Exact Mass: 827.640371

Exact Mass Matches: 827.640371

Found 500 metabolites which its exact mass value is equals to given mass value 827.640371, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PE(18:1(11Z)/24:1(15Z))

(2-aminoethoxy)[(2R)-3-[(11Z)-octadec-11-enoyloxy]-2-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

C47H90NO8P (827.640371)


PE(18:1(11Z)/24:1(15Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:1(11Z)/24:1(15Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of nervonic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the nervonic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(18:1(9Z)/24:1(15Z))

(2-aminoethoxy)[(2R)-3-[(9Z)-octadec-9-enoyloxy]-2-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

C47H90NO8P (827.640371)


PE(18:1(9Z)/24:1(15Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:1(9Z)/24:1(15Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of nervonic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the nervonic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(18:2(9Z,12Z)/24:0)

(2-aminoethoxy)[(2R)-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]-2-(tetracosanoyloxy)propoxy]phosphinic acid

C47H90NO8P (827.640371)


PE(18:2(9Z,12Z)/24:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:2(9Z,12Z)/24:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of lignoceric acid at the C-2 position. The linoleic acid moiety is derived from seed oils, while the lignoceric acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(20:0/22:2(13Z,16Z))

(2-aminoethoxy)[(2R)-2-[(13Z,16Z)-docosa-13,16-dienoyloxy]-3-(icosanoyloxy)propoxy]phosphinic acid

C47H90NO8P (827.640371)


PE(20:0/22:2(13Z,16Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:0/22:2(13Z,16Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. The arachidic acid moiety is derived from peanut oil, while the docosadienoic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(20:1(11Z)/22:1(13Z))

(2-aminoethoxy)[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-[(11Z)-icos-11-enoyloxy]propoxy]phosphinic acid

C47H90NO8P (827.640371)


PE(20:1(11Z)/22:1(13Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:1(11Z)/22:1(13Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of erucic acid at the C-2 position. The eicosenoic acid moiety is derived from vegetable oils and cod oils, while the erucic acid moiety is derived from seed oils and avocados. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(20:1(11Z)/22:1(13Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:1(11Z)/22:1(13Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of erucic acid at the C-2 position. The eicosenoic acid moiety is derived from vegetable oils and cod oils, while the erucic acid moiety is derived from seed oils and avocados. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(20:2(11Z,14Z)/22:0)

(2-aminoethoxy)[(2R)-2-(docosanoyloxy)-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy]phosphinic acid

C47H90NO8P (827.640371)


PE(20:2(11Z,14Z)/22:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:2(11Z,14Z)/22:0), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of behenic acid at the C-2 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the behenic acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(20:2(11Z,14Z)/22:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:2(11Z,14Z)/22:0), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of behenic acid at the C-2 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the behenic acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(22:0/20:2(11Z,14Z))

(2-aminoethoxy)[(2R)-3-(docosanoyloxy)-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy]phosphinic acid

C47H90NO8P (827.640371)


PE(22:0/20:2(11Z,14Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:0/20:2(11Z,14Z)), in particular, consists of one chain of behenic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The behenic acid moiety is derived from groundnut oil, while the eicosadienoic acid moiety is derived from fish oils and liver. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(22:0/20:2(11Z,14Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:0/20:2(11Z,14Z)), in particular, consists of one chain of behenic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The behenic acid moiety is derived from groundnut oil, while the eicosadienoic acid moiety is derived from fish oils and liver. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(22:1(13Z)/20:1(11Z))

(2-aminoethoxy)[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-[(11Z)-icos-11-enoyloxy]propoxy]phosphinic acid

C47H90NO8P (827.640371)


PE(22:1(13Z)/20:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:1(13Z)/20:1(11Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. The erucic acid moiety is derived from seed oils and avocados, while the eicosenoic acid moiety is derived from vegetable oils and cod oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(22:2(13Z,16Z)/20:0)

(2-aminoethoxy)[(2R)-3-[(13Z,16Z)-docosa-13,16-dienoyloxy]-2-(icosanoyloxy)propoxy]phosphinic acid

C47H90NO8P (827.640371)


PE(22:2(13Z,16Z)/20:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:2(13Z,16Z)/20:0), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of arachidic acid at the C-2 position. The docosadienoic acid moiety is derived from animal fats, while the arachidic acid moiety is derived from peanut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(22:2(13Z,16Z)/20:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:2(13Z,16Z)/20:0), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of arachidic acid at the C-2 position. The docosadienoic acid moiety is derived from animal fats, while the arachidic acid moiety is derived from peanut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(24:0/18:2(9Z,12Z))

(2-aminoethoxy)[(2R)-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]-3-(tetracosanoyloxy)propoxy]phosphinic acid

C47H90NO8P (827.640371)


PE(24:0/18:2(9Z,12Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(24:0/18:2(9Z,12Z)), in particular, consists of one chain of lignoceric acid at the C-1 position and one chain of linoleic acid at the C-2 position. The lignoceric acid moiety is derived from groundnut oil, while the linoleic acid moiety is derived from seed oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(24:1(15Z)/18:1(11Z))

(2-aminoethoxy)[(2R)-2-[(11Z)-octadec-11-enoyloxy]-3-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

C47H90NO8P (827.640371)


PE(24:1(15Z)/18:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(24:1(15Z)/18:1(11Z)), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The nervonic acid moiety is derived from fish oils, while the vaccenic acid moiety is derived from butter fat and animal fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(24:1(15Z)/18:1(9Z))

(2-aminoethoxy)[(2R)-2-[(9Z)-octadec-9-enoyloxy]-3-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

C47H90NO8P (827.640371)


PE(24:1(15Z)/18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(24:1(15Z)/18:1(9Z)), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of oleic acid at the C-2 position. The nervonic acid moiety is derived from fish oils, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE-NMe2(16:1(9Z)/24:1(15Z))

[2-(dimethylamino)ethoxy]({3-[(9Z)-hexadec-9-enoyloxy]-2-[(15Z)-tetracos-15-enoyloxy]propoxy})phosphinic acid

C47H90NO8P (827.640371)


PE-NMe2(16:1(9Z)/24:1(15Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(16:1(9Z)/24:1(15Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of nervonic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(18:0/22:2(13Z,16Z))

[2-(dimethylamino)ethoxy]({2-[(13Z,16Z)-docosa-13,16-dienoyloxy]-3-(octadecanoyloxy)propoxy})phosphinic acid

C47H90NO8P (827.640371)


PE-NMe2(18:0/22:2(13Z,16Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(18:0/22:2(13Z,16Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(18:1(11Z)/22:1(13Z))

[2-(dimethylamino)ethoxy]({2-[(13Z)-docos-13-enoyloxy]-3-[(11Z)-octadec-11-enoyloxy]propoxy})phosphinic acid

C47H90NO8P (827.640371)


PE-NMe2(18:1(11Z)/22:1(13Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(18:1(11Z)/22:1(13Z)), in particular, consists of one chain of cis-vaccenic acid at the C-1 position and one chain of erucic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(18:1(9Z)/22:1(13Z))

[2-(dimethylamino)ethoxy]({2-[(13Z)-docos-13-enoyloxy]-3-[(9Z)-octadec-9-enoyloxy]propoxy})phosphinic acid

C47H90NO8P (827.640371)


PE-NMe2(18:1(9Z)/22:1(13Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(18:1(9Z)/22:1(13Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of erucic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(18:2(9Z,12Z)/22:0)

[2-(dimethylamino)ethoxy][2-(docosanoyloxy)-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphinic acid

C47H90NO8P (827.640371)


PE-NMe2(18:2(9Z,12Z)/22:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(18:2(9Z,12Z)/22:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of behenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(20:0/20:2(11Z,14Z))

[2-(dimethylamino)ethoxy]({2-[(11Z,14Z)-icosa-11,14-dienoyloxy]-3-(icosanoyloxy)propoxy})phosphinic acid

C47H90NO8P (827.640371)


PE-NMe2(20:0/20:2(11Z,14Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(20:0/20:2(11Z,14Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(20:1(11Z)/20:1(11Z))

{2,3-bis[(11Z)-icos-11-enoyloxy]propoxy}[2-(dimethylamino)ethoxy]phosphinic acid

C47H90NO8P (827.640371)


PE-NMe2(20:1(11Z)/20:1(11Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(20:1(11Z)/20:1(11Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(20:2(11Z,14Z)/20:0)

[2-(dimethylamino)ethoxy]({3-[(11Z,14Z)-icosa-11,14-dienoyloxy]-2-(icosanoyloxy)propoxy})phosphinic acid

C47H90NO8P (827.640371)


PE-NMe2(20:2(11Z,14Z)/20:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(20:2(11Z,14Z)/20:0), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of arachidic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(22:0/18:2(9Z,12Z))

[2-(dimethylamino)ethoxy][3-(docosanoyloxy)-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphinic acid

C47H90NO8P (827.640371)


PE-NMe2(22:0/18:2(9Z,12Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(22:0/18:2(9Z,12Z)), in particular, consists of one chain of behenic acid at the C-1 position and one chain of linoleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(22:1(13Z)/18:1(11Z))

[2-(dimethylamino)ethoxy]({3-[(13Z)-docos-13-enoyloxy]-2-[(11Z)-octadec-11-enoyloxy]propoxy})phosphinic acid

C47H90NO8P (827.640371)


PE-NMe2(22:1(13Z)/18:1(11Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(22:1(13Z)/18:1(11Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of cis-vaccenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(22:1(13Z)/18:1(9Z))

[2-(dimethylamino)ethoxy]({3-[(13Z)-docos-13-enoyloxy]-2-[(9Z)-octadec-9-enoyloxy]propoxy})phosphinic acid

C47H90NO8P (827.640371)


PE-NMe2(22:1(13Z)/18:1(9Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(22:1(13Z)/18:1(9Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of oleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(22:2(13Z,16Z)/18:0)

[2-(dimethylamino)ethoxy]({3-[(13Z,16Z)-docosa-13,16-dienoyloxy]-2-(octadecanoyloxy)propoxy})phosphinic acid

C47H90NO8P (827.640371)


PE-NMe2(22:2(13Z,16Z)/18:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(22:2(13Z,16Z)/18:0), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of stearic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(24:1(15Z)/16:1(9Z))

[2-(dimethylamino)ethoxy]({2-[(9Z)-hexadec-9-enoyloxy]-3-[(15Z)-tetracos-15-enoyloxy]propoxy})phosphinic acid

C47H90NO8P (827.640371)


PE-NMe2(24:1(15Z)/16:1(9Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(24:1(15Z)/16:1(9Z)), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PC(18:0/20:3(6,8,11)-OH(5))

(2-{[(2R)-2-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-3-(octadecanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C46H86NO9P (827.6039876)


PC(18:0/20:3(6,8,11)-OH(5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:0/20:3(6,8,11)-OH(5)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(6,8,11)-OH(5)/18:0)

(2-{[(2R)-3-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-2-(octadecanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C46H86NO9P (827.6039876)


PC(20:3(6,8,11)-OH(5)/18:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(6,8,11)-OH(5)/18:0), in particular, consists of one chain of one 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:0/18:2(10E,12Z)+=O(9))

(2-{[(2R)-3-(icosanoyloxy)-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C46H86NO9P (827.6039876)


PC(20:0/18:2(10E,12Z)+=O(9)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:0/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one eicosanoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:2(10E,12Z)+=O(9)/20:0)

(2-{[(2R)-2-(icosanoyloxy)-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C46H86NO9P (827.6039876)


PC(18:2(10E,12Z)+=O(9)/20:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:2(10E,12Z)+=O(9)/20:0), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of eicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:0/18:2(9Z,11E)+=O(13))

(2-{[(2R)-3-(icosanoyloxy)-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C46H86NO9P (827.6039876)


PC(20:0/18:2(9Z,11E)+=O(13)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:0/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one eicosanoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:2(9Z,11E)+=O(13)/20:0)

(2-{[(2R)-2-(icosanoyloxy)-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C46H86NO9P (827.6039876)


PC(18:2(9Z,11E)+=O(13)/20:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:2(9Z,11E)+=O(13)/20:0), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of eicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:0/18:3(10,12,15)-OH(9))

(2-{[(2R)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-3-(icosanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C46H86NO9P (827.6039876)


PC(20:0/18:3(10,12,15)-OH(9)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:0/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one eicosanoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:3(10,12,15)-OH(9)/20:0)

(2-{[(2R)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-2-(icosanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C46H86NO9P (827.6039876)


PC(18:3(10,12,15)-OH(9)/20:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:3(10,12,15)-OH(9)/20:0), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of eicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:0/18:3(9,11,15)-OH(13))

(2-{[(2R)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-3-(icosanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C46H86NO9P (827.6039876)


PC(20:0/18:3(9,11,15)-OH(13)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:0/18:3(9,11,15)-OH(13)), in particular, consists of one chain of one eicosanoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:3(9,11,15)-OH(13)/20:0)

(2-{[(2R)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-2-(icosanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C46H86NO9P (827.6039876)


PC(18:3(9,11,15)-OH(13)/20:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:3(9,11,15)-OH(13)/20:0), in particular, consists of one chain of one 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of eicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:1(11Z)/18:1(12Z)-O(9S,10R))

(2-{[(2R)-3-[(11Z)-icos-11-enoyloxy]-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H86NO9P (827.6039876)


PC(20:1(11Z)/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:1(11Z)/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:1(12Z)-O(9S,10R)/20:1(11Z))

(2-{[(2R)-2-[(11Z)-icos-11-enoyloxy]-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H86NO9P (827.6039876)


PC(18:1(12Z)-O(9S,10R)/20:1(11Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:1(12Z)-O(9S,10R)/20:1(11Z)), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:1(11Z)/18:1(9Z)-O(12,13))

(2-{[(2R)-3-[(11Z)-icos-11-enoyloxy]-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C46H86NO9P (827.6039876)


PC(20:1(11Z)/18:1(9Z)-O(12,13)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:1(11Z)/18:1(9Z)-O(12,13)), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:1(9Z)-O(12,13)/20:1(11Z))

(2-{[(2R)-2-[(11Z)-icos-11-enoyloxy]-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C46H86NO9P (827.6039876)


PC(18:1(9Z)-O(12,13)/20:1(11Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:1(9Z)-O(12,13)/20:1(11Z)), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(P-18:0/20:3(8Z,11Z,14Z)-2OH(5,6))

(2-{[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-[(1E)-octadec-1-en-1-yloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H86NO9P (827.6039876)


PC(P-18:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-18:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 1Z-octadecenyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(8Z,11Z,14Z)-2OH(5,6)/P-18:0)

PC(20:3(8Z,11Z,14Z)-2OH(5,6)/P-18:0)

C46H86NO9P (827.6039876)


PC(20:3(8Z,11Z,14Z)-2OH(5,6)/P-18:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(8Z,11Z,14Z)-2OH(5,6)/P-18:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 1Z-octadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PE 42:2

1-(13Z,16Z-docosadienoyl)-2-eicosanoyl-glycero-3-phosphoethanolamine

C47H90NO8P (827.640371)


Found in mouse lung; TwoDicalId=758; MgfFile=160901_Lung_normal_Neg_04; MgfId=1584

   

PE(42:2)

1-Docosadienoyl-2-arachidonyl-sn-glycero-3-phosphoethanolamine

C47H90NO8P (827.640371)


   

PC(17:0/22:2(13Z,16Z))

1-heptadecanoyl-2-(13Z,16Z-docosadienoyl)-glycero-3-phosphocholine

C47H90NO8P (827.640371)


   

PC(17:1(9Z)/22:1(11Z))

1-(9Z-heptadecenoyl)-2-(11Z-docosenoyl)-glycero-3-phosphocholine

C47H90NO8P (827.640371)


   

PC(17:2(9Z,12Z)/22:0)

1-(9Z,12Z-heptadecadienoyl)-2-docosanoyl-glycero-3-phosphocholine

C47H90NO8P (827.640371)


   

PC(18:2(9Z,12Z)/21:0)

1-(9Z,12Z-octadecadienoyl)-2-heneicosanoyl-glycero-3-phosphocholine

C47H90NO8P (827.640371)


   

PC(19:0/20:2(11Z,14Z))

1-nonadecanoyl-2-(11Z,14Z-eicosadienoyl)-glycero-3-phosphocholine

C47H90NO8P (827.640371)


   

PC(19:1(9Z)/20:1(11Z))

1-(9Z-nonadecenoyl)-2-(11Z-eicosenoyl)-glycero-3-phosphocholine

C47H90NO8P (827.640371)


   

PC(20:1(11Z)/19:1(9Z))

1-(11Z-eicosenoyl)-2-(9Z-nonadecenoyl)-glycero-3-phosphocholine

C47H90NO8P (827.640371)


   

PC(20:2(11Z,14Z)/19:0)

1-(11Z,14Z-eicosadienoyl)-2-nonadecanoyl-glycero-3-phosphocholine

C47H90NO8P (827.640371)


   

PC(21:0/18:2(9Z,12Z))

1-heneicosanoyl-2-(9Z,12Z-octadecadienoyl)-glycero-3-phosphocholine

C47H90NO8P (827.640371)


   

PC(22:0/17:2(9Z,12Z))

1-docosanoyl-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphocholine

C47H90NO8P (827.640371)


   

PC(22:1(11Z)/17:1(9Z))

1-(11Z-docosenoyl)-2-(9Z-heptadecenoyl)-glycero-3-phosphocholine

C47H90NO8P (827.640371)


   

PC(22:2(13Z,16Z)/17:0)

1-(13Z,16Z-docosadienoyl)-2-heptadecanoyl-glycero-3-phosphocholine

C47H90NO8P (827.640371)


   

PE(20:1(11Z)/22:1(11Z))

1-(11Z-eicosenoyl)-2-(11Z-docosenoyl)-glycero-3-phosphoethanolamine

C47H90NO8P (827.640371)


   

PE(22:1(11Z)/20:1(11Z))

1-(11Z-docosenoyl)-2-(11Z-eicosenoyl)-glycero-3-phosphoethanolamine

C47H90NO8P (827.640371)


   

PS(O-20:0/20:3(8Z,11Z,14Z))

1-eicosyl-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phosphoserine

C46H86NO9P (827.6039876)


   

PS(P-18:0/22:2(13Z,16Z))

1-(1Z-octadecenyl)-2-(13Z,16Z-docosadienoyl)-glycero-3-phosphoserine

C46H86NO9P (827.6039876)


   

PS(P-20:0/20:2(11Z,14Z))

1-(1Z-eicosenyl)-2-(11Z,14Z-eicosadienoyl)-glycero-3-phosphoserine

C46H86NO9P (827.6039876)


   

PC 39:2

1-heneicosanoyl-2-(9Z,12Z-octadecadienoyl)-glycero-3-phosphocholine

C47H90NO8P (827.640371)


   

PS O-40:3

1-(1Z-octadecenyl)-2-(13Z,16Z-docosadienoyl)-glycero-3-phosphoserine

C46H86NO9P (827.6039876)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoyl]oxypropan-2-yl] (Z)-tetracos-13-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoyl]oxypropan-2-yl] (Z)-tetracos-13-enoate

C47H90NO8P (827.640371)


   

1-Tetracosanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphoethanolamine

1-Tetracosanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphoethanolamine

C47H90NO8P (827.640371)


   

PC(20:0/18:2(10E,12Z)+=O(9))

PC(20:0/18:2(10E,12Z)+=O(9))

C46H86NO9P (827.6039876)


   

PC(18:2(10E,12Z)+=O(9)/20:0)

PC(18:2(10E,12Z)+=O(9)/20:0)

C46H86NO9P (827.6039876)


   

PC(20:0/18:2(9Z,11E)+=O(13))

PC(20:0/18:2(9Z,11E)+=O(13))

C46H86NO9P (827.6039876)


   

PC(18:2(9Z,11E)+=O(13)/20:0)

PC(18:2(9Z,11E)+=O(13)/20:0)

C46H86NO9P (827.6039876)


   

[(2R)-2-[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy-3-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy-3-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO9P (827.6039876)


   

[(2R)-3-[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy-2-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy-2-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO9P (827.6039876)


   

[(2R)-2-[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy-3-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy-3-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO9P (827.6039876)


   

[(2R)-3-[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy-2-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy-2-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO9P (827.6039876)


   

[(2R)-2-[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy-3-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy-3-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO9P (827.6039876)


   

[(2R)-3-[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy-2-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy-2-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO9P (827.6039876)


   

PC(20:1(11Z)/18:1(12Z)-O(9S,10R))

PC(20:1(11Z)/18:1(12Z)-O(9S,10R))

C46H86NO9P (827.6039876)


   

PC(18:1(12Z)-O(9S,10R)/20:1(11Z))

PC(18:1(12Z)-O(9S,10R)/20:1(11Z))

C46H86NO9P (827.6039876)


   

PC(20:1(11Z)/18:1(9Z)-O(12,13))

PC(20:1(11Z)/18:1(9Z)-O(12,13))

C46H86NO9P (827.6039876)


   

PC(18:1(9Z)-O(12,13)/20:1(11Z))

PC(18:1(9Z)-O(12,13)/20:1(11Z))

C46H86NO9P (827.6039876)


   

PC(P-18:0/20:3(8Z,11Z,14Z)-2OH(5,6))

PC(P-18:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C46H86NO9P (827.6039876)


   

PC(20:3(8Z,11Z,14Z)-2OH(5,6)/P-18:0)

PC(20:3(8Z,11Z,14Z)-2OH(5,6)/P-18:0)

C46H86NO9P (827.6039876)


   

[3-icosanoyloxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-icosanoyloxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

HexCer 8:1;2O/36:6

HexCer 8:1;2O/36:6

C50H85NO8 (827.627485)


   

HexCer 8:0;2O/36:7

HexCer 8:0;2O/36:7

C50H85NO8 (827.627485)


   
   

HexCer 10:1;2O/34:6

HexCer 10:1;2O/34:6

C50H85NO8 (827.627485)


   

HexCer 26:3;2O/18:4

HexCer 26:3;2O/18:4

C50H85NO8 (827.627485)


   

HexCer 22:3;2O/22:4

HexCer 22:3;2O/22:4

C50H85NO8 (827.627485)


   

HexCer 20:2;2O/24:5

HexCer 20:2;2O/24:5

C50H85NO8 (827.627485)


   

HexCer 16:3;2O/28:4

HexCer 16:3;2O/28:4

C50H85NO8 (827.627485)


   

HexCer 24:3;2O/20:4

HexCer 24:3;2O/20:4

C50H85NO8 (827.627485)


   

HexCer 22:1;2O/22:6

HexCer 22:1;2O/22:6

C50H85NO8 (827.627485)


   

HexCer 18:2;2O/26:5

HexCer 18:2;2O/26:5

C50H85NO8 (827.627485)


   

HexCer 20:3;2O/24:4

HexCer 20:3;2O/24:4

C50H85NO8 (827.627485)


   

HexCer 16:0;2O/28:7

HexCer 16:0;2O/28:7

C50H85NO8 (827.627485)


   

HexCer 14:1;2O/30:6

HexCer 14:1;2O/30:6

C50H85NO8 (827.627485)


   

HexCer 16:2;2O/28:5

HexCer 16:2;2O/28:5

C50H85NO8 (827.627485)


   

HexCer 16:1;2O/28:6

HexCer 16:1;2O/28:6

C50H85NO8 (827.627485)


   

HexCer 12:1;2O/32:6

HexCer 12:1;2O/32:6

C50H85NO8 (827.627485)


   

HexCer 18:1;2O/26:6

HexCer 18:1;2O/26:6

C50H85NO8 (827.627485)


   

HexCer 20:1;2O/24:6

HexCer 20:1;2O/24:6

C50H85NO8 (827.627485)


   

HexCer 14:0;2O/30:7

HexCer 14:0;2O/30:7

C50H85NO8 (827.627485)


   

HexCer 12:2;2O/32:5

HexCer 12:2;2O/32:5

C50H85NO8 (827.627485)


   

HexCer 26:2;2O/18:5

HexCer 26:2;2O/18:5

C50H85NO8 (827.627485)


   

HexCer 22:2;2O/22:5

HexCer 22:2;2O/22:5

C50H85NO8 (827.627485)


   

HexCer 18:3;2O/26:4

HexCer 18:3;2O/26:4

C50H85NO8 (827.627485)


   

HexCer 14:3;2O/30:4

HexCer 14:3;2O/30:4

C50H85NO8 (827.627485)


   

HexCer 24:2;2O/20:5

HexCer 24:2;2O/20:5

C50H85NO8 (827.627485)


   

HexCer 14:2;2O/30:5

HexCer 14:2;2O/30:5

C50H85NO8 (827.627485)


   

HexCer 18:0;2O/26:7

HexCer 18:0;2O/26:7

C50H85NO8 (827.627485)


   

HexCer 12:0;2O/32:7

HexCer 12:0;2O/32:7

C50H85NO8 (827.627485)


   

HexCer 10:0;2O/34:7

HexCer 10:0;2O/34:7

C50H85NO8 (827.627485)


   

HexCer 28:3;2O/16:4

HexCer 28:3;2O/16:4

C50H85NO8 (827.627485)


   

2-[2-[(14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-14,17,20,23,26,29-hexaenoyl]oxy-3-octanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-14,17,20,23,26,29-hexaenoyl]oxy-3-octanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C50H85NO8 (827.627485)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

2-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C50H85NO8 (827.627485)


   

2-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C50H85NO8 (827.627485)


   

2-[3-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C50H85NO8 (827.627485)


   

2-[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C50H85NO8 (827.627485)


   

2-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-octadecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-octadecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C50H85NO8 (827.627485)


   

2-[2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C50H85NO8 (827.627485)


   

2-[3-hexadecanoyloxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-hexadecanoyloxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C50H85NO8 (827.627485)


   

2-[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-tetradecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-tetradecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C50H85NO8 (827.627485)


   

2-[3-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C50H85NO8 (827.627485)


   

2-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(Z)-icos-11-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(Z)-icos-11-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C50H85NO8 (827.627485)


   

2-[3-decanoyloxy-2-[(12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-decanoyloxy-2-[(12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C50H85NO8 (827.627485)


   

2-[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C50H85NO8 (827.627485)


   

2-[3-[(Z)-docos-13-enoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-[(Z)-docos-13-enoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C50H85NO8 (827.627485)


   

2-[2,3-bis[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy]propoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2,3-bis[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy]propoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C50H85NO8 (827.627485)


   

2-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C50H85NO8 (827.627485)


   

2-[3-dodecanoyloxy-2-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-dodecanoyloxy-2-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C50H85NO8 (827.627485)


   

2-[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C50H85NO8 (827.627485)


   

2-[3-[(Z)-hexadec-9-enoyl]oxy-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-[(Z)-hexadec-9-enoyl]oxy-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C50H85NO8 (827.627485)


   

HexCer 9:0;3O/32:2;(2OH)

HexCer 9:0;3O/32:2;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 12:1;3O/29:1;(2OH)

HexCer 12:1;3O/29:1;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 13:1;3O/28:1;(2OH)

HexCer 13:1;3O/28:1;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 11:0;3O/30:2;(2OH)

HexCer 11:0;3O/30:2;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 13:0;3O/28:2;(2OH)

HexCer 13:0;3O/28:2;(2OH)

C47H89NO10 (827.6486134)


   

(4E,8E)-2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxypentacosa-4,8-diene-1-sulfonic acid

(4E,8E)-2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxypentacosa-4,8-diene-1-sulfonic acid

C51H89NO5S (827.6461104)


   

2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxypentacosane-1-sulfonic acid

2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxypentacosane-1-sulfonic acid

C51H89NO5S (827.6461104)


   

(E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxypentacos-4-ene-1-sulfonic acid

(E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxypentacos-4-ene-1-sulfonic acid

C51H89NO5S (827.6461104)


   

(4E,8E,12E)-2-[[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]amino]-3-hydroxypentacosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-2-[[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]amino]-3-hydroxypentacosa-4,8,12-triene-1-sulfonic acid

C51H89NO5S (827.6461104)


   

2-amino-3-[[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C46H86NO9P (827.6039876)


   

2-amino-3-[[3-[(Z)-hexadec-9-enoxy]-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(Z)-hexadec-9-enoxy]-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C46H86NO9P (827.6039876)


   

2-amino-3-[[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-[(Z)-nonadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-[(Z)-nonadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C46H86NO9P (827.6039876)


   

2-amino-3-[[3-[(Z)-docos-13-enoxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(Z)-docos-13-enoxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C46H86NO9P (827.6039876)


   

2-amino-3-[[2-[(Z)-hexadec-9-enoyl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(Z)-hexadec-9-enoyl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C46H86NO9P (827.6039876)


   

2-amino-3-[[2-[(Z)-henicos-11-enoyl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(Z)-henicos-11-enoyl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C46H86NO9P (827.6039876)


   

2-amino-3-[[3-hexadecoxy-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-hexadecoxy-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C46H86NO9P (827.6039876)


   

2-amino-3-[hydroxy-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(Z)-icos-11-enoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(Z)-icos-11-enoxy]propoxy]phosphoryl]oxypropanoic acid

C46H86NO9P (827.6039876)


   

2-amino-3-[[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-octadecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-octadecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C46H86NO9P (827.6039876)


   

2-amino-3-[[3-[(11Z,14Z)-henicosa-11,14-dienoxy]-2-[(Z)-nonadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(11Z,14Z)-henicosa-11,14-dienoxy]-2-[(Z)-nonadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C46H86NO9P (827.6039876)


   

2-amino-3-[[2-docosanoyloxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-docosanoyloxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C46H86NO9P (827.6039876)


   

2-amino-3-[[3-docosoxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-docosoxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C46H86NO9P (827.6039876)


   

2-amino-3-[[2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-3-[(Z)-tetradec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-3-[(Z)-tetradec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C46H86NO9P (827.6039876)


   

2-amino-3-[[3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]-2-tetradecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]-2-tetradecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C46H86NO9P (827.6039876)


   

2-amino-3-[[3-[(15Z,18Z)-hexacosa-15,18-dienoxy]-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(15Z,18Z)-hexacosa-15,18-dienoxy]-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C46H86NO9P (827.6039876)


   

2-amino-3-[[2-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]oxy-3-tetradecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]oxy-3-tetradecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C46H86NO9P (827.6039876)


   

2-amino-3-[hydroxy-[2-icosanoyloxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-icosanoyloxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propoxy]phosphoryl]oxypropanoic acid

C46H86NO9P (827.6039876)


   

2-amino-3-[hydroxy-[3-[(11Z,14Z)-icosa-11,14-dienoxy]-2-[(Z)-icos-11-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(11Z,14Z)-icosa-11,14-dienoxy]-2-[(Z)-icos-11-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C46H86NO9P (827.6039876)


   

2-amino-3-[[2-[(Z)-docos-13-enoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(Z)-docos-13-enoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C46H86NO9P (827.6039876)


   

2-amino-3-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-tetracosoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-tetracosoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C46H86NO9P (827.6039876)


   

2-amino-3-[[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-[(Z)-tetracos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-[(Z)-tetracos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C46H86NO9P (827.6039876)


   

2-amino-3-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(Z)-tetracos-13-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(Z)-tetracos-13-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C46H86NO9P (827.6039876)


   

2-amino-3-[[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C46H86NO9P (827.6039876)


   

2-amino-3-[hydroxy-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-icosoxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-icosoxypropoxy]phosphoryl]oxypropanoic acid

C46H86NO9P (827.6039876)


   

2-amino-3-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(Z)-octadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(Z)-octadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C46H86NO9P (827.6039876)


   

2-amino-3-[[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-tetracosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-tetracosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C46H86NO9P (827.6039876)


   

2-amino-3-[[2-hexadecanoyloxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-hexadecanoyloxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C46H86NO9P (827.6039876)


   

2-amino-3-[[3-[(Z)-henicos-11-enoxy]-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(Z)-henicos-11-enoxy]-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C46H86NO9P (827.6039876)


   

2-[4-[10,13-dimethyl-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxy-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]ethanesulfonic acid

2-[4-[10,13-dimethyl-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxy-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]ethanesulfonic acid

C50H85NO6S (827.609727)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decanoyloxypropan-2-yl] (21Z,24Z)-dotriaconta-21,24-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decanoyloxypropan-2-yl] (21Z,24Z)-dotriaconta-21,24-dienoate

C47H90NO8P (827.640371)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (19Z,22Z)-triaconta-19,22-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (19Z,22Z)-triaconta-19,22-dienoate

C47H90NO8P (827.640371)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (17Z,20Z)-octacosa-17,20-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (17Z,20Z)-octacosa-17,20-dienoate

C47H90NO8P (827.640371)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (Z)-octacos-17-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (Z)-octacos-17-enoate

C47H90NO8P (827.640371)


   

Cer 16:0;2O/20:6;(3OH)(FA 18:5)

Cer 16:0;2O/20:6;(3OH)(FA 18:5)

C54H85NO5 (827.6427399999999)


   

Cer 14:0;2O/20:6;(3OH)(FA 20:5)

Cer 14:0;2O/20:6;(3OH)(FA 20:5)

C54H85NO5 (827.6427399999999)


   

Cer 15:0;2O/19:5;(3OH)(FA 20:6)

Cer 15:0;2O/19:5;(3OH)(FA 20:6)

C54H85NO5 (827.6427399999999)


   

Cer 14:0;2O/18:5;(3OH)(FA 22:6)

Cer 14:0;2O/18:5;(3OH)(FA 22:6)

C54H85NO5 (827.6427399999999)


   

Cer 14:0;2O/20:5;(3OH)(FA 20:6)

Cer 14:0;2O/20:5;(3OH)(FA 20:6)

C54H85NO5 (827.6427399999999)


   

Cer 18:0;2O/16:5;(3OH)(FA 20:6)

Cer 18:0;2O/16:5;(3OH)(FA 20:6)

C54H85NO5 (827.6427399999999)


   

Cer 16:0;2O/16:5;(3OH)(FA 22:6)

Cer 16:0;2O/16:5;(3OH)(FA 22:6)

C54H85NO5 (827.6427399999999)


   

Cer 15:0;2O/20:6;(3OH)(FA 19:5)

Cer 15:0;2O/20:6;(3OH)(FA 19:5)

C54H85NO5 (827.6427399999999)


   

Cer 14:0;2O/22:6;(3OH)(FA 18:5)

Cer 14:0;2O/22:6;(3OH)(FA 18:5)

C54H85NO5 (827.6427399999999)


   

Cer 18:0;2O/20:6;(3OH)(FA 16:5)

Cer 18:0;2O/20:6;(3OH)(FA 16:5)

C54H85NO5 (827.6427399999999)


   

Cer 16:0;2O/18:5;(3OH)(FA 20:6)

Cer 16:0;2O/18:5;(3OH)(FA 20:6)

C54H85NO5 (827.6427399999999)


   

Cer 16:0;2O/22:6;(3OH)(FA 16:5)

Cer 16:0;2O/22:6;(3OH)(FA 16:5)

C54H85NO5 (827.6427399999999)


   
   
   

4-[3-[(Z)-heptadec-9-enoyl]oxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(Z)-heptadec-9-enoyl]oxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[3-[(Z)-henicos-11-enoyl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(Z)-henicos-11-enoyl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-nonadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-nonadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[3-henicosanoyloxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-henicosanoyloxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[3-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-tricosanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-tricosanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

HexCer 27:2;3O/14:0;(2OH)

HexCer 27:2;3O/14:0;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 21:2;3O/20:0;(2OH)

HexCer 21:2;3O/20:0;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 25:1;3O/16:1;(2OH)

HexCer 25:1;3O/16:1;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 21:1;3O/20:1;(2OH)

HexCer 21:1;3O/20:1;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 20:2;3O/21:0;(2OH)

HexCer 20:2;3O/21:0;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 23:2;3O/18:0;(2OH)

HexCer 23:2;3O/18:0;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 24:2;3O/17:0;(2OH)

HexCer 24:2;3O/17:0;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 22:1;3O/19:1;(2OH)

HexCer 22:1;3O/19:1;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 14:2;3O/27:0;(2OH)

HexCer 14:2;3O/27:0;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 15:2;3O/26:0;(2OH)

HexCer 15:2;3O/26:0;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 16:1;3O/25:1;(2OH)

HexCer 16:1;3O/25:1;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 15:0;3O/26:2;(2OH)

HexCer 15:0;3O/26:2;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 19:2;3O/22:0;(2OH)

HexCer 19:2;3O/22:0;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 23:1;3O/18:1;(2OH)

HexCer 23:1;3O/18:1;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 18:2;3O/23:0;(2OH)

HexCer 18:2;3O/23:0;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 17:2;3O/24:0;(2OH)

HexCer 17:2;3O/24:0;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 25:0;3O/16:2;(2OH)

HexCer 25:0;3O/16:2;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 19:1;3O/22:1;(2OH)

HexCer 19:1;3O/22:1;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 26:1;3O/15:1;(2OH)

HexCer 26:1;3O/15:1;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 25:2;3O/16:0;(2OH)

HexCer 25:2;3O/16:0;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 29:1;3O/12:1;(2OH)

HexCer 29:1;3O/12:1;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 18:1;3O/23:1;(2OH)

HexCer 18:1;3O/23:1;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 17:0;3O/24:2;(2OH)

HexCer 17:0;3O/24:2;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 28:2;3O/13:0;(2OH)

HexCer 28:2;3O/13:0;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 23:0;3O/18:2;(2OH)

HexCer 23:0;3O/18:2;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 27:1;3O/14:1;(2OH)

HexCer 27:1;3O/14:1;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 26:2;3O/15:0;(2OH)

HexCer 26:2;3O/15:0;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 21:0;3O/20:2;(2OH)

HexCer 21:0;3O/20:2;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 17:1;3O/24:1;(2OH)

HexCer 17:1;3O/24:1;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 19:0;3O/22:2;(2OH)

HexCer 19:0;3O/22:2;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 20:1;3O/21:1;(2OH)

HexCer 20:1;3O/21:1;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 14:1;3O/27:1;(2OH)

HexCer 14:1;3O/27:1;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 29:2;3O/12:0;(2OH)

HexCer 29:2;3O/12:0;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 16:2;3O/25:0;(2OH)

HexCer 16:2;3O/25:0;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 28:1;3O/13:1;(2OH)

HexCer 28:1;3O/13:1;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 22:2;3O/19:0;(2OH)

HexCer 22:2;3O/19:0;(2OH)

C47H89NO10 (827.6486134)


   

HexCer 15:1;3O/26:1;(2OH)

HexCer 15:1;3O/26:1;(2OH)

C47H89NO10 (827.6486134)


   

[2-[(5Z,8Z,14E)-11,12-dihydroxyicosa-5,8,14-trienoyl]oxy-3-[(Z)-octadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(5Z,8Z,14E)-11,12-dihydroxyicosa-5,8,14-trienoyl]oxy-3-[(Z)-octadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO9P (827.6039876)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (23Z,26Z)-tetratriaconta-23,26-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (23Z,26Z)-tetratriaconta-23,26-dienoate

C47H90NO8P (827.640371)


   

[3-nonanoyloxy-2-[(19Z,22Z)-triaconta-19,22-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-nonanoyloxy-2-[(19Z,22Z)-triaconta-19,22-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] tetracosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] tetracosanoate

C47H90NO8P (827.640371)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecanoyloxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecanoyloxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C47H90NO8P (827.640371)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-henicos-11-enoyl]oxypropyl] (Z)-henicos-11-enoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-henicos-11-enoyl]oxypropyl] (Z)-henicos-11-enoate

C47H90NO8P (827.640371)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropan-2-yl] (Z)-hexacos-15-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropan-2-yl] (Z)-hexacos-15-enoate

C47H90NO8P (827.640371)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-icosanoyloxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-icosanoyloxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C47H90NO8P (827.640371)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropyl] pentacosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropyl] pentacosanoate

C47H90NO8P (827.640371)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoyl]oxypropan-2-yl] (Z)-docos-13-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoyl]oxypropan-2-yl] (Z)-docos-13-enoate

C47H90NO8P (827.640371)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] hexacosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] hexacosanoate

C47H90NO8P (827.640371)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropyl] henicosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropyl] henicosanoate

C47H90NO8P (827.640371)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropyl] docosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropyl] docosanoate

C47H90NO8P (827.640371)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropyl] tricosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropyl] tricosanoate

C47H90NO8P (827.640371)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

C47H90NO8P (827.640371)


   

[2-[(17Z,20Z)-octacosa-17,20-dienoyl]oxy-3-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(17Z,20Z)-octacosa-17,20-dienoyl]oxy-3-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

[2-[(Z)-hexacos-15-enoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-hexacos-15-enoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

[3-[(Z)-pentadec-9-enoyl]oxy-2-[(Z)-tetracos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-pentadec-9-enoyl]oxy-2-[(Z)-tetracos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

[3-pentadecanoyloxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-pentadecanoyloxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-tricosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-tricosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

[2-[(Z)-docos-13-enoyl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-docos-13-enoyl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

[2-[(6E,8E,10E,14E)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-3-octadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(6E,8E,10E,14E)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-3-octadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO9P (827.6039876)


   

[2-[(Z)-icos-11-enoyl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-icos-11-enoyl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

[2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

[3-henicosanoyloxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-henicosanoyloxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-heptadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-heptadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

[2-[(Z)-henicos-11-enoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-henicos-11-enoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

[3-docosanoyloxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-docosanoyloxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

[(2S)-3-[(13E,16E)-docosa-13,16-dienoyl]oxy-2-heptadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-3-[(13E,16E)-docosa-13,16-dienoyl]oxy-2-heptadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

[(2R)-3-[(E)-pentadec-9-enoyl]oxy-2-[(E)-tetracos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-pentadec-9-enoyl]oxy-2-[(E)-tetracos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

4-[3-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-2-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-2-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] pentacosanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] pentacosanoate

C47H90NO8P (827.640371)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-icos-13-enoyl]oxypropan-2-yl] (E)-docos-13-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-icos-13-enoyl]oxypropan-2-yl] (E)-docos-13-enoate

C47H90NO8P (827.640371)


   

4-[2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxy-3-[(14E,16E)-tricosa-14,16-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxy-3-[(14E,16E)-tricosa-14,16-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(E)-pentacos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(E)-pentacos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[2-[(14E,16E)-docosa-14,16-dienoyl]oxy-3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(14E,16E)-docosa-14,16-dienoyl]oxy-3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[2-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-3-[(E)-icos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-3-[(E)-icos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2S)-3-[(E)-docos-13-enoyl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-3-[(E)-docos-13-enoyl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

4-[3-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-2-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-2-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[2-[(10E,12E)-octadeca-10,12-dienoyl]oxy-3-[(14E,17E,20E)-tricosa-14,17,20-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(10E,12E)-octadeca-10,12-dienoyl]oxy-3-[(14E,17E,20E)-tricosa-14,17,20-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-octadec-6-enoyl]oxypropyl] (E)-tetracos-15-enoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-octadec-6-enoyl]oxypropyl] (E)-tetracos-15-enoate

C47H90NO8P (827.640371)


   

4-[2-[(11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-3-pentadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-3-pentadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[2-docosanoyloxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-docosanoyloxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(15E,18E,21E)-tetracosa-15,18,21-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(15E,18E,21E)-tetracosa-15,18,21-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[3-[(14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-nonadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-nonadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-icosanoyloxypropyl] (13E,16E)-docosa-13,16-dienoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-icosanoyloxypropyl] (13E,16E)-docosa-13,16-dienoate

C47H90NO8P (827.640371)


   

4-[3-henicosanoyloxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-henicosanoyloxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2R)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-octadec-7-enoyl]oxypropyl] (E)-tetracos-15-enoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-octadec-7-enoyl]oxypropyl] (E)-tetracos-15-enoate

C47H90NO8P (827.640371)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-octadec-9-enoyl]oxypropyl] (E)-tetracos-15-enoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-octadec-9-enoyl]oxypropyl] (E)-tetracos-15-enoate

C47H90NO8P (827.640371)


   

4-[3-[(11E,14E)-hexacosa-11,14-dienoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(11E,14E)-hexacosa-11,14-dienoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[3-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-2-[(E)-icos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-2-[(E)-icos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-icos-13-enoyl]oxypropyl] (E)-docos-13-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-icos-13-enoyl]oxypropyl] (E)-docos-13-enoate

C47H90NO8P (827.640371)


   

4-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(13E,16E,19E)-pentacosa-13,16,19-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(13E,16E,19E)-pentacosa-13,16,19-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-9-enoyl]oxypropan-2-yl] (E)-hexacos-5-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-9-enoyl]oxypropan-2-yl] (E)-hexacos-5-enoate

C47H90NO8P (827.640371)


   

4-[2-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(E)-nonadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(E)-nonadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2R)-2-[(E)-docos-13-enoyl]oxy-3-[(E)-heptadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-docos-13-enoyl]oxy-3-[(E)-heptadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropan-2-yl] tetracosanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropan-2-yl] tetracosanoate

C47H90NO8P (827.640371)


   

[(2R)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

4-[3-[(9E,11E)-henicosa-9,11-dienoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E)-henicosa-9,11-dienoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] (E)-hexacos-5-enoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] (E)-hexacos-5-enoate

C47H90NO8P (827.640371)


   

4-[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(18E,21E)-tetracosa-18,21-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(18E,21E)-tetracosa-18,21-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[2-[(E)-hexadec-7-enoyl]oxy-3-[(13E,16E,19E,22E)-pentacosa-13,16,19,22-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-hexadec-7-enoyl]oxy-3-[(13E,16E,19E,22E)-pentacosa-13,16,19,22-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-7-enoyl]oxypropan-2-yl] (E)-tetracos-15-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-7-enoyl]oxypropan-2-yl] (E)-tetracos-15-enoate

C47H90NO8P (827.640371)


   

4-[3-heptadecanoyloxy-2-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-heptadecanoyloxy-2-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-icosanoyloxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-icosanoyloxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate

C47H90NO8P (827.640371)


   

4-[2-[(11E,14E)-hexacosa-11,14-dienoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(11E,14E)-hexacosa-11,14-dienoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[2-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-3-[(15E,18E,21E)-tetracosa-15,18,21-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-3-[(15E,18E,21E)-tetracosa-15,18,21-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2R)-2-henicosanoyloxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-henicosanoyloxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (5E,9E)-hexacosa-5,9-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (5E,9E)-hexacosa-5,9-dienoate

C47H90NO8P (827.640371)


   

4-[3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-2-tricosanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-2-tricosanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-13-enoyl]oxypropan-2-yl] (E)-tetracos-15-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-13-enoyl]oxypropan-2-yl] (E)-tetracos-15-enoate

C47H90NO8P (827.640371)


   

4-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(11E,14E)-pentacosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(11E,14E)-pentacosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropan-2-yl] docosanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropan-2-yl] docosanoate

C47H90NO8P (827.640371)


   

4-[2-[(17E,20E,23E)-hexacosa-17,20,23-trienoyl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(17E,20E,23E)-hexacosa-17,20,23-trienoyl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] pentacosanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] pentacosanoate

C47H90NO8P (827.640371)


   

4-[3-[(E)-hexadec-7-enoyl]oxy-2-[(13E,16E,19E,22E)-pentacosa-13,16,19,22-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-hexadec-7-enoyl]oxy-2-[(13E,16E,19E,22E)-pentacosa-13,16,19,22-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-[(11E,14E)-pentacosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-[(11E,14E)-pentacosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-icos-11-enoyl]oxypropan-2-yl] (E)-docos-13-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-icos-11-enoyl]oxypropan-2-yl] (E)-docos-13-enoate

C47H90NO8P (827.640371)


   

4-[3-[(E)-heptadec-7-enoyl]oxy-2-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-heptadec-7-enoyl]oxy-2-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2R)-2-[(5E,9E)-hexacosa-5,9-dienoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(5E,9E)-hexacosa-5,9-dienoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

4-[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-icosanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-icosanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-octadec-13-enoyl]oxypropyl] (E)-tetracos-15-enoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-octadec-13-enoyl]oxypropyl] (E)-tetracos-15-enoate

C47H90NO8P (827.640371)


   

4-[3-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-2-[(E)-nonadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-2-[(E)-nonadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[2-[(E)-henicos-9-enoyl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-henicos-9-enoyl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropan-2-yl] tetracosanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropan-2-yl] tetracosanoate

C47H90NO8P (827.640371)


   

4-[3-[(11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-2-pentadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-2-pentadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(5E,8E)-icosa-5,8-dienoyl]oxypropan-2-yl] docosanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(5E,8E)-icosa-5,8-dienoyl]oxypropan-2-yl] docosanoate

C47H90NO8P (827.640371)


   

[(2R)-3-henicosanoyloxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-henicosanoyloxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

4-[2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-tricosanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-tricosanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[2-heptadecanoyloxy-3-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-heptadecanoyloxy-3-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropan-2-yl] tetracosanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropan-2-yl] tetracosanoate

C47H90NO8P (827.640371)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-4-enoyl]oxypropan-2-yl] (E)-tetracos-15-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-4-enoyl]oxypropan-2-yl] (E)-tetracos-15-enoate

C47H90NO8P (827.640371)


   

4-[3-[(17E,20E,23E)-hexacosa-17,20,23-trienoyl]oxy-2-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(17E,20E,23E)-hexacosa-17,20,23-trienoyl]oxy-2-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[2-henicosanoyloxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-henicosanoyloxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[2-hexadecanoyloxy-3-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-hexadecanoyloxy-3-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-9-enoyl]oxypropan-2-yl] (E)-tetracos-15-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-9-enoyl]oxypropan-2-yl] (E)-tetracos-15-enoate

C47H90NO8P (827.640371)


   

[(2R)-2-[(13E,16E)-docosa-13,16-dienoyl]oxy-3-heptadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(13E,16E)-docosa-13,16-dienoyl]oxy-3-heptadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

4-[2-[(E)-docos-11-enoyl]oxy-3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-docos-11-enoyl]oxy-3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2R)-3-henicosanoyloxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-henicosanoyloxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadec-17-enoyloxypropan-2-yl] (E)-tetracos-15-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadec-17-enoyloxypropan-2-yl] (E)-tetracos-15-enoate

C47H90NO8P (827.640371)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropyl] tetracosanoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropyl] tetracosanoate

C47H90NO8P (827.640371)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(5E,8E)-icosa-5,8-dienoyl]oxypropyl] docosanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(5E,8E)-icosa-5,8-dienoyl]oxypropyl] docosanoate

C47H90NO8P (827.640371)


   

4-[2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(E)-tricos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(E)-tricos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-pentacosanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-pentacosanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2R)-3-henicosanoyloxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-henicosanoyloxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

4-[2-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-3-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-3-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-icosanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-icosanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(11E,14E)-icosa-11,14-dienoyl]oxypropyl] docosanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(11E,14E)-icosa-11,14-dienoyl]oxypropyl] docosanoate

C47H90NO8P (827.640371)


   

4-[3-[(E)-henicos-9-enoyl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-henicos-9-enoyl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2R)-2-docosanoyloxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-docosanoyloxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

4-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-pentacosanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-pentacosanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2R)-2-henicosanoyloxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-henicosanoyloxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-octadec-17-enoyloxypropyl] (E)-tetracos-15-enoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-octadec-17-enoyloxypropyl] (E)-tetracos-15-enoate

C47H90NO8P (827.640371)


   

[(2R)-2-henicosanoyloxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-henicosanoyloxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

[(2R)-3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-octadec-11-enoyl]oxypropyl] (E)-tetracos-15-enoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-octadec-11-enoyl]oxypropyl] (E)-tetracos-15-enoate

C47H90NO8P (827.640371)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-icos-11-enoyl]oxypropyl] (E)-docos-13-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-icos-11-enoyl]oxypropyl] (E)-docos-13-enoate

C47H90NO8P (827.640371)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropan-2-yl] tetracosanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropan-2-yl] tetracosanoate

C47H90NO8P (827.640371)


   

4-[3-[(14E,16E)-docosa-14,16-dienoyl]oxy-2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(14E,16E)-docosa-14,16-dienoyl]oxy-2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropyl] tetracosanoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropyl] tetracosanoate

C47H90NO8P (827.640371)


   

[(2S)-2-[(E)-pentadec-9-enoyl]oxy-3-[(E)-tetracos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-2-[(E)-pentadec-9-enoyl]oxy-3-[(E)-tetracos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropyl] tetracosanoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropyl] tetracosanoate

C47H90NO8P (827.640371)


   

4-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(E)-pentacos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(E)-pentacos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-11-enoyl]oxypropan-2-yl] (E)-tetracos-15-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-11-enoyl]oxypropan-2-yl] (E)-tetracos-15-enoate

C47H90NO8P (827.640371)


   

4-[2-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[2-[(E)-octadec-11-enoyl]oxy-3-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-octadec-11-enoyl]oxy-3-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-6-enoyl]oxypropan-2-yl] (E)-tetracos-15-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-6-enoyl]oxypropan-2-yl] (E)-tetracos-15-enoate

C47H90NO8P (827.640371)


   

[(2R)-2-henicosanoyloxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-henicosanoyloxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-tricosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-tricosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

4-[3-hexadecanoyloxy-2-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-hexadecanoyloxy-2-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[2-[(E)-heptadec-7-enoyl]oxy-3-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-heptadec-7-enoyl]oxy-3-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxy-2-[(14E,16E)-tricosa-14,16-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxy-2-[(14E,16E)-tricosa-14,16-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[2-[(14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] (E)-hexacos-5-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] (E)-hexacos-5-enoate

C47H90NO8P (827.640371)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] (E)-hexacos-5-enoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] (E)-hexacos-5-enoate

C47H90NO8P (827.640371)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hexadecanoyloxypropyl] (5E,9E)-hexacosa-5,9-dienoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hexadecanoyloxypropyl] (5E,9E)-hexacosa-5,9-dienoate

C47H90NO8P (827.640371)


   

4-[3-octadecanoyloxy-2-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-octadecanoyloxy-2-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2R)-3-henicosanoyloxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-henicosanoyloxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-octadec-4-enoyl]oxypropyl] (E)-tetracos-15-enoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-octadec-4-enoyl]oxypropyl] (E)-tetracos-15-enoate

C47H90NO8P (827.640371)


   

4-[3-[(10E,12E)-octadeca-10,12-dienoyl]oxy-2-[(14E,17E,20E)-tricosa-14,17,20-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(10E,12E)-octadeca-10,12-dienoyl]oxy-2-[(14E,17E,20E)-tricosa-14,17,20-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropyl] tetracosanoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropyl] tetracosanoate

C47H90NO8P (827.640371)


   

[(2S)-3-[(5E,9E)-hexacosa-5,9-dienoyl]oxy-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-3-[(5E,9E)-hexacosa-5,9-dienoyl]oxy-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

[(2S)-3-docosanoyloxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-3-docosanoyloxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

4-[3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-2-[(E)-tricos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-2-[(E)-tricos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[(2R)-3-[(5E,8E)-icosa-5,8-dienoyl]oxy-2-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(5E,8E)-icosa-5,8-dienoyl]oxy-2-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H90NO8P (827.640371)


   

4-[2-octadecanoyloxy-3-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-octadecanoyloxy-3-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[3-[(E)-octadec-11-enoyl]oxy-2-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-octadec-11-enoyl]oxy-2-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-nonadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-nonadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] hexacosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] hexacosanoate

C47H90NO8P (827.640371)


   

4-[3-[(E)-docos-11-enoyl]oxy-2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-docos-11-enoyl]oxy-2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[3-docosanoyloxy-2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-docosanoyloxy-2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-3-[(18E,21E)-tetracosa-18,21-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-3-[(18E,21E)-tetracosa-18,21-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(13E,16E,19E)-pentacosa-13,16,19-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(13E,16E,19E)-pentacosa-13,16,19-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

4-[2-[(9E,11E)-henicosa-9,11-dienoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E)-henicosa-9,11-dienoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C51H89NO7 (827.6638684)


   

2-[[(8E,12E,16E)-3,4-dihydroxy-2-(tetracosanoylamino)octadeca-8,12,16-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(8E,12E,16E)-3,4-dihydroxy-2-(tetracosanoylamino)octadeca-8,12,16-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C47H92N2O7P+ (827.6641792)


   

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoyl]amino]tetradeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoyl]amino]tetradeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

C49H84N2O6P+ (827.6066674000001)


   

2-[[(4E,8E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxyoctadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxyoctadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C49H84N2O6P+ (827.6066674000001)


   

2-[[(8E,12E)-3,4-dihydroxy-2-[[(Z)-tetracos-13-enoyl]amino]octadeca-8,12-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(8E,12E)-3,4-dihydroxy-2-[[(Z)-tetracos-13-enoyl]amino]octadeca-8,12-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C47H92N2O7P+ (827.6641792)


   

2-[[2-[[(9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-9,12,15,18,21,24,27,30,33-nonaenoyl]amino]-3-hydroxyoctoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[[(9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-9,12,15,18,21,24,27,30,33-nonaenoyl]amino]-3-hydroxyoctoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C49H84N2O6P+ (827.6066674000001)


   

2-[[(E)-2-[[(12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-12,15,18,21,24,27,30,33-octaenoyl]amino]-3-hydroxyoct-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(E)-2-[[(12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-12,15,18,21,24,27,30,33-octaenoyl]amino]-3-hydroxyoct-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C49H84N2O6P+ (827.6066674000001)


   

2-[hydroxy-[(E)-3-hydroxy-2-[[(10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-10,13,16,19,22,25,28,31-octaenoyl]amino]dec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E)-3-hydroxy-2-[[(10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-10,13,16,19,22,25,28,31-octaenoyl]amino]dec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C49H84N2O6P+ (827.6066674000001)


   

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]amino]hexadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]amino]hexadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C49H84N2O6P+ (827.6066674000001)


   

2-[[(E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]amino]-3-hydroxydodec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]amino]-3-hydroxydodec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C49H84N2O6P+ (827.6066674000001)


   

2-[[(4E,8E)-2-[[(11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-11,14,17,20,23,26,29-heptaenoyl]amino]-3-hydroxydodeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E)-2-[[(11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-11,14,17,20,23,26,29-heptaenoyl]amino]-3-hydroxydodeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C49H84N2O6P+ (827.6066674000001)


   

2-[[(4E,8E,12E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxydocosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E,12E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxydocosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C49H84N2O6P+ (827.6066674000001)


   

2-[[(E)-3,4-dihydroxy-2-[[(13Z,16Z)-tetracosa-13,16-dienoyl]amino]octadec-8-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(E)-3,4-dihydroxy-2-[[(13Z,16Z)-tetracosa-13,16-dienoyl]amino]octadec-8-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C47H92N2O7P+ (827.6641792)


   

2-[hydroxy-[(E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]amino]tetradec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]amino]tetradec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C49H84N2O6P+ (827.6066674000001)


   

2-[[(4E,8E,12E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxyoctadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E,12E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxyoctadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C49H84N2O6P+ (827.6066674000001)


   

2-[hydroxy-[3-hydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-7,10,13,16,19,22,25,28,31-nonaenoyl]amino]decoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-hydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-7,10,13,16,19,22,25,28,31-nonaenoyl]amino]decoxy]phosphoryl]oxyethyl-trimethylazanium

C49H84N2O6P+ (827.6066674000001)


   

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]icosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]icosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

C49H84N2O6P+ (827.6066674000001)


   

2-[[3,4-dihydroxy-2-[[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]amino]octadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3,4-dihydroxy-2-[[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]amino]octadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C47H92N2O7P+ (827.6641792)


   

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoyl]amino]tetradeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoyl]amino]tetradeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C49H84N2O6P+ (827.6066674000001)


   

2-[[2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoyl]amino]-3-hydroxydodecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoyl]amino]-3-hydroxydodecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C49H84N2O6P+ (827.6066674000001)


   

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]amino]hexadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]amino]hexadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

C49H84N2O6P+ (827.6066674000001)


   

PE-NMe2(16:1(9Z)/24:1(15Z))

PE-NMe2(16:1(9Z)/24:1(15Z))

C47H90NO8P (827.640371)


   

phosphatidylethanolamine 42:2 zwitterion

phosphatidylethanolamine 42:2 zwitterion

C47H90NO8P (827.640371)


A 1,2-diacyl-sn-glycero-3-phosphoethanolamine zwitterion in which the acyl groups at C-1 and C-2 contain 42 carbons in total with 2 double bonds.

   

MePC(38:2)

MePC(20:0_18:2)

C47H90NO8P (827.640371)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

Hex1Cer(44:7)

Hex1Cer(d18:1_26:6)

C50H85NO8 (827.627485)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

dMePE(40:2)

dMePE(22:0_18:2)

C47H90NO8P (827.640371)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PS P-14:0/26:2 or PS O-14:1/26:2

PS P-14:0/26:2 or PS O-14:1/26:2

C46H86NO9P (827.6039876)


   
   

PS P-16:1/24:1 or PS O-16:2/24:1

PS P-16:1/24:1 or PS O-16:2/24:1

C46H86NO9P (827.6039876)


   

GalCer 22:1;O2/22:6

GalCer 22:1;O2/22:6

C50H85NO8 (827.627485)


   

GalCer 22:2;O2/22:5

GalCer 22:2;O2/22:5

C50H85NO8 (827.627485)


   
   

GlcCer 22:1;O2/22:6

GlcCer 22:1;O2/22:6

C50H85NO8 (827.627485)


   

GlcCer 22:2;O2/22:5

GlcCer 22:2;O2/22:5

C50H85NO8 (827.627485)


   
   

HexCer 22:1;O2/22:6

HexCer 22:1;O2/22:6

C50H85NO8 (827.627485)


   

HexCer 22:2;O2/22:5

HexCer 22:2;O2/22:5

C50H85NO8 (827.627485)