Exact Mass: 825.6846026000001
Exact Mass Matches: 825.6846026000001
Found 500 metabolites which its exact mass value is equals to given mass value 825.6846026000001
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
GlcCer(d18:1/25:0)
GlcCer(d18:1/25:0) is a glycosphingolipid (ceramide and oligosaccharide)or oligoglycosylceramide with one or more sialic acids (i.e. n-acetylneuraminic acid) linked on the sugar chain. It is a component the cell plasma membrane which modulates cell signal transduction events. Gangliosides have been found to be highly important in immunology. Ganglioside GL1a carries a net-negative charge at pH 7.0 and is acidic. Gangliosides can amount to 6\\% of the weight of lipids from brain, but they are found at low levels in all animal tissues.Cerebrosides are glycosphingolipids. There are four types of glycosphingolipids, the cerebrosides, sulfatides, globosides and gangliosides. Cerebrosides have a single sugar group linked to ceramide. The most common are galactocerebrosides (containing galactose), the least common are glucocerebrosides (containing glucose). Galactocerebrosides are found predominantly in neuronal cell membranes. In contrast glucocerebrosides are not normally found in membranes. Instead, they are typically intermediates in the synthesis or degradation of more complex glycosphingolipids. Galactocerebrosides are synthesized from ceramide and UDP-galactose. Excess lysosomal accumulation of glucocerebrosides is found in Gaucher disease. A glycosphingolipid (ceramide and oligosaccharide)or oligoglycosylceramide with one or more sialic acids (i.e. n-acetylneuraminic acid) linked on the sugar chain. It is a component the cell plasma membrane which modulates cell signal transduction events. Gangliosides have been found to be highly important in immunology. Ganglioside GL1a carries a net-negative charge at pH 7.0 and is acidic. Gangliosides can amount to 6\\% of the weight of lipids from brain, but they are found at low levels in all animal tissues.
PC(22:1(13Z)/P-18:1(11Z))
C48H92NO7P (825.6611051999998)
PC(22:1(13Z)/P-18:1(11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:1(13Z)/P-18:1(11Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of plasmalogen 18:1n7 at the C-2 position. The erucic acid moiety is derived from seed oils and avocados, while the plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PC(22:1(13Z)/P-18:1(11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:1(13Z)/P-18:1(11Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of plasmalogen 18:1n7 at the C-2 position. The erucic acid moiety is derived from seed oils and avocados, while the plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PC(22:1(13Z)/P-18:1(9Z))
C48H92NO7P (825.6611051999998)
PC(22:1(13Z)/P-18:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:1(13Z)/P-18:1(9Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of plasmalogen 18:1n9 at the C-2 position. The erucic acid moiety is derived from seed oils and avocados, while the plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.
PC(22:2(13Z,16Z)/P-18:0)
C48H92NO7P (825.6611051999998)
PC(22:2(13Z,16Z)/P-18:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:2(13Z,16Z)/P-18:0), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of plasmalogen 18:0 at the C-2 position. The docosadienoic acid moiety is derived from animal fats, while the plasmalogen 18:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.
PC(P-18:0/22:2(13Z,16Z))
C48H92NO7P (825.6611051999998)
PC(P-18:0/22:2(13Z,16Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-18:0/22:2(13Z,16Z)), in particular, consists of one chain of plasmalogen 18:0 at the C-1 position and one chain of docosadienoic acid at the C-2 position. The plasmalogen 18:0 moiety is derived from animal fats, liver and kidney, while the docosadienoic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PC(P-18:0/22:2(13Z,16Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-18:0/22:2(13Z,16Z)), in particular, consists of one chain of plasmalogen 18:0 at the C-1 position and one chain of docosadienoic acid at the C-2 position. The plasmalogen 18:0 moiety is derived from animal fats, liver and kidney, while the docosadienoic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PC(P-18:1(11Z)/22:1(13Z))
C48H92NO7P (825.6611051999998)
PC(P-18:1(11Z)/22:1(13Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-18:1(11Z)/22:1(13Z)), in particular, consists of one chain of plasmalogen 18:1n7 at the C-1 position and one chain of erucic acid at the C-2 position. The plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney, while the erucic acid moiety is derived from seed oils and avocados. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PC(P-18:1(11Z)/22:1(13Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-18:1(11Z)/22:1(13Z)), in particular, consists of one chain of plasmalogen 18:1n7 at the C-1 position and one chain of erucic acid at the C-2 position. The plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney, while the erucic acid moiety is derived from seed oils and avocados. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PC(P-18:1(9Z)/22:1(13Z))
C48H92NO7P (825.6611051999998)
PC(P-18:1(9Z)/22:1(13Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-18:1(9Z)/22:1(13Z)), in particular, consists of one chain of plasmalogen 18:1n9 at the C-1 position and one chain of erucic acid at the C-2 position. The plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney, while the erucic acid moiety is derived from seed oils and avocados. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PC(P-18:1(9Z)/22:1(13Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-18:1(9Z)/22:1(13Z)), in particular, consists of one chain of plasmalogen 18:1n9 at the C-1 position and one chain of erucic acid at the C-2 position. The plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney, while the erucic acid moiety is derived from seed oils and avocados. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PC(O-22:0/18:3(6Z,9Z,12Z))
C48H92NO7P (825.6611051999998)
PC(O-22:0/18:3(6Z,9Z,12Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(O-22:0/18:3(6Z,9Z,12Z)), in particular, consists of one chain of Behenyl alcohol at the C-1 position and one chain of g-linolenic acid at the C-2 position. The Behenyl alcohol moiety is derived from Rice bran, while the g-linolenic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(o-22:0/18:3(6Z,9Z,12Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(o-22:0/18:3(6Z,9Z,12Z)), in particular, consists of one chain of Behenyl alcohol at the C-1 position and one chain of g-linolenic acid at the C-2 position. The Behenyl alcohol moiety is derived from Rice bran, while the g-linolenic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PC(O-22:0/18:3(9Z,12Z,15Z))
C48H92NO7P (825.6611051999998)
PC(O-22:0/18:3(9Z,12Z,15Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(O-22:0/18:3(9Z,12Z,15Z)), in particular, consists of one chain of Behenyl alcohol at the C-1 position and one chain of a-linolenic acid at the C-2 position. The Behenyl alcohol moiety is derived from Rice bran, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(o-22:0/18:3(9Z,12Z,15Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(o-22:0/18:3(9Z,12Z,15Z)), in particular, consists of one chain of Behenyl alcohol at the C-1 position and one chain of a-linolenic acid at the C-2 position. The Behenyl alcohol moiety is derived from Rice bran, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
1-O-beta-D-glucopyranosyl-(2S*,3R*,4E,8Z)-2-N-<(2R)-hydroxy-tetracosanoyl> octadecasphinga-4,8-dienine
1-O-??-D-Glucopyranosyl-(2S,3R,4E,8Z)-2-N-(2-hydroxydocosanoyl) eicosasphinga-4,8-dienine
1,3,5-Trihydroxy-2-hexadecanoylamino-(6E,9E)-heptacosdiene-1-O-glucopyranoside|1,3,5-trihydroxy-2-pentadecanoylamino-(6E,9E)-heptacosdiene-1-O-glucopyranoside
Lecithin
C48H92NO7P (825.6611051999998)
PC(O-20:0/20:3(8Z,11Z,14Z))
C48H92NO7P (825.6611051999998)
PC(P-20:0/20:2(11Z,14Z))
C48H92NO7P (825.6611051999998)
PC O-40:3
C48H92NO7P (825.6611051999998)
beta-D-glucosyl-(1<->1)-N-hexacosanoyl-14-methylhexadecasphingosine
A beta-D-glucosylceramide in which a beta-D-glucosyl residue attached to the primary hydroxyl group of N-hexaacosanoyl-14-methylhexadecasphingosine. It is a metabolite of the nematode Caenorhabditis elegans.
N-hexacosanoyl-1-O-beta-D-glucosyl-15-methylhexadecasphing-4-enine
[3-dodecoxy-2-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-N-[(4E,8E)-1,3-dihydroxytetracosa-4,8-dien-2-yl]dotriaconta-5,8,11,14,17,20,23,26,29-nonaenamide
(15Z,18Z,21Z,24Z,27Z,30Z,33Z,36Z,39Z)-N-[(4E,8E)-1,3-dihydroxytetradeca-4,8-dien-2-yl]dotetraconta-15,18,21,24,27,30,33,36,39-nonaenamide
(11Z,14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-N-[(4E,8E)-1,3-dihydroxyoctadeca-4,8-dien-2-yl]octatriaconta-11,14,17,20,23,26,29,32,35-nonaenamide
2-(3-Nonanoyloxy-2-triacontanoyloxypropoxy)-2-[2-(trimethylazaniumyl)ethoxy]acetate
(12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-N-[(4E,8E,12E)-1,3-dihydroxyicosa-4,8,12-trien-2-yl]hexatriaconta-12,15,18,21,24,27,30,33-octaenamide
(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-N-[(4E,8E,12E)-1,3-dihydroxytetracosa-4,8,12-trien-2-yl]dotriaconta-8,11,14,17,20,23,26,29-octaenamide
(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-N-[(4E,8E,12E)-1,3-dihydroxyhexacosa-4,8,12-trien-2-yl]triaconta-6,9,12,15,18,21,24,27-octaenamide
(10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-N-[(4E,8E,12E)-1,3-dihydroxydocosa-4,8,12-trien-2-yl]tetratriaconta-10,13,16,19,22,25,28,31-octaenamide
(17Z,20Z,23Z,26Z,29Z,32Z,35Z,38Z,41Z)-N-[(4E,8E)-1,3-dihydroxydodeca-4,8-dien-2-yl]tetratetraconta-17,20,23,26,29,32,35,38,41-nonaenamide
(18Z,21Z,24Z,27Z,30Z,33Z,36Z,39Z)-N-[(4E,8E,12E)-1,3-dihydroxytetradeca-4,8,12-trien-2-yl]dotetraconta-18,21,24,27,30,33,36,39-octaenamide
(7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-N-[(4E,8E)-1,3-dihydroxydocosa-4,8-dien-2-yl]tetratriaconta-7,10,13,16,19,22,25,28,31-nonaenamide
(13Z,16Z,19Z,22Z,25Z,28Z,31Z,34Z,37Z)-N-[(4E,8E)-1,3-dihydroxyhexadeca-4,8-dien-2-yl]tetraconta-13,16,19,22,25,28,31,34,37-nonaenamide
(14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-N-[(4E,8E,12E)-1,3-dihydroxyoctadeca-4,8,12-trien-2-yl]octatriaconta-14,17,20,23,26,29,32,35-octaenamide
2-(2-Hentriacontanoyloxy-3-octanoyloxypropoxy)-2-[2-(trimethylazaniumyl)ethoxy]acetate
(9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-N-[(4E,8E)-1,3-dihydroxyicosa-4,8-dien-2-yl]hexatriaconta-9,12,15,18,21,24,27,30,33-nonaenamide
(16Z,19Z,22Z,25Z,28Z,31Z,34Z,37Z)-N-[(4E,8E,12E)-1,3-dihydroxyhexadeca-4,8,12-trien-2-yl]tetraconta-16,19,22,25,28,31,34,37-octaenamide
2-(3-Pentadecanoyloxy-2-tetracosanoyloxypropoxy)-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-(2-Henicosanoyloxy-3-octadecanoyloxypropoxy)-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-(3-Dodecanoyloxy-2-heptacosanoyloxypropoxy)-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-(2-Hexacosanoyloxy-3-tridecanoyloxypropoxy)-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-(2-Octacosanoyloxy-3-undecanoyloxypropoxy)-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-(3-Decanoyloxy-2-nonacosanoyloxypropoxy)-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-(2-Icosanoyloxy-3-nonadecanoyloxypropoxy)-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-(2-Pentacosanoyloxy-3-tetradecanoyloxypropoxy)-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-(3-Hexadecanoyloxy-2-tricosanoyloxypropoxy)-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-(2-Docosanoyloxy-3-heptadecanoyloxypropoxy)-2-[2-(trimethylazaniumyl)ethoxy]acetate
(12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z,36Z,39Z)-N-[(E)-1,3-dihydroxytetradec-4-en-2-yl]dotetraconta-12,15,18,21,24,27,30,33,36,39-decaenamide
(10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z,34Z,37Z)-N-[(E)-1,3-dihydroxyhexadec-4-en-2-yl]tetraconta-10,13,16,19,22,25,28,31,34,37-decaenamide
(7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z,34Z,37Z)-N-(1,3-dihydroxyhexadecan-2-yl)tetraconta-7,10,13,16,19,22,25,28,31,34,37-undecaenamide
(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-N-[(E)-1,3-dihydroxyicos-4-en-2-yl]hexatriaconta-6,9,12,15,18,21,24,27,30,33-decaenamide
(9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z,36Z,39Z)-N-(1,3-dihydroxytetradecan-2-yl)dotetraconta-9,12,15,18,21,24,27,30,33,36,39-undecaenamide
(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-N-[(E)-1,3-dihydroxyoctadec-4-en-2-yl]octatriaconta-8,11,14,17,20,23,26,29,32,35-decaenamide
(11Z,14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z,38Z,41Z)-N-(1,3-dihydroxydodecan-2-yl)tetratetraconta-11,14,17,20,23,26,29,32,35,38,41-undecaenamide
(14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z,38Z,41Z)-N-[(E)-1,3-dihydroxydodec-4-en-2-yl]tetratetraconta-14,17,20,23,26,29,32,35,38,41-decaenamide
(4E,8E)-3-hydroxy-2-(2-hydroxytetracosanoylamino)pentacosa-4,8-diene-1-sulfonic acid
(E)-3-hydroxy-2-[[(Z)-2-hydroxytricos-11-enoyl]amino]hexacos-4-ene-1-sulfonic acid
(4E,8E)-3-hydroxy-2-(2-hydroxytricosanoylamino)hexacosa-4,8-diene-1-sulfonic acid
(E)-3-hydroxy-2-[[(Z)-2-hydroxypentacos-11-enoyl]amino]tetracos-4-ene-1-sulfonic acid
(4E,8E)-3-hydroxy-2-(2-hydroxyhexacosanoylamino)tricosa-4,8-diene-1-sulfonic acid
(E)-3-hydroxy-2-[[(Z)-2-hydroxytetracos-11-enoyl]amino]pentacos-4-ene-1-sulfonic acid
3-hydroxy-2-[[(11Z,14Z)-2-hydroxyhexacosa-11,14-dienoyl]amino]tricosane-1-sulfonic acid
(E)-3-hydroxy-2-[[(Z)-2-hydroxyhexacos-11-enoyl]amino]tricos-4-ene-1-sulfonic acid
(4E,8E)-3-hydroxy-2-(2-hydroxypentacosanoylamino)tetracosa-4,8-diene-1-sulfonic acid
3-hydroxy-2-[[(18Z,21Z)-2-hydroxytetracosa-18,21-dienoyl]amino]pentacosane-1-sulfonic acid
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(17Z,20Z)-octacosa-17,20-dienoxy]propan-2-yl] (Z)-pentadec-9-enoate
C48H92NO7P (825.6611051999998)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tricosoxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate
C48H92NO7P (825.6611051999998)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptacosoxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate
C48H92NO7P (825.6611051999998)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propan-2-yl] (Z)-nonadec-9-enoate
C48H92NO7P (825.6611051999998)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]propan-2-yl] heptadecanoate
C48H92NO7P (825.6611051999998)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentacosoxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
C48H92NO7P (825.6611051999998)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-docos-13-enoxy]propan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate
C48H92NO7P (825.6611051999998)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecoxypropan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate
C48H92NO7P (825.6611051999998)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate
C48H92NO7P (825.6611051999998)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propan-2-yl] nonadecanoate
C48H92NO7P (825.6611051999998)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetracos-13-enoxy]propan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate
C48H92NO7P (825.6611051999998)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoxy]propan-2-yl] (13Z,16Z)-docosa-13,16-dienoate
C48H92NO7P (825.6611051999998)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] (14Z,17Z,20Z)-octacosa-14,17,20-trienoate
C48H92NO7P (825.6611051999998)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] heptacosanoate
C48H92NO7P (825.6611051999998)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexacos-15-enoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate
C48H92NO7P (825.6611051999998)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoxy]propan-2-yl] pentadecanoate
C48H92NO7P (825.6611051999998)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate
C48H92NO7P (825.6611051999998)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propan-2-yl] (Z)-docos-13-enoate
C48H92NO7P (825.6611051999998)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate
C48H92NO7P (825.6611051999998)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(15Z,18Z)-hexacosa-15,18-dienoxy]propan-2-yl] (Z)-heptadec-9-enoate
C48H92NO7P (825.6611051999998)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-docosa-13,16-dienoxy]propan-2-yl] (Z)-henicos-11-enoate
C48H92NO7P (825.6611051999998)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] (Z)-hexacos-15-enoate
C48H92NO7P (825.6611051999998)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-henicosoxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate
C48H92NO7P (825.6611051999998)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (17Z,20Z)-octacosa-17,20-dienoate
C48H92NO7P (825.6611051999998)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (Z)-tetracos-13-enoate
C48H92NO7P (825.6611051999998)
[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-[(Z)-nonadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
[3-[(Z)-docos-13-enoxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(Z)-tetracos-13-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
[3-docosoxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
[2-[(Z)-henicos-11-enoyl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-tetracosoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
[2-[(Z)-hexadec-9-enoyl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
[3-[(11Z,14Z)-icosa-11,14-dienoxy]-2-[(Z)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
[3-[(Z)-henicos-11-enoxy]-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
[2-dodecanoyloxy-3-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
[3-[(11Z,14Z)-henicosa-11,14-dienoxy]-2-[(Z)-nonadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
[3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
[3-hexadecoxy-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
[2-hexadecanoyloxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-icosoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
[3-[(15Z,18Z)-hexacosa-15,18-dienoxy]-2-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
[2-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]oxy-3-tetradecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-tetracosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(Z)-icos-11-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
2-[4-[3-[(Z)-hexacos-15-enoyl]oxy-12-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]acetic acid
[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-octadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
[3-[(Z)-hexadec-9-enoxy]-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
[2-icosanoyloxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
[2-docosanoyloxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] pentacosanoate
C48H92NO7P (825.6611051999998)
[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(Z)-octadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] tricosanoate
C48H92NO7P (825.6611051999998)
[2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-3-[(Z)-tetradec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propan-2-yl] henicosanoate
C48H92NO7P (825.6611051999998)
[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-[(Z)-tetracos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
[2-[(Z)-docos-13-enoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
(Z)-N-[3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxynonadecan-2-yl]tetracos-11-enamide
(Z)-N-[3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypentacosan-2-yl]octadec-11-enamide
(Z)-N-[3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyheptacosan-2-yl]hexadec-7-enamide
(Z)-N-[3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhexadecan-2-yl]heptacos-12-enamide
(Z)-N-[3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxydocosan-2-yl]henicos-9-enamide
(Z)-N-[3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyicosan-2-yl]tricos-11-enamide
(Z)-N-[3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyheptadecan-2-yl]hexacos-11-enamide
(Z)-N-[3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypentadecan-2-yl]octacos-13-enamide
(Z)-N-[3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxytriacontan-2-yl]tridec-8-enamide
(Z)-N-[3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxytetradecan-2-yl]nonacos-14-enamide
(Z)-N-[3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhenicosan-2-yl]docos-11-enamide
(Z)-N-[3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoctadecan-2-yl]pentacos-11-enamide
2-[[(2S,3R,4E,8E)-2-[[(E)-hexacos-17-enoyl]amino]-3-hydroxyheptadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhenicos-8-en-2-yl]docosanamide
2-[hydroxy-[(2S,3R,4E,8E)-3-hydroxy-2-[[(E)-tetracos-15-enoyl]amino]nonadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxydocos-8-en-2-yl]henicosanamide
N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhenicos-4-en-2-yl]docosanamide
[(2R)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-[(E)-icos-1-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxynonadec-4-en-2-yl]tetracosanamide
N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyicos-8-en-2-yl]tricosanamide
N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxydocos-4-en-2-yl]henicosanamide
2-[[(2S,3R,4E,8E)-2-[[(E)-docos-13-enoyl]amino]-3-hydroxyhenicosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
(E)-N-[(2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhenicosan-2-yl]docos-13-enamide
(E)-N-[(2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyheptadecan-2-yl]hexacos-17-enamide
(E)-N-[(2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxynonadecan-2-yl]tetracos-15-enamide
[(2R)-2-[(13E,16E)-docosa-13,16-dienoyl]oxy-3-[(E)-octadec-1-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoctadec-4-en-2-yl]pentacosanamide
N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoctadec-8-en-2-yl]pentacosanamide
N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyheptadec-8-en-2-yl]hexacosanamide
[(2R)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-[(E)-icos-1-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H92NO7P (825.6611051999998)
N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyicos-4-en-2-yl]tricosanamide
N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyheptadec-4-en-2-yl]hexacosanamide
N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxynonadec-8-en-2-yl]tetracosanamide
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-(nonacosanoylamino)tetradeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-(icosanoylamino)tricosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(Z)-nonacos-14-enoyl]amino]tetradeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[(4E,8E)-2-[[(Z)-heptacos-12-enoyl]amino]-3-hydroxyhexadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(Z)-nonadec-9-enoyl]amino]tetracosa-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(Z)-tridec-8-enoyl]amino]triaconta-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[(4E,8E,12E)-2-(heptacosanoylamino)-3-hydroxyhexadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[(4E,8E,12E)-2-(docosanoylamino)-3-hydroxyhenicosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(Z)-tetradec-9-enoyl]amino]nonacosa-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[(4E,8E,12E)-2-(hexadecanoylamino)-3-hydroxyheptacosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(E)-3-hydroxy-2-[[(10Z,12Z)-octadeca-10,12-dienoyl]amino]pentacos-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(Z)-octadec-11-enoyl]amino]pentacosa-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-(tridecanoylamino)triaconta-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(Z)-icos-11-enoyl]amino]tricosa-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[(4E,8E,12E)-2-(heptadecanoylamino)-3-hydroxyhexacosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(Z)-octacos-13-enoyl]amino]pentadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-(pentacosanoylamino)octadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(Z)-pentadec-9-enoyl]amino]octacosa-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-(tricosanoylamino)icosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(Z)-tricos-11-enoyl]amino]icosa-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[(4E,8E)-2-[[(Z)-henicos-9-enoyl]amino]-3-hydroxydocosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[(4E,8E,12E)-2-(hexacosanoylamino)-3-hydroxyheptadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(E)-3-hydroxy-2-[[(18Z,21Z)-tetracosa-18,21-dienoyl]amino]nonadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-(octacosanoylamino)pentadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[(4E,8E)-2-[[(Z)-docos-11-enoyl]amino]-3-hydroxyhenicosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[(E)-2-[[(14Z,16Z)-docosa-14,16-dienoyl]amino]-3-hydroxyhenicos-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(Z)-pentacos-11-enoyl]amino]octadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[(4E,8E,12E)-2-(henicosanoylamino)-3-hydroxydocosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-(nonadecanoylamino)tetracosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[(4E,8E)-2-[[(Z)-hexadec-7-enoyl]amino]-3-hydroxyheptacosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[(E)-2-[[(11Z,14Z)-hexacosa-11,14-dienoyl]amino]-3-hydroxyheptadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[(E)-2-[[(4Z,7Z)-hexadeca-4,7-dienoyl]amino]-3-hydroxyheptacos-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-(pentadecanoylamino)octacosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(Z)-tetracos-11-enoyl]amino]nonadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-(tetracosanoylamino)nonadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(E)-3-hydroxy-2-[[(13Z,16Z)-octacosa-13,16-dienoyl]amino]pentadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(E)-3-hydroxy-2-[[(11Z,14Z)-icosa-11,14-dienoyl]amino]tricos-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-(tetradecanoylamino)nonacosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-(octadecanoylamino)pentacosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[(4E,8E)-2-[[(Z)-hexacos-11-enoyl]amino]-3-hydroxyheptadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-(nonanoylamino)tetratriaconta-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[2-[[(18Z,21Z,24Z)-dotriaconta-18,21,24-trienoyl]amino]-3-hydroxyundecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(E)-3-hydroxy-2-[[(13Z,16Z)-tetracosa-13,16-dienoyl]amino]nonadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(Z)-tridec-9-enoyl]amino]triaconta-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-(undecanoylamino)dotriaconta-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[2-[[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]amino]-3-hydroxyheptadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxyheptacosoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[(E)-3,4-dihydroxy-2-[[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]amino]octadec-8-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C47H90N2O7P+ (825.6485299999999)
2-[hydroxy-[3-hydroxy-2-[[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]amino]nonadecoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[3-hydroxy-2-[[(20Z,23Z,26Z)-tetratriaconta-20,23,26-trienoyl]amino]nonoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(Z)-octadec-9-enoyl]amino]pentacosa-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[(4E,8E)-2-[[(Z)-hexacos-15-enoyl]amino]-3-hydroxyheptadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-(octanoylamino)pentatriaconta-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(E)-3-hydroxy-2-[[(23Z,26Z)-tetratriaconta-23,26-dienoyl]amino]non-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[(4E,8E)-2-[[(Z)-henicos-11-enoyl]amino]-3-hydroxydocosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[(E)-2-[[(9Z,12Z)-hexadeca-9,12-dienoyl]amino]-3-hydroxyheptacos-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[(E)-2-[[(9Z,12Z)-heptadeca-9,12-dienoyl]amino]-3-hydroxyhexacos-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[(4E,8E)-2-[[(Z)-docos-13-enoyl]amino]-3-hydroxyhenicosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(E)-3-hydroxy-2-[[(9Z,12Z)-nonadeca-9,12-dienoyl]amino]tetracos-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[(E)-2-[[(21Z,24Z)-dotriaconta-21,24-dienoyl]amino]-3-hydroxyundec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(Z)-triacont-19-enoyl]amino]trideca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[(4E,8E)-2-[[(Z)-hexadec-9-enoyl]amino]-3-hydroxyheptacosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(Z)-octacos-17-enoyl]amino]pentadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[(4E,8E,12E)-2-(decanoylamino)-3-hydroxytritriaconta-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[3-hydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]tricosoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[(8E,12E,16E)-3,4-dihydroxy-2-[[(Z)-tetracos-13-enoyl]amino]octadeca-8,12,16-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C47H90N2O7P+ (825.6485299999999)
2-[[(E)-2-[[(15Z,18Z)-hexacosa-15,18-dienoyl]amino]-3-hydroxyheptadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(E)-3-hydroxy-2-[[(17Z,20Z)-octacosa-17,20-dienoyl]amino]pentadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[(4E,8E,12E)-2-(heptanoylamino)-3-hydroxyhexatriaconta-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[(E)-2-[[(11Z,14Z)-henicosa-11,14-dienoyl]amino]-3-hydroxydocos-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[(4E,8E,12E)-2-(dodecanoylamino)-3-hydroxyhentriaconta-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(E)-3-hydroxy-2-[[(19Z,22Z)-triaconta-19,22-dienoyl]amino]tridec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[(4E,8E)-2-[[(Z)-heptadec-9-enoyl]amino]-3-hydroxyhexacosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[(E)-2-[[(13Z,16Z)-docosa-13,16-dienoyl]amino]-3-hydroxyhenicos-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[(4E,8E,12E)-2-(hexanoylamino)-3-hydroxyheptatriaconta-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(E)-3-hydroxy-2-[[(9Z,12Z)-octadeca-9,12-dienoyl]amino]pentacos-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]pentacosoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[2-[[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]amino]-3-hydroxyhenicosoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(Z)-tetracos-13-enoyl]amino]nonadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[(8E,12E)-3,4-dihydroxy-2-[[(13Z,16Z)-tetracosa-13,16-dienoyl]amino]octadeca-8,12-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C47H90N2O7P+ (825.6485299999999)
2-[hydroxy-[3-hydroxy-2-[[(14Z,17Z,20Z)-octacosa-14,17,20-trienoyl]amino]pentadecoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[hydroxy-[3-hydroxy-2-[[(16Z,19Z,22Z)-triaconta-16,19,22-trienoyl]amino]tridecoxy]phosphoryl]oxyethyl-trimethylazanium
C48H94N2O6P+ (825.6849133999999)
2-[[3,4-dihydroxy-2-[[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]amino]octadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C47H90N2O7P+ (825.6485299999999)
phosphatidylcholine O-40:3
C48H92NO7P (825.6611051999998)
An alkyl,acyl-sn-glycero-3-phosphocholine in which the alkyl or acyl groups at positions 1 and 2 contain a total of 40 carbons and 3 double bonds.
1-eicosyl-2-[(8Z,11Z,14Z)-eicosatrienoyl]-sn-glycero-3-phosphocholine
C48H92NO7P (825.6611051999998)
A phosphatidylcholine O-40:3 in which the alkyl and acyl groups specified at positions 1 and 2 are eicosyl and (8Z,11Z,14Z)-eicosatrienoyl respectively.
MePC(39:3)
C48H92NO7P (825.6611051999998)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
Hex1Cer(42:2)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
Hex1Cer(43:1)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
PE(43:3)
C48H92NO7P (825.6611051999998)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved