Exact Mass: 825.4258968
Exact Mass Matches: 825.4258968
Found 48 metabolites which its exact mass value is equals to given mass value 825.4258968
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
PS(18:4(6Z,9Z,12Z,15Z)/5-iso PGF2VI)
PS(18:4(6Z,9Z,12Z,15Z)/5-iso PGF2VI) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(18:4(6Z,9Z,12Z,15Z)/5-iso PGF2VI), in particular, consists of one chain of one 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(5-iso PGF2VI/18:4(6Z,9Z,12Z,15Z))
PS(5-iso PGF2VI/18:4(6Z,9Z,12Z,15Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(5-iso PGF2VI/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
(Z)-5-hydroxy-2,2,6,6-tetramethylhept-4-en-3-one,(E)-5-hydroxy-2,2,6,6-tetramethylhept-4-en-3-one,niobium
Eribulin mesylate
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent
Deacetoxyvinzolidine
C46H56ClN5O7 (825.3868055999999)
D000970 - Antineoplastic Agents > D014748 - Vinca Alkaloids
[3-[[(2R)-3-hexadecanoyloxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]-oxidophosphoryl]oxy-2-hydroxypropyl] phosphate
C40H75O13P2-3 (825.4682660000001)
Phosphatidylglycerolphosphate (1-oleoyl, 2-palmitoyl)
C40H75O13P2-3 (825.4682660000001)
Phosphatidylglycerolphosphate (1-palmitoyl, 2-cis-vaccenoyl)
C40H75O13P2-3 (825.4682660000001)
(2S,3S,5S,7S,10S,16S,19S,22S,25E,27S)-16-[(2S)-butan-2-yl]-7-tert-butyl-3-hydroxy-22-(4-methoxybenzyl)-2,5,19,20,25-pentamethyl-8-oxa-29-thia-14,17,20,23,30-pentaazatricyclo[25.2.1.0(10,14)]triaconta-1(30),25-diene-9,15,18,21,24-pentone
2-amino-3-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
(2S,3S,5S,7S,16S,19S,22S,25E,27S)-16-[(2S)-butan-2-yl]-7-tert-butyl-3-hydroxy-22-[(4-methoxyphenyl)methyl]-2,5,19,20,25-pentamethyl-8-oxa-29-thia-14,17,20,23,30-pentazatricyclo[25.2.1.010,14]triaconta-1(30),25-diene-9,15,18,21,24-pentone
N-[(4E,8E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytetradeca-4,8-dien-2-yl]hexanamide
C38H67NO18 (825.4357921999999)
N-[(4E,8E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyhexadeca-4,8-dien-2-yl]butanamide
C38H67NO18 (825.4357921999999)
N-[(4E,8E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoctadeca-4,8-dien-2-yl]acetamide
C38H67NO18 (825.4357921999999)
N-[(4E,8E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyheptadeca-4,8-dien-2-yl]propanamide
C38H67NO18 (825.4357921999999)
N-[(4E,8E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxypentadeca-4,8-dien-2-yl]pentanamide
C38H67NO18 (825.4357921999999)
N-[(4E,8E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytrideca-4,8-dien-2-yl]heptanamide
C38H67NO18 (825.4357921999999)
N-[(4E,8E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydodeca-4,8-dien-2-yl]octanamide
C38H67NO18 (825.4357921999999)
(2S)-2-amino-3-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
GPLGIAGQ (TFA)
GPLGIAGQ TFA, a MMP2-cleavable polypeptide, is used as a stimulus-sensitive linker in both liposomal and micellar nanocarriers for MMP2-triggered tumor targeting. GPLGIAGQ TFA can be used to synthesis unique MMP2-targeted photosensitizer in photodynamic therapy (PDT)[1][2][3].
(3s,6r,9s,12r,15s,18r)-3,9,15-tribenzyl-6,12,18-tris[(2r)-butan-2-yl]-4,10,16-trimethyl-1,7,13-trioxa-4,10,16-triazacyclooctadecane-2,5,8,11,14,17-hexone
C48H63N3O9 (825.4564068000001)
3-({1-[(1-{[({1-[(1-carboxy-2-phenylethyl)-c-hydroxycarbonimidoyl]ethyl}-c-hydroxycarbonimidoyl)methyl]-c-hydroxycarbonimidoyl}-2-hydroxy-3-methylbutyl)-c-hydroxycarbonimidoyl]ethyl}-c-hydroxycarbonimidoyl)-3-({1-hydroxy-2-[(1-hydroxy-2-phenylethylidene)amino]-3-methylbutylidene}amino)propanoic acid
3,9,15-tribenzyl-4,10,16-trimethyl-6,12,18-tris(sec-butyl)-1,7,13-trioxa-4,10,16-triazacyclooctadecane-2,5,8,11,14,17-hexone
C48H63N3O9 (825.4564068000001)
(3r)-3-{[(1s)-1-{[(1r,2s)-1-[({[(1r)-1-{[(1s)-1-carboxy-2-phenylethyl]-c-hydroxycarbonimidoyl}ethyl]-c-hydroxycarbonimidoyl}methyl)-c-hydroxycarbonimidoyl]-2-hydroxy-3-methylbutyl]-c-hydroxycarbonimidoyl}ethyl]-c-hydroxycarbonimidoyl}-3-{[(2s)-1-hydroxy-2-[(1-hydroxy-2-phenylethylidene)amino]-3-methylbutylidene]amino}propanoic acid
(2s,3s,5s,7s,10s,16r,19s,22s,25z,27s)-16-[(2s)-butan-2-yl]-3,24-dihydroxy-7-isopropyl-22-[(4-methoxyphenyl)methyl]-2,5,17,19,20,25-hexamethyl-8-oxa-29-thia-14,17,20,23,30-pentaazatricyclo[25.2.1.0¹⁰,¹⁴]triaconta-1(30),23,25-triene-9,15,18,21-tetrone
(2s,3s,5s,7s,10s,16r,19s,22s,25z,27s)-16-[(2s)-butan-2-yl]-7-tert-butyl-3,18,24-trihydroxy-22-[(4-methoxyphenyl)methyl]-2,5,19,20,25-pentamethyl-8-oxa-29-thia-14,17,20,23,30-pentaazatricyclo[25.2.1.0¹⁰,¹⁴]triaconta-1(30),17,23,25-tetraene-9,15,21-trione
(2s,3s,5s,7s,10s,16r,19s,22s,25e,27s)-16-[(2s)-butan-2-yl]-3,24-dihydroxy-7-isopropyl-22-[(4-methoxyphenyl)methyl]-2,5,17,19,20,25-hexamethyl-8-oxa-29-thia-14,17,20,23,30-pentaazatricyclo[25.2.1.0¹⁰,¹⁴]triaconta-1(30),23,25-triene-9,15,18,21-tetrone
3-phenyl-2-({[2,5,11,14-tetrahydroxy-7-methyl-8-oxo-3,9-bis(2-phenylethyl)-12-(sec-butyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)propanoic acid
C45H59N7O8 (825.4424894000001)
(2s,3s,5s,7s,16s,19s,22s,25z,27s)-16-[(2s)-butan-2-yl]-7-tert-butyl-3,18,24-trihydroxy-22-[(4-methoxyphenyl)methyl]-2,5,19,20,25-pentamethyl-8-oxa-29-thia-14,17,20,23,30-pentaazatricyclo[25.2.1.0¹⁰,¹⁴]triaconta-1(30),17,23,25-tetraene-9,15,21-trione
6-{[4-(dimethylamino)-5-hydroxy-6-{[(11e,13e)-5-methoxy-9,16-dimethyl-2,10-dioxo-7-(2-oxoethyl)-4-(propanoyloxy)-1-oxacyclohexadeca-11,13-dien-6-yl]oxy}-2-methyloxan-3-yl]oxy}-4-hydroxy-2,4-dimethyloxan-3-yl butanoate
(2s,3s,5s,7s,10s,16s,19s,22s,25e,27s)-16-[(2s)-butan-2-yl]-3,24-dihydroxy-7-isopropyl-22-[(4-methoxyphenyl)methyl]-2,5,17,19,20,25-hexamethyl-8-oxa-29-thia-14,17,20,23,30-pentaazatricyclo[25.2.1.0¹⁰,¹⁴]triaconta-1(30),23,25-triene-9,15,18,21-tetrone
(2s,3s,5s,7s,10s,16s,19s,22s,25e,27s)-16-[(2s)-butan-2-yl]-7-tert-butyl-3,18,24-trihydroxy-22-[(4-methoxyphenyl)methyl]-2,5,19,20,25-pentamethyl-8-oxa-29-thia-14,17,20,23,30-pentaazatricyclo[25.2.1.0¹⁰,¹⁴]triaconta-1(30),17,23,25-tetraene-9,15,21-trione
(2s,3s,5s,7s,16s,19s,22s,25z,27s)-16-[(2s)-butan-2-yl]-3,24-dihydroxy-7-isopropyl-22-[(4-methoxyphenyl)methyl]-2,5,17,19,20,25-hexamethyl-8-oxa-29-thia-14,17,20,23,30-pentaazatricyclo[25.2.1.0¹⁰,¹⁴]triaconta-1(30),23,25-triene-9,15,18,21-tetrone
(3s,6r,9s,12r,15s,18r)-3,9,15-tribenzyl-6,12,18-tris[(2s)-butan-2-yl]-4,10,16-trimethyl-1,7,13-trioxa-4,10,16-triazacyclooctadecane-2,5,8,11,14,17-hexone
C48H63N3O9 (825.4564068000001)
[(2r,3s,4s,5r,6s)-6-{[(2s,3r,4r,5r,6s)-2-{4-[(2s,11s)-11-(acetyloxy)-4-hydroxy-9-[(2s)-2-methylbutanoyl]-1,5,9-triazacyclotridec-4-en-2-yl]phenoxy}-4,5-dihydroxy-6-methyloxan-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl (2s)-2-methylbutanoate
(2s)-2-({[(3s,9s,12s,15r)-12-[(2s)-butan-2-yl]-2,5,11,14-tetrahydroxy-7-methyl-8-oxo-3,9-bis(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)-3-phenylpropanoic acid
C45H59N7O8 (825.4424894000001)