Exact Mass: 828.4097936000001
Exact Mass Matches: 828.4097936000001
Found 81 metabolites which its exact mass value is equals to given mass value 828.4097936000001
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
1beta,2alpha,3beta,19alpha-Tetrahydroxy-12-ursen-28-oic acid 28-O-[b-D-Glucopyranosyl-(1->2)-b-D-glucopyranosyl] ester
1beta,2alpha,3beta,19alpha-Tetrahydroxy-12-ursen-28-oic acid 28-O-[b-D-Glucopyranosyl-(1->2)-b-D-glucopyranosyl] ester is found in herbs and spices. 1beta,2alpha,3beta,19alpha-Tetrahydroxy-12-ursen-28-oic acid 28-O-[b-D-Glucopyranosyl-(1->2)-b-D-glucopyranosyl] ester is a constituent of Acorus calamus (sweet flag) Constituent of Acorus calamus (sweet flag). 1beta,2alpha,3beta,19alpha-Tetrahydroxy-12-ursen-28-oic acid 28-O-[b-D-Glucopyranosyl-(1->2)-b-D-glucopyranosyl] ester is found in herbs and spices and root vegetables.
Centellasaponin B
Centellasaponin B is found in green vegetables. Centellasaponin B is a constituent of Centella asiatica (Asiatic pennywort). Constituent of Centella asiatica (Asiatic pennywort). Centellasaponin B is found in green vegetables.
Digitoxigenin 3-[glucosyl-(1->6)-glucosyl-(1->4)-2,6-dideoxyribohexoside]
Digitoxigenin 3-[glucosyl-(1->6)-glucosyl-(1->4)-2,6-dideoxyribohexoside] is found in green vegetables. Digitoxigenin 3-[glucosyl-(1->6)-glucosyl-(1->4)-2,6-dideoxyribohexoside] is a constituent of Corchorus olitorius (Jews mallow) Constituent of Corchorus olitorius (Jews mallow). Digitoxigenin 3-[glucosyl-(1->6)-glucosyl-(1->4)-2,6-dideoxyribohexoside] is found in tea, herbs and spices, and green vegetables.
PGP(a-15:0/18:1(12Z)-O(9S,10R))
PGP(a-15:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(a-15:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(18:1(12Z)-O(9S,10R)/a-15:0)
PGP(18:1(12Z)-O(9S,10R)/a-15:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(12Z)-O(9S,10R)/a-15:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(a-15:0/18:1(9Z)-O(12,13))
PGP(a-15:0/18:1(9Z)-O(12,13)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(a-15:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(18:1(9Z)-O(12,13)/a-15:0)
PGP(18:1(9Z)-O(12,13)/a-15:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(9Z)-O(12,13)/a-15:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(i-12:0/20:3(8Z,11Z,14Z)-2OH(5,6))
PGP(i-12:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-12:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/i-12:0)
PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/i-12:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(8Z,11Z,14Z)-2OH(5,6)/i-12:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(i-15:0/18:1(12Z)-O(9S,10R))
PGP(i-15:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-15:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(18:1(12Z)-O(9S,10R)/i-15:0)
PGP(18:1(12Z)-O(9S,10R)/i-15:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(12Z)-O(9S,10R)/i-15:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(i-15:0/18:1(9Z)-O(12,13))
PGP(i-15:0/18:1(9Z)-O(12,13)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-15:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
PGP(18:1(9Z)-O(12,13)/i-15:0)
PGP(18:1(9Z)-O(12,13)/i-15:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:1(9Z)-O(12,13)/i-15:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).
(2alpha,3beta,4alpha,21beta)-3,21-bis(beta-glucopyranosyloxy)-2,23-dihydroxyolean-12-en-28-oic acid|oleanazuroside 1
3-O-beta-D-glucopyranosyl-28-O-alpha-L-rhanmopyranosyl-16alpha-hydroxyprotobassic acid
8beta,16alpha-Dihydroxy-15-oxo-uzarigenin-3beta-O-(beta-D-digitoxosido-beta-D-xylosido-alpha-L-rhamnosid)|8beta,16alpha-Dihydroxy-15-oxo-uzarigenin-3beta-O-
17alpha-digitoxigenin beta-D-apiosyl-(1*6)-beta-D-glucosyl-(1*4)-alpha-L-thevetoside
2-[(6-O-beta-D-glucopyranosyl-beta-D-glucopyranosyl)oxy]-3,16alpha,20,22,25-pentahydroxy-29-norcucurbita-1,3,5(10)-trien-11-one
3-O-beta-D-glucopyranosyl-16-O-beta-D-glucopyranosyl-2beta,3beta,16beta,21beta-tetrahydroxyolean-12-en-28-oic acid|platycodon A
(22R,23S,24R)-3beta-O-(beta-D-glucuronopyranosyl-(1?6)-beta-D-D-glucopyranosyluronic acid)-3,22,23-trihydroxy-24-methyl-30-norlanost-8(9)-en-29-oic acid|ulososide A
3-O-beta-d-glucopyranosyl-29-O-beta-d-glucopyranosyl-3beta,6beta,16beta,29-tetrahydroxyolean-12-en-23-oic acid
3beta-[(2-O-sulfo-beta-D-xylopyranosyl)oxy]urs-12,19(29)-diene-28-oic acid 28-beta-D-glucopyranoside|Asprellanoside C
3beta-[(2-O-sulfo-beta-D-xylopyranosyl)oxy]urs-12,19-diene-28-oic acid 28-beta-D-glucopyranoside|Asprellanoside D
platycogenic acid C 2-O-beta-D-glucopyranosido-21-O-beta-D-glucopyranoside|platycosaponin A
19alpha-hydroxyarjunolic acid 3,28-O-bisglucoside|2alpha,3beta,19alpha,23-tetrahydroxy-olean-12-en-28-oic acid 3-O-beta-D-glucopyranosyl-28-O-beta-D-glucopyranosyl ester|arjungenin-3,28-bis-O-glucopyranoside
19alpha-hydroxyasiatic acid 3,28-O-bisglucoside|2alpha,3beta,19alpha,23-tetrahydroxy-urs-12-en-28-oic acid 3-O-beta-D-glucopyranosyl-28-O-beta-D-glucopyranosyl ester|3,28-bis-O-glucosyl-19alpha-hydroxyasiatic acid
cyclo(Gly-L-Val-L-Tyr-Gly-L-Leu-L-Pro-L-Glu-L-Ile)|microphycin AL828
Digitoxigenin 3-[glucosyl-(1->6)-glucosyl-(1->4)-2,6-dideoxyribohexoside]
1beta,2alpha,3beta,19alpha-Tetrahydroxy-12-ursen-28-oic acid 28-O-[b-D-Glucopyranosyl-(1->2)-b-D-glucopyranosyl] ester
Centellasaponin B
2alpha,3beta,19alpha,24-tetrahydroxyolean-12-en-28-oic acid 28-O-beta-d-glucopyranosyl-(1-2)-beta-d-glucopyranoside
2alpha,3beta,19,24-tetrahydroxyursan-12-en-28-oic acid 28-O-beta-d-glucopyranosyl-(1-2)-beta-d-glucopyranoside
methyl 2-acetamido-3-[(7E,9S,10S,11S,12E,14S,16E,20S,21S,22E,24Z,26Z)-4,10,14,20-tetrahydroxy-3,7,9,11,17,21,27-heptamethyl-6,18,28,32,34-pentaoxo-29-azatricyclo[28.3.1.05,33]tetratriaconta-1(33),2,4,7,12,16,22,24,26,30-decaen-31-yl]propanoate
C46H56N2O12 (828.3833056000001)
1-({[2-(2-Furylmethyl)-5-methylpyrrolidinyl]amino}methylene)-7-[8-({[2-(2-fury lmethyl)pyrrolidinyl]amino}methylene)-1,6-dihydroxy-3-methyl-5-(methylethyl)-7-oxo(2-naphthyl)]-3,8-dihydroxy-6-methyl-4-(methylethyl)naphthalen-2-one
C49H56N4O8 (828.4097936000001)