carbon 2. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(18:1(11Z)/16:1(9Z))

[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-[(11Z)-octadec-11-enoyloxy]propoxy]({[(1s,3R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C43H79O13P (834.5258014)


PI(18:1(11Z)/16:1(9Z)) is a phosphatidylinositol. Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PI(18:1(11Z)/16:1(9Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs contain almost exclusively stearic acid at carbon 1 and arachidonic acid at carbon 2. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(18:1(9Z)/16:1(9Z))

[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-[(9Z)-octadec-9-enoyloxy]propoxy]({[(1s,3R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C43H79O13P (834.5258014)


PI(18:1(9Z)/16:1(9Z)) is a phosphatidylinositol. Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PI(18:1(9Z)/16:1(9Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs contain almost exclusively stearic acid at carbon 1 and arachidonic acid at carbon 2. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PI(18:2(9Z,12Z)/16:0)

[(2R)-2-(hexadecanoyloxy)-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]({[(1s,3R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C43H79O13P (834.5258014)


PI(18:2(9Z,12Z)/16:0) is a phosphatidylinositol. Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PI(18:2(9Z,12Z)/16:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The linoleic acid moiety is derived from seed oils, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs contain almost exclusively stearic acid at carbon 1 and arachidonic acid at carbon 2. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.

   

PA(22:1(13Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-[(13Z)-docos-13-enoyloxy]propoxy]phosphonic acid

C47H79O10P (834.5410564)


PA(22:1(13Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:1(13Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one 13Z-docosenoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/22:1(13Z))

[(2R)-3-{[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-2-[(13Z)-docos-13-enoyloxy]propoxy]phosphonic acid

C47H79O10P (834.5410564)


PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/22:1(13Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/22:1(13Z)), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of 13Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:1(13Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-[(13Z)-docos-13-enoyloxy]propoxy]phosphonic acid

C47H79O10P (834.5410564)


PA(22:1(13Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:1(13Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one 13Z-docosenoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/22:1(13Z))

[(2R)-3-{[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-2-[(13Z)-docos-13-enoyloxy]propoxy]phosphonic acid

C47H79O10P (834.5410564)


PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/22:1(13Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/22:1(13Z)), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of 13Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:1(11Z)/18:1(12Z)-2OH(9,10))

[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(11Z)-icos-11-enoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C44H83O12P (834.5621848)


PG(20:1(11Z)/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:1(11Z)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:1(12Z)-2OH(9,10)/20:1(11Z))

[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(11Z)-icos-11-enoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C44H83O12P (834.5621848)


PG(18:1(12Z)-2OH(9,10)/20:1(11Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:1(12Z)-2OH(9,10)/20:1(11Z)), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-17:0/PGF2alpha)

[(2R)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-[(14-methylhexadecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C43H79O13P (834.5258014)


PG(a-17:0/PGF2alpha) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-17:0/PGF2alpha), in particular, consists of one chain of one 14-methylhexadecanoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGF2alpha/a-17:0)

[(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-[(14-methylhexadecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C43H79O13P (834.5258014)


PG(PGF2alpha/a-17:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGF2alpha/a-17:0), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of 14-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-17:0/PGE1)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-3-[(14-methylhexadecanoyl)oxy]propoxy]phosphinic acid

C43H79O13P (834.5258014)


PG(a-17:0/PGE1) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-17:0/PGE1), in particular, consists of one chain of one 14-methylhexadecanoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGE1/a-17:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-2-[(14-methylhexadecanoyl)oxy]propoxy]phosphinic acid

C43H79O13P (834.5258014)


PG(PGE1/a-17:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGE1/a-17:0), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of 14-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-17:0/PGD1)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-3-[(14-methylhexadecanoyl)oxy]propoxy]phosphinic acid

C43H79O13P (834.5258014)


PG(a-17:0/PGD1) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-17:0/PGD1), in particular, consists of one chain of one 14-methylhexadecanoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGD1/a-17:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-2-[(14-methylhexadecanoyl)oxy]propoxy]phosphinic acid

C43H79O13P (834.5258014)


PG(PGD1/a-17:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGD1/a-17:0), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of 14-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-17:0/PGF2alpha)

[(2R)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-[(15-methylhexadecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C43H79O13P (834.5258014)


PG(i-17:0/PGF2alpha) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-17:0/PGF2alpha), in particular, consists of one chain of one 15-methylhexadecanoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGF2alpha/i-17:0)

[(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-[(15-methylhexadecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C43H79O13P (834.5258014)


PG(PGF2alpha/i-17:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGF2alpha/i-17:0), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of 15-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-17:0/PGE1)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-3-[(15-methylhexadecanoyl)oxy]propoxy]phosphinic acid

C43H79O13P (834.5258014)


PG(i-17:0/PGE1) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-17:0/PGE1), in particular, consists of one chain of one 15-methylhexadecanoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGE1/i-17:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-2-[(15-methylhexadecanoyl)oxy]propoxy]phosphinic acid

C43H79O13P (834.5258014)


PG(PGE1/i-17:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGE1/i-17:0), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of 15-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-17:0/PGD1)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-3-[(15-methylhexadecanoyl)oxy]propoxy]phosphinic acid

C43H79O13P (834.5258014)


PG(i-17:0/PGD1) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-17:0/PGD1), in particular, consists of one chain of one 15-methylhexadecanoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGD1/i-17:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-2-[(15-methylhexadecanoyl)oxy]propoxy]phosphinic acid

C43H79O13P (834.5258014)


PG(PGD1/i-17:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGD1/i-17:0), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of 15-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-19:0/5-iso PGF2VI)

[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-[(17-methyloctadecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C43H79O13P (834.5258014)


PG(i-19:0/5-iso PGF2VI) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-19:0/5-iso PGF2VI), in particular, consists of one chain of one 17-methyloctadecanoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(5-iso PGF2VI/i-19:0)

[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-[(17-methyloctadecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C43H79O13P (834.5258014)


PG(5-iso PGF2VI/i-19:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(5-iso PGF2VI/i-19:0), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 17-methyloctadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

Phosphatidylinositol 16:0-18:2

Phosphatidylinositol 16:0-18:2

C43H79O13P (834.5258014)


   

Phosphatidylinositol 16:1-18:1

Phosphatidylinositol 16:1-18:1

C43H79O13P (834.5258014)


   
   

MLS001074061-01!DIRITHROMYCIN

MLS001074061-01!DIRITHROMYCIN

C42H78N2O14 (834.5452768)


   

PI 34:2

1-(9Z,12Z-heptadecadienoyl)-2-heptadecanoyl-glycero-3-phospho-(1-myo-inositol)

C43H79O13P (834.5258014)


Found in mouse muscle; TwoDicalId=393; MgfFile=160824_Muscle_normal_Neg_01_sute; MgfId=591 Found in mouse small intestine; TwoDicalId=47; MgfFile=160907_Small_Intestine_DHA_Neg_11_never; MgfId=812

   

Dirithromycin

Dirithromycin

C42H78N2O14 (834.5452768)


The hemi-aminal resulting from the condensation of the erythromycin derivative (9S)-erythromycyclamine with 2-(2-methoxyethoxy)acetaldehyde. As the oxazine ring containing the hemi-aminal group is unstable under both acidic and alkaline conditions, dirithromycin functions as a more lipid-soluble prodrug for (9S)-erythromycyclamine. Administered as enteric coated tablets to protect it from acid catalysed hydrolysis in the stomach, it is used to treat respiratory tract, skin, and soft tissue infections caused by susceptible organisms. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01F - Macrolides, lincosamides and streptogramins > J01FA - Macrolides D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic

   

PI(34:2)

1-Octadecanoyl-2-(9Z,12Z-hexadecadienoate)-sn-glycero-3-phospho-(1-myo-inositol)

C43H79O13P (834.5258014)


   

PG(19:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

1-(9Z-nonadecenoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-glycero-3-phospho-(1-sn-glycerol)

C47H79O10P (834.5410564)


   

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/19:1(9Z))

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-(9Z-nonadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C47H79O10P (834.5410564)


   

PG(P-20:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

1-(1Z-eicosenyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-glycero-3-phospho-(1-sn-glycerol)

C48H83O9P (834.5774398)


   

PI(12:0/22:2(13Z,16Z))

1-dodecanoyl-2-(13Z,16Z-docosadienoyl)-glycero-3-phospho-(1-myo-inositol)

C43H79O13P (834.5258014)


   

PI(14:0/20:2(11Z,14Z))

1-tetradecanoyl-2-(11Z,14Z-eicosadienoyl)-glycero-3-phospho-(1-myo-inositol)

C43H79O13P (834.5258014)


   

PI(14:1(9Z)/20:1(11Z))

1-(9Z-tetradecenoyl)-2-(11Z-eicosenoyl)-glycero-3-phospho-(1-myo-inositol)

C43H79O13P (834.5258014)


   

PI(15:1(9Z)/19:1(9Z))

1-(9Z-pentadecenoyl)-2-(9Z-nonadecenoyl)-glycero-3-phospho-(1-myo-inositol)

C43H79O13P (834.5258014)


   

PI(17:0/17:2(9Z,12Z))

1-heptadecanoyl-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phospho-(1-myo-inositol)

C43H79O13P (834.5258014)


   

PI(17:2(9Z,12Z)/17:0)

1-(9Z,12Z-heptadecadienoyl)-2-heptadecanoyl-glycero-3-phospho-(1-myo-inositol)

C43H79O13P (834.5258014)


   

PI(19:1(9Z)/15:1(9Z))

1-(9Z-nonadecenoyl)-2-(9Z-pentadecenoyl)-glycero-3-phospho-(1-myo-inositol)

C43H79O13P (834.5258014)


   

PI(20:1(11Z)/14:1(9Z))

1-(11Z-eicosenoyl)-2-(9Z-tetradecenoyl)-glycero-3-phospho-(1-myo-inositol)

C43H79O13P (834.5258014)


   

PI(20:2(11Z,14Z)/14:0)

1-(11Z,14Z-eicosadienoyl)-2-tetradecanoyl-glycero-3-phospho-(1-myo-inositol)

C43H79O13P (834.5258014)


   

PI(22:2(13Z,16Z)/12:0)

1-(13Z,16Z-docosadienoyl)-2-dodecanoyl-glycero-3-phospho-(1-myo-inositol)

C43H79O13P (834.5258014)


   

PI(17:1(9Z)/17:1(9Z))

1,2-di-(9Z-heptadecenoyl)-sn-glycero-3-phospho-(1-myo-inositol)

C43H79O13P (834.5258014)


   

PI(O-18:0/17:2(9Z,12Z))

1-octadecyl-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phospho-(1-myo-inositol)

C44H83O12P (834.5621848)


   

PI(P-16:0/19:1(9Z))

1-(1Z-hexadecenyl)-2-(9Z-nonadecenoyl)-glycero-3-phospho-(1-myo-inositol)

C44H83O12P (834.5621848)


   

PI(P-18:0/17:1(9Z))

1-(1Z-octadecenyl)-2-(9Z-heptadecenoyl)-glycero-3-phospho-(1-myo-inositol)

C44H83O12P (834.5621848)


   

PI(P-20:0/15:1(9Z))

1-(1Z-eicosenyl)-2-(9Z-pentadecenoyl)-glycero-3-phospho-(1-myo-inositol)

C44H83O12P (834.5621848)


   

PG 41:7

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-(9Z-nonadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C47H79O10P (834.5410564)


   

PG O-42:7

1-(1Z-eicosenyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-glycero-3-phospho-(1-sn-glycerol)

C48H83O9P (834.5774398)


   

PI O-35:2

1-(1Z-octadecenyl)-2-(9Z-heptadecenoyl)-glycero-3-phospho-(1-myo-inositol)

C44H83O12P (834.5621848)


   

POLYGLYCERYL-6 OLEATE

POLYGLYCERYL-6 OLEATE

C36H82O20 (834.5399172)


   

[1-hexadecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-hexadecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C43H79O13P (834.5258014)


   

1-Hexadecanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phospho-D-myo-inositol

1-Hexadecanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phospho-D-myo-inositol

C43H79O13P (834.5258014)


A 1-hexadecanoyl-2-acyl-sn-glycero-3-phospho-1D-myo-inositol in which the 2-acyl group is specified as 9Z,12Z-octadecadienoyl (linoleoyl).

   

Phosphatidylinositol(16:2/18:0)

Phosphatidylinositol(16:2/18:0)

C43H79O13P (834.5258014)


   

Phosphatidylinositol(18:0/16:2)

Phosphatidylinositol(18:0/16:2)

C43H79O13P (834.5258014)


   

Phosphatidylinositol(16:1n7/18:1n7)

Phosphatidylinositol(16:1n7/18:1n7)

C43H79O13P (834.5258014)


   
   
   
   
   
   
   
   
   
   
   
   
   

PG(i-19:0/5-iso PGF2VI)

PG(i-19:0/5-iso PGF2VI)

C43H79O13P (834.5258014)


   

PG(5-iso PGF2VI/i-19:0)

PG(5-iso PGF2VI/i-19:0)

C43H79O13P (834.5258014)


   

PG(20:1(11Z)/18:1(12Z)-2OH(9,10))

PG(20:1(11Z)/18:1(12Z)-2OH(9,10))

C44H83O12P (834.5621848)


   

PG(18:1(12Z)-2OH(9,10)/20:1(11Z))

PG(18:1(12Z)-2OH(9,10)/20:1(11Z))

C44H83O12P (834.5621848)


   

PA(22:1(13Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

PA(22:1(13Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C47H79O10P (834.5410564)


   

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/22:1(13Z))

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/22:1(13Z))

C47H79O10P (834.5410564)


   

PA(22:1(13Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

PA(22:1(13Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C47H79O10P (834.5410564)


   

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/22:1(13Z))

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/22:1(13Z))

C47H79O10P (834.5410564)


   

2-[[(2R)-2-[7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]-6-oxoheptanoyl]oxy-3-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]-6-oxoheptanoyl]oxy-3-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C43H81NO12P+ (834.5496095999999)


   

2-[[(2R)-3-[7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]-6-oxoheptanoyl]oxy-2-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]-6-oxoheptanoyl]oxy-2-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C43H81NO12P+ (834.5496095999999)


   

2-[[(2R)-2-[(Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]oxan-3-yl]hept-5-enoyl]oxy-3-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]oxan-3-yl]hept-5-enoyl]oxy-3-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C43H81NO12P+ (834.5496095999999)


   

2-[[(2R)-3-[(Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]oxan-3-yl]hept-5-enoyl]oxy-2-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]oxan-3-yl]hept-5-enoyl]oxy-2-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C43H81NO12P+ (834.5496095999999)


   

2-[hydroxy-[(2R)-2-[(Z)-7-[(1S,5R)-5-[(E,3S)-3-hydroxyoct-1-enyl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(Z)-7-[(1S,5R)-5-[(E,3S)-3-hydroxyoct-1-enyl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C46H77NO10P+ (834.5284812)


   

2-[hydroxy-[(2R)-3-[(Z)-7-[(1S,5R)-5-[(E,3S)-3-hydroxyoct-1-enyl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(Z)-7-[(1S,5R)-5-[(E,3S)-3-hydroxyoct-1-enyl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C46H77NO10P+ (834.5284812)


   

2-[hydroxy-[(2R)-2-[(Z)-7-[(1S,5R)-5-[(E,3S)-3-hydroxyoct-1-enyl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(Z)-7-[(1S,5R)-5-[(E,3S)-3-hydroxyoct-1-enyl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C46H77NO10P+ (834.5284812)


   

2-[hydroxy-[(2R)-3-[(Z)-7-[(1S,5R)-5-[(E,3S)-3-hydroxyoct-1-enyl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(Z)-7-[(1S,5R)-5-[(E,3S)-3-hydroxyoct-1-enyl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C46H77NO10P+ (834.5284812)


   

2-[[(2R)-2-[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H77NO10P+ (834.5284812)


   

2-[[(2R)-3-[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H77NO10P+ (834.5284812)


   

2-[[(2R)-2-[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H77NO10P+ (834.5284812)


   

2-[[(2R)-3-[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H77NO10P+ (834.5284812)


   

2-[[(2R)-2-[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H77NO10P+ (834.5284812)


   

2-[[(2R)-3-[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H77NO10P+ (834.5284812)


   

2-[[(2R)-3-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-2-[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-2-[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H77NO10P+ (834.5284812)


   

2-[[(2R)-2-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-3-[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-3-[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H77NO10P+ (834.5284812)


   

2-[[(2R)-3-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-2-[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-2-[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H77NO10P+ (834.5284812)


   

2-[[(2R)-2-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-3-[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-3-[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H77NO10P+ (834.5284812)


   

2-[[(2R)-3-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-2-[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-2-[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H77NO10P+ (834.5284812)


   

2-[[(2R)-2-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-3-[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-3-[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H77NO10P+ (834.5284812)


   

2-[[(2R)-3-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-2-[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-2-[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H77NO10P+ (834.5284812)


   

2-[[(2R)-2-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-3-[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-3-[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H77NO10P+ (834.5284812)


   

2-[[(2R)-3-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-2-[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-2-[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H77NO10P+ (834.5284812)


   

2-[[(2R)-2-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-3-[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-3-[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H77NO10P+ (834.5284812)


   

2-[[(2R)-3-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-2-[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-2-[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H77NO10P+ (834.5284812)


   

2-[[(2R)-2-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-3-[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-3-[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H77NO10P+ (834.5284812)


   

(2R,3S,6R,7R,8R,9R,12R,13S,17S)-9-[(2S,3R,4S,6R)-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy-3-ethyl-2,10-dihydroxy-7-[(2R,4R,5S,6S)-5-hydroxy-4-methoxy-4,6-dimethyloxan-2-yl]oxy-15-(2-methoxyethoxymethyl)-2,6,8,10,12,17-hexamethyl-4,16-dioxa-14-azabicyclo[11.3.1]heptadecan-5-one

(2R,3S,6R,7R,8R,9R,12R,13S,17S)-9-[(2S,3R,4S,6R)-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy-3-ethyl-2,10-dihydroxy-7-[(2R,4R,5S,6S)-5-hydroxy-4-methoxy-4,6-dimethyloxan-2-yl]oxy-15-(2-methoxyethoxymethyl)-2,6,8,10,12,17-hexamethyl-4,16-dioxa-14-azabicyclo[11.3.1]heptadecan-5-one

C42H78N2O14 (834.5452768)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01F - Macrolides, lincosamides and streptogramins > J01FA - Macrolides D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents

   

1-octadecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphoserine(1-)

1-octadecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphoserine(1-)

C46H77NO10P- (834.5284812)


A 3-sn-phosphatidyl-L-serine(1-) that is the conjugate base of 1-octadecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphoserine; major species at pH 7.3.

   

[(2R)-2-[(Z)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (Z)-octadec-11-enoate

[(2R)-2-[(Z)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (Z)-octadec-11-enoate

C43H79O13P (834.5258014)


   

N-icosanoyl-(3-O-sulfo-D-galactosyl)sphingosine(1-)

N-icosanoyl-(3-O-sulfo-D-galactosyl)sphingosine(1-)

C44H84NO11S- (834.5764774)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C48H83O9P (834.5774398)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C48H83O9P (834.5774398)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

C48H83O9P (834.5774398)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonadecoxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonadecoxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C44H83O12P (834.5621848)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecoxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecoxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C44H83O12P (834.5621848)


   

[1-[(Z)-heptadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate

[1-[(Z)-heptadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate

C44H83O12P (834.5621848)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C48H83O9P (834.5774398)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C48H83O9P (834.5774398)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C48H83O9P (834.5774398)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (Z)-docos-13-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (Z)-docos-13-enoate

C44H83O12P (834.5621848)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate

C48H83O9P (834.5774398)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]propan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]propan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C48H83O9P (834.5774398)


   

[1-[(Z)-hexadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-nonadec-9-enoate

[1-[(Z)-hexadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-nonadec-9-enoate

C44H83O12P (834.5621848)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]propan-2-yl] hexadecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]propan-2-yl] hexadecanoate

C48H83O9P (834.5774398)


   

[1-[(Z)-henicos-11-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tetradec-9-enoate

[1-[(Z)-henicos-11-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tetradec-9-enoate

C44H83O12P (834.5621848)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C48H83O9P (834.5774398)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C48H83O9P (834.5774398)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C48H83O9P (834.5774398)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] (11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] (11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoate

C48H83O9P (834.5774398)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecoxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecoxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C44H83O12P (834.5621848)


   

[1-[(9Z,12Z)-heptadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] octadecanoate

[1-[(9Z,12Z)-heptadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] octadecanoate

C44H83O12P (834.5621848)


   

[1-[(9Z,12Z)-hexadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] nonadecanoate

[1-[(9Z,12Z)-hexadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] nonadecanoate

C44H83O12P (834.5621848)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octadecoxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octadecoxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C44H83O12P (834.5621848)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] pentadecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] pentadecanoate

C44H83O12P (834.5621848)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C48H83O9P (834.5774398)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C48H83O9P (834.5774398)


   

[1-[(Z)-docos-13-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tridec-9-enoate

[1-[(Z)-docos-13-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tridec-9-enoate

C44H83O12P (834.5621848)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]propan-2-yl] (Z)-hexadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]propan-2-yl] (Z)-hexadec-9-enoate

C48H83O9P (834.5774398)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

C48H83O9P (834.5774398)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]propan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]propan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C48H83O9P (834.5774398)


   

[1-hexadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-hexadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C44H83O12P (834.5621848)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C48H83O9P (834.5774398)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C48H83O9P (834.5774398)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C48H83O9P (834.5774398)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (Z)-pentadec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (Z)-pentadec-9-enoate

C44H83O12P (834.5621848)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (Z)-icos-11-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (Z)-icos-11-enoate

C44H83O12P (834.5621848)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] (Z)-hexadec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] (Z)-hexadec-9-enoate

C44H83O12P (834.5621848)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (Z)-heptadec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (Z)-heptadec-9-enoate

C44H83O12P (834.5621848)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecoxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecoxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C44H83O12P (834.5621848)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentadecoxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentadecoxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C44H83O12P (834.5621848)


   

[1-heptadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-heptadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C44H83O12P (834.5621848)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] heptadecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] heptadecanoate

C44H83O12P (834.5621848)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C48H83O9P (834.5774398)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propan-2-yl] (Z)-octadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propan-2-yl] (Z)-octadec-9-enoate

C48H83O9P (834.5774398)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C48H83O9P (834.5774398)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]propan-2-yl] (Z)-icos-11-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]propan-2-yl] (Z)-icos-11-enoate

C48H83O9P (834.5774398)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C48H83O9P (834.5774398)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate

C48H83O9P (834.5774398)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-docosa-13,16-dienoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-docosa-13,16-dienoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C48H83O9P (834.5774398)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C48H83O9P (834.5774398)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propan-2-yl] undecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propan-2-yl] undecanoate

C44H83O12P (834.5621848)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] hexadecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] hexadecanoate

C44H83O12P (834.5621848)


   

[1-[(13Z,16Z)-docosa-13,16-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] tridecanoate

[1-[(13Z,16Z)-docosa-13,16-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] tridecanoate

C44H83O12P (834.5621848)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (Z)-henicos-11-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (Z)-henicos-11-enoate

C44H83O12P (834.5621848)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

C48H83O9P (834.5774398)


   

[1-[(11Z,14Z)-henicosa-11,14-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] tetradecanoate

[1-[(11Z,14Z)-henicosa-11,14-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] tetradecanoate

C44H83O12P (834.5621848)


   

[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C55H78O6 (834.5798087999999)


   

[1-butanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-tetracos-13-enoate

[1-butanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-tetracos-13-enoate

C43H78O15 (834.5340438)


   

[1-acetyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-hexacos-15-enoate

[1-acetyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-hexacos-15-enoate

C43H78O15 (834.5340438)


   

[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-henicos-11-enoate

[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-henicos-11-enoate

C43H78O15 (834.5340438)


   

[1-hexanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-docos-13-enoate

[1-hexanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-docos-13-enoate

C43H78O15 (834.5340438)


   

[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-nonadec-9-enoate

[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-nonadec-9-enoate

C43H78O15 (834.5340438)


   

[1-octanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-icos-11-enoate

[1-octanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-icos-11-enoate

C43H78O15 (834.5340438)


   

[2-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] pentadecanoate

[2-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] pentadecanoate

C43H78O15 (834.5340438)


   

6-[3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-2-tridecanoyloxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-2-tridecanoyloxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C48H82O11 (834.5856822000001)


   

[1-decanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-octadec-9-enoate

[1-decanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-octadec-9-enoate

C43H78O15 (834.5340438)


   

[1-tridecanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-pentadec-9-enoate

[1-tridecanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-pentadec-9-enoate

C43H78O15 (834.5340438)


   

[1-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (Z)-heptadec-9-enoate

[1-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (Z)-heptadec-9-enoate

C43H78O15 (834.5340438)


   

6-[3-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C48H82O11 (834.5856822000001)


   

3,4,5-trihydroxy-6-[3-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]oxane-2-carboxylic acid

3,4,5-trihydroxy-6-[3-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]oxane-2-carboxylic acid

C48H82O11 (834.5856822000001)


   

3,4,5-trihydroxy-6-[2-pentadecanoyloxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]oxane-2-carboxylic acid

3,4,5-trihydroxy-6-[2-pentadecanoyloxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]oxane-2-carboxylic acid

C48H82O11 (834.5856822000001)


   

[2-[(Z)-tetradec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] tetradecanoate

[2-[(Z)-tetradec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] tetradecanoate

C43H78O15 (834.5340438)


   

[1-dodecanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-hexadec-9-enoate

[1-dodecanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-hexadec-9-enoate

C43H78O15 (834.5340438)


   

[6-[3-hexadecanoyloxy-2-[(Z)-nonadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-hexadecanoyloxy-2-[(Z)-nonadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[6-[2-[(Z)-hexadec-9-enoyl]oxy-3-nonadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(Z)-hexadec-9-enoyl]oxy-3-nonadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

6-[3-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C48H82O11 (834.5856822000001)


   

[6-[3-heptadecanoyloxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-heptadecanoyloxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[3,4,5-trihydroxy-6-[3-icosanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[3-icosanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[6-[2-[(Z)-henicos-11-enoyl]oxy-3-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(Z)-henicos-11-enoyl]oxy-3-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

6-[2-[(Z)-henicos-11-enoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[2-[(Z)-henicos-11-enoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C48H82O11 (834.5856822000001)


   

[6-[2-[(Z)-heptadec-9-enoyl]oxy-3-octadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(Z)-heptadec-9-enoyl]oxy-3-octadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[6-[3-henicosanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-henicosanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

6-[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-tricosanoyloxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-tricosanoyloxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C48H82O11 (834.5856822000001)


   

3,4,5-trihydroxy-6-[3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-2-[(Z)-nonadec-9-enoyl]oxypropoxy]oxane-2-carboxylic acid

3,4,5-trihydroxy-6-[3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-2-[(Z)-nonadec-9-enoyl]oxypropoxy]oxane-2-carboxylic acid

C48H82O11 (834.5856822000001)


   

[3,4,5-trihydroxy-6-[2-[(Z)-icos-11-enoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[2-[(Z)-icos-11-enoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[6-[2-[(Z)-docos-13-enoyl]oxy-3-tridecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(Z)-docos-13-enoyl]oxy-3-tridecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

6-[2-henicosanoyloxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[2-henicosanoyloxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C48H82O11 (834.5856822000001)


   

[6-[3-docosanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-docosanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C47H79O10P (834.5410564)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C47H79O10P (834.5410564)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-nonadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-nonadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C47H79O10P (834.5410564)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (Z)-henicos-11-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (Z)-henicos-11-enoate

C43H79O13P (834.5258014)


   

[1-decanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-decanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C43H79O13P (834.5258014)


   

[1-[(Z)-hexadec-9-enoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate

[1-[(Z)-hexadec-9-enoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate

C43H79O13P (834.5258014)


   

[1-dodecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-dodecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C43H79O13P (834.5258014)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C47H79O10P (834.5410564)


   

[2-[(Z)-heptadec-9-enoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (Z)-heptadec-9-enoate

[2-[(Z)-heptadec-9-enoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (Z)-heptadec-9-enoate

C43H79O13P (834.5258014)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C43H79O13P (834.5258014)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C47H79O10P (834.5410564)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C43H79O13P (834.5258014)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (Z)-nonadec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (Z)-nonadec-9-enoate

C43H79O13P (834.5258014)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (11Z,14Z)-henicosa-11,14-dienoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (11Z,14Z)-henicosa-11,14-dienoate

C47H79O10P (834.5410564)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C43H79O13P (834.5258014)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (Z)-icos-11-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (Z)-icos-11-enoate

C43H79O13P (834.5258014)


   

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] heptadecanoate

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] heptadecanoate

C43H79O13P (834.5258014)


   

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] octadecanoate

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] octadecanoate

C43H79O13P (834.5258014)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

C55H78O6 (834.5798087999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

C43H79O13P (834.5258014)


   

[1-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C55H78O6 (834.5798087999999)


   

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C55H78O6 (834.5798087999999)


   

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

C55H78O6 (834.5798087999999)


   

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C55H78O6 (834.5798087999999)


   

[2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

[2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

C55H78O6 (834.5798087999999)


   

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

C55H78O6 (834.5798087999999)


   

2,3-bis[[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy]propyl (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

2,3-bis[[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy]propyl (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

C55H78O6 (834.5798087999999)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

C55H78O6 (834.5798087999999)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

C55H78O6 (834.5798087999999)


   

[3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate

[3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate

C55H78O6 (834.5798087999999)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C55H78O6 (834.5798087999999)


   

2,3-bis[[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy]propyl (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

2,3-bis[[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy]propyl (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

C55H78O6 (834.5798087999999)


   

[1-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropan-2-yl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate

[1-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropan-2-yl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate

C55H78O6 (834.5798087999999)


   

[2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

[2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

C55H78O6 (834.5798087999999)


   

[1-hexadecanoyloxy-3-[hydroxy-[(2S,3R,5S,6S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (4Z,7Z)-octadeca-4,7-dienoate

[1-hexadecanoyloxy-3-[hydroxy-[(2S,3R,5S,6S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (4Z,7Z)-octadeca-4,7-dienoate

C43H79O13P (834.5258014)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoate

C50H74O10 (834.5281704)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-9-enoyl]oxy-2-nonadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-9-enoyl]oxy-2-nonadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[(2S)-2-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-hexadec-7-enoate

[(2S)-2-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-hexadec-7-enoate

C43H78O15 (834.5340438)


   

[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] octadec-17-enoate

[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] octadec-17-enoate

C43H79O13P (834.5258014)


   

[(2S)-2-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-hexadec-9-enoate

[(2S)-2-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-hexadec-9-enoate

C43H78O15 (834.5340438)


   

[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-9-enoate

[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-9-enoate

C43H79O13P (834.5258014)


   

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-13-enoate

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-13-enoate

C43H79O13P (834.5258014)


   

[(2S)-1-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (E)-octadec-9-enoate

[(2S)-1-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (E)-octadec-9-enoate

C43H78O15 (834.5340438)


   

[(2S,3S,6S)-6-[(2S)-3-heptadecanoyloxy-2-[(E)-octadec-7-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-heptadecanoyloxy-2-[(E)-octadec-7-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[(2R)-1-hexadecanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

[(2R)-1-hexadecanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

C43H79O13P (834.5258014)


   

[(2S)-2-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-octadec-6-enoate

[(2S)-2-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-octadec-6-enoate

C43H78O15 (834.5340438)


   

[(2S)-2-hexadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (2E,4E)-octadeca-2,4-dienoate

[(2S)-2-hexadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (2E,4E)-octadeca-2,4-dienoate

C43H79O13P (834.5258014)


   

[(2S)-1-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (E)-octadec-13-enoate

[(2S)-1-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (E)-octadec-13-enoate

C43H78O15 (834.5340438)


   

[(2R)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] heptadecanoate

[(2R)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] heptadecanoate

C43H79O13P (834.5258014)


   

[(2R)-1-hexadecanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-1-hexadecanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

C43H79O13P (834.5258014)


   

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-7-enoate

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-7-enoate

C43H79O13P (834.5258014)


   

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-4-enoate

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-4-enoate

C43H79O13P (834.5258014)


   

[(2S)-1-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (E)-octadec-6-enoate

[(2S)-1-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (E)-octadec-6-enoate

C43H78O15 (834.5340438)


   

[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (E)-pentadec-9-enoate

[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (E)-pentadec-9-enoate

C43H78O15 (834.5340438)


   

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (E)-heptadec-9-enoate

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (E)-heptadec-9-enoate

C43H78O15 (834.5340438)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tetradecanoyloxypropyl] (5E,8E)-icosa-5,8-dienoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tetradecanoyloxypropyl] (5E,8E)-icosa-5,8-dienoate

C43H79O13P (834.5258014)


   

[(2S,3S,6S)-6-[(2S)-2-heptadecanoyloxy-3-[(E)-octadec-7-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-heptadecanoyloxy-3-[(E)-octadec-7-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-6-enoate

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-6-enoate

C43H79O13P (834.5258014)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (E)-icos-13-enoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (E)-icos-13-enoate

C43H79O13P (834.5258014)


   

[(2S,3S,6S)-6-[(2S)-2-henicosanoyloxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-henicosanoyloxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-4-enoate

[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-4-enoate

C43H79O13P (834.5258014)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoate

C47H79O10P (834.5410564)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-tetracos-15-enoyl]oxy-3-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-tetracos-15-enoyl]oxy-3-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-9-enoate

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-9-enoate

C43H79O13P (834.5258014)


   

[(2S)-2-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-octadec-13-enoate

[(2S)-2-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-octadec-13-enoate

C43H78O15 (834.5340438)


   

[(2S)-1-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (E)-octadec-7-enoate

[(2S)-1-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (E)-octadec-7-enoate

C43H78O15 (834.5340438)


   

[(2R)-1-dodecanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate

[(2R)-1-dodecanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate

C43H79O13P (834.5258014)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C55H78O6 (834.5798087999999)


   

[(2S)-2-[(E)-tetradec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] tetradecanoate

[(2S)-2-[(E)-tetradec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] tetradecanoate

C43H78O15 (834.5340438)


   

[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (E)-hexadec-9-enoate

[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (E)-hexadec-9-enoate

C43H78O15 (834.5340438)


   

[(2S)-2-hexadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (9E,11E)-octadeca-9,11-dienoate

[(2S)-2-hexadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (9E,11E)-octadeca-9,11-dienoate

C43H79O13P (834.5258014)


   

[(2S,3S,6S)-6-[(2S)-2-heptadecanoyloxy-3-[(E)-octadec-6-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-heptadecanoyloxy-3-[(E)-octadec-6-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-7-enoate

[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-7-enoate

C43H79O13P (834.5258014)


   

[(2S,3S,6S)-6-[(2S)-2-heptadecanoyloxy-3-[(E)-octadec-4-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-heptadecanoyloxy-3-[(E)-octadec-4-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[(2S)-1-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (E)-octadec-11-enoate

[(2S)-1-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (E)-octadec-11-enoate

C43H78O15 (834.5340438)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (E)-icos-13-enoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (E)-icos-13-enoate

C43H79O13P (834.5258014)


   

[(2S)-1-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (E)-octadec-4-enoate

[(2S)-1-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (E)-octadec-4-enoate

C43H78O15 (834.5340438)


   

[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-9-enoate

[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-9-enoate

C43H79O13P (834.5258014)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tetradecanoyloxypropyl] (11E,14E)-icosa-11,14-dienoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tetradecanoyloxypropyl] (11E,14E)-icosa-11,14-dienoate

C43H79O13P (834.5258014)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-nonadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-nonadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoate

C55H78O6 (834.5798087999999)


   

[(2S)-2-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-octadec-11-enoate

[(2S)-2-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-octadec-11-enoate

C43H78O15 (834.5340438)


   

[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-6-enoate

[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-6-enoate

C43H79O13P (834.5258014)


   

[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-6-enoate

[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-6-enoate

C43H79O13P (834.5258014)


   

[(2S,3S,6S)-6-[(2S)-2-heptadecanoyloxy-3-[(E)-octadec-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-heptadecanoyloxy-3-[(E)-octadec-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[(2S)-2-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-pentadec-9-enoate

[(2S)-2-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-pentadec-9-enoate

C43H78O15 (834.5340438)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-nonadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-nonadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[(2R)-1-hexadecanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-1-hexadecanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

C43H79O13P (834.5258014)


   

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-6-enoate

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-6-enoate

C43H79O13P (834.5258014)


   

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-11-enoate

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-11-enoate

C43H79O13P (834.5258014)


   

[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] octadec-17-enoate

[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] octadec-17-enoate

C43H79O13P (834.5258014)


   

[(2R)-1-hexadecanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-1-hexadecanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

C43H79O13P (834.5258014)


   

[(2S,3S,6S)-6-[(2S)-3-heptadecanoyloxy-2-[(E)-octadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-heptadecanoyloxy-2-[(E)-octadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[(2S,3S,6S)-6-[(2S)-2-heptadecanoyloxy-3-[(E)-octadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-heptadecanoyloxy-3-[(E)-octadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-icosanoyloxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-icosanoyloxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-tetracos-15-enoyl]oxy-2-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-tetracos-15-enoyl]oxy-2-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (E)-icos-11-enoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (E)-icos-11-enoate

C43H79O13P (834.5258014)


   

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] octadec-17-enoate

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] octadec-17-enoate

C43H79O13P (834.5258014)


   

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-heptadec-9-enoate

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-heptadec-9-enoate

C43H79O13P (834.5258014)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (13E,16E,19E,22E)-pentacosa-13,16,19,22-tetraenoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (13E,16E,19E,22E)-pentacosa-13,16,19,22-tetraenoate

C47H79O10P (834.5410564)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-octadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-octadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[(2S)-1-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] octadec-17-enoate

[(2S)-1-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] octadec-17-enoate

C43H78O15 (834.5340438)


   

[(2S,3S,6S)-6-[(2S)-3-henicosanoyloxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-henicosanoyloxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

2,3-bis[[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy]propyl (7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoate

2,3-bis[[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy]propyl (7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoate

C55H78O6 (834.5798087999999)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] octadecanoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] octadecanoate

C43H79O13P (834.5258014)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

C43H79O13P (834.5258014)


   

[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-11-enoate

[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-11-enoate

C43H79O13P (834.5258014)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-icos-11-enoyl]oxy-2-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-icos-11-enoyl]oxy-2-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[(2S)-2-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] octadec-17-enoate

[(2S)-2-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] octadec-17-enoate

C43H78O15 (834.5340438)


   

[(2S,3S,6S)-6-[(2S)-3-heptadecanoyloxy-2-[(E)-octadec-6-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-heptadecanoyloxy-2-[(E)-octadec-6-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[(2S,3S,6S)-6-[(2S)-3-heptadecanoyloxy-2-[(E)-octadec-4-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-heptadecanoyloxy-2-[(E)-octadec-4-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-11-enoate

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-11-enoate

C43H79O13P (834.5258014)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-7-enoyl]oxy-2-nonadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-7-enoyl]oxy-2-nonadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[(2S,3S,6S)-6-[(2S)-3-heptadecanoyloxy-2-[(E)-octadec-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-heptadecanoyloxy-2-[(E)-octadec-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-13-enoate

[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-13-enoate

C43H79O13P (834.5258014)


   

[(2S)-2-hexadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (6E,9E)-octadeca-6,9-dienoate

[(2S)-2-hexadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (6E,9E)-octadeca-6,9-dienoate

C43H79O13P (834.5258014)


   

[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-11-enoate

[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-11-enoate

C43H79O13P (834.5258014)


   

[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] (7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoate

[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] (7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoate

C55H78O6 (834.5798087999999)


   

[(2S)-2-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-octadec-9-enoate

[(2S)-2-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-octadec-9-enoate

C43H78O15 (834.5340438)


   

2,3-bis[[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy]propyl (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

2,3-bis[[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy]propyl (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C55H78O6 (834.5798087999999)


   

[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-7-enoate

[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-7-enoate

C43H79O13P (834.5258014)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-icos-13-enoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-icos-13-enoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[(2S,3S,6S)-6-[(2S)-3-heptadecanoyloxy-2-[(E)-octadec-13-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-heptadecanoyloxy-2-[(E)-octadec-13-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[(2S)-2-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-octadec-4-enoate

[(2S)-2-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-octadec-4-enoate

C43H78O15 (834.5340438)


   

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C55H78O6 (834.5798087999999)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-icos-11-enoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(E)-icos-11-enoyl]oxy-3-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[(2S)-2-dodecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (13E,16E)-docosa-13,16-dienoate

[(2S)-2-dodecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (13E,16E)-docosa-13,16-dienoate

C43H79O13P (834.5258014)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-docos-13-enoyl]oxy-2-tridecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-docos-13-enoyl]oxy-2-tridecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[(2S)-2-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-octadec-7-enoate

[(2S)-2-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (E)-octadec-7-enoate

C43H78O15 (834.5340438)


   

[(2S,3S,6S)-6-[(2S)-3-heptadecanoyloxy-2-octadec-17-enoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-heptadecanoyloxy-2-octadec-17-enoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[(2S,3S,6S)-6-[(2S)-2-heptadecanoyloxy-3-[(E)-octadec-13-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-heptadecanoyloxy-3-[(E)-octadec-13-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-4-enoate

[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-4-enoate

C43H79O13P (834.5258014)


   

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-9-enoate

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-9-enoate

C43H79O13P (834.5258014)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (E)-icos-11-enoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (E)-icos-11-enoate

C43H79O13P (834.5258014)


   

[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (E)-hexadec-7-enoate

[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (E)-hexadec-7-enoate

C43H78O15 (834.5340438)


   

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] heptadecanoate

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] heptadecanoate

C43H79O13P (834.5258014)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-docos-13-enoyl]oxy-3-tridecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-docos-13-enoyl]oxy-3-tridecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate

C43H79O13P (834.5258014)


   

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] octadec-17-enoate

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] octadec-17-enoate

C43H79O13P (834.5258014)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-heptadec-9-enoyl]oxy-2-octadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-heptadec-9-enoyl]oxy-2-octadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-13-enoate

[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-13-enoate

C43H79O13P (834.5258014)


   

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-4-enoate

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-4-enoate

C43H79O13P (834.5258014)


   

[(2S)-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-2-undecanoyloxypropyl] (E)-heptadec-9-enoate

[(2S)-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-2-undecanoyloxypropyl] (E)-heptadec-9-enoate

C43H78O15 (834.5340438)


   

[(2S,3S,6S)-6-[(2S)-2-heptadecanoyloxy-3-octadec-17-enoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-heptadecanoyloxy-3-octadec-17-enoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-13-enoate

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-13-enoate

C43H79O13P (834.5258014)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-icosanoyloxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-icosanoyloxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[(2S)-1-[(E)-tetradec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] tetradecanoate

[(2S)-1-[(E)-tetradec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] tetradecanoate

C43H78O15 (834.5340438)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-icos-13-enoyl]oxy-2-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(E)-icos-13-enoyl]oxy-2-pentadecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C44H82O12S (834.5526692000001)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (11E,14E)-pentacosa-11,14-dienoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (11E,14E)-pentacosa-11,14-dienoate

C47H79O10P (834.5410564)


   

[(2S)-2-hexadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (9E,12E)-octadeca-9,12-dienoate

[(2S)-2-hexadecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (9E,12E)-octadeca-9,12-dienoate

C43H79O13P (834.5258014)


   

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-7-enoate

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-7-enoate

C43H79O13P (834.5258014)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (13E,16E,19E)-pentacosa-13,16,19-trienoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (13E,16E,19E)-pentacosa-13,16,19-trienoate

C47H79O10P (834.5410564)


   

1-(9Z-hexadecenoyl)-2-(9Z-octadecenoyl)-glycero-3-phospho-(1-myo-inositol)

1-(9Z-hexadecenoyl)-2-(9Z-octadecenoyl)-glycero-3-phospho-(1-myo-inositol)

C43H79O13P (834.5258014)


   

1-(9Z,12Z-octadecadienoyl)-2-hexadecanoyl-glycero-3-phospho-(1-myo-inositol)

1-(9Z,12Z-octadecadienoyl)-2-hexadecanoyl-glycero-3-phospho-(1-myo-inositol)

C43H79O13P (834.5258014)


   

1-(9Z-octadecenoyl)-2-(9Z-hexadecenoyl)-glycero-3-phospho-(1-myo-inositol)

1-(9Z-octadecenoyl)-2-(9Z-hexadecenoyl)-glycero-3-phospho-(1-myo-inositol)

C43H79O13P (834.5258014)


   

1-(13Z,16Z-docosadienoyl)-2-dodecanoyl-glycero-3-phospho-(1-myo-inositol)

1-(13Z,16Z-docosadienoyl)-2-dodecanoyl-glycero-3-phospho-(1-myo-inositol)

C43H79O13P (834.5258014)


   

phosphatidylinositol 34:2

phosphatidylinositol 34:2

C43H79O13P (834.5258014)


A 1-phosphatidyl-1D-myo-inositol in which the two acyl groups contain a total of 34 carbon atoms and 2 double bonds.

   

phosphatidylinositol (16:1/18:1)

phosphatidylinositol (16:1/18:1)

C43H79O13P (834.5258014)


A phosphatidylinositol 34:2 in which the acyl group at position 1 contains 16 carbons and 1 double bond while that at position 2 contains 18 carbons and 1 double bond.

   

phosphatidylserine 40:6(1-)

phosphatidylserine 40:6(1-)

C46H77NO10P (834.5284812)


A 3-sn-phosphatidyl-L-serine(1-) in which the acyl groups at C-1 and C-2 contain 40 carbons in total and 6 double bonds.

   

phosphatidylinositol (16:0/18:2)

phosphatidylinositol (16:0/18:2)

C43H79O13P (834.5258014)


A phosphatidylinositol 34:2 in which the acyl group at C-1 contains 16 carbons and no double bonds while that at C-2 contains 18 carbons and 2 double bonds

   

TG(52:14)

TG(20:5_10:3_22:6)

C55H78O6 (834.5798087999999)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

MGDG(41:11)

MGDG(18:2_23:9)

C50H74O10 (834.5281704)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

DGDG(28:1)

DGDG(16:1_12:0)

C43H78O15 (834.5340438)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PG P-20:0/22:6 or PG O-20:1/22:6

PG P-20:0/22:6 or PG O-20:1/22:6

C48H83O9P (834.5774398)


   
   

PG P-20:1/22:5 or PG O-20:2/22:5

PG P-20:1/22:5 or PG O-20:2/22:5

C48H83O9P (834.5774398)


   
   

PG P-22:1/20:5 or PG O-22:2/20:5

PG P-22:1/20:5 or PG O-22:2/20:5

C48H83O9P (834.5774398)


   
   

PG P-42:6 or PG O-42:7

PG P-42:6 or PG O-42:7

C48H83O9P (834.5774398)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PI P-16:1/19:0 or PI O-16:2/19:0

PI P-16:1/19:0 or PI O-16:2/19:0

C44H83O12P (834.5621848)


   
   

PI P-18:0/17:1 or PI O-18:1/17:1

PI P-18:0/17:1 or PI O-18:1/17:1

C44H83O12P (834.5621848)


   
   

PI P-18:1/17:0 or PI O-18:2/17:0

PI P-18:1/17:0 or PI O-18:2/17:0

C44H83O12P (834.5621848)


   
   

PI P-20:0/15:1 or PI O-20:1/15:1

PI P-20:0/15:1 or PI O-20:1/15:1

C44H83O12P (834.5621848)


   
   

PI P-20:1/15:0 or PI O-20:2/15:0

PI P-20:1/15:0 or PI O-20:2/15:0

C44H83O12P (834.5621848)


   
   

PI P-22:1/13:0 or PI O-22:2/13:0

PI P-22:1/13:0 or PI O-22:2/13:0

C44H83O12P (834.5621848)


   
   

PI P-35:1 or PI O-35:2

PI P-35:1 or PI O-35:2

C44H83O12P (834.5621848)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

22,28-diethyl-7,11,14,15,28-pentahydroxy-6'-(2-hydroxypropyl)-5',6,8,10,12,14,16,29-octamethyl-2,26-dioxaspiro[bicyclo[23.3.1]nonacosane-27,2'-oxane]-4,18,20-triene-3,3',9,13-tetrone

22,28-diethyl-7,11,14,15,28-pentahydroxy-6'-(2-hydroxypropyl)-5',6,8,10,12,14,16,29-octamethyl-2,26-dioxaspiro[bicyclo[23.3.1]nonacosane-27,2'-oxane]-4,18,20-triene-3,3',9,13-tetrone

C46H74O13 (834.5129154)


   

(1s,4e,5'r,6r,6'r,7s,8s,10s,11s,12r,14s,15r,16s,18e,20e,22s,25r,27r,28r,29s)-22,28-diethyl-7,11,14,15,28-pentahydroxy-6'-[(2s)-2-hydroxypropyl]-5',6,8,10,12,14,16,29-octamethyl-2,26-dioxaspiro[bicyclo[23.3.1]nonacosane-27,2'-oxane]-4,18,20-triene-3,3',9,13-tetrone

(1s,4e,5'r,6r,6'r,7s,8s,10s,11s,12r,14s,15r,16s,18e,20e,22s,25r,27r,28r,29s)-22,28-diethyl-7,11,14,15,28-pentahydroxy-6'-[(2s)-2-hydroxypropyl]-5',6,8,10,12,14,16,29-octamethyl-2,26-dioxaspiro[bicyclo[23.3.1]nonacosane-27,2'-oxane]-4,18,20-triene-3,3',9,13-tetrone

C46H74O13 (834.5129154)