Exact Mass: 822.4682895999999

Exact Mass Matches: 822.4682895999999

Found 204 metabolites which its exact mass value is equals to given mass value 822.4682895999999, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

β-Acetyldigoxin

[(2R,3S,4S,6S)-6-[(2R,3S,4S,6S)-6-[(2R,3S,4S,6R)-6-[[(3S,5R,8R,9S,10S,12R,13S,14S,17R)-12,14-dihydroxy-10,13-dimethyl-17-(5-oxo-2H-furan-3-yl)-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-3-yl]oxy]-4-hydroxy-2-methyloxan-3-yl]oxy-4-hydroxy-2-methyloxan-3-yl]oxy-4-hydroxy-2-methyloxan-3-yl] acetate

C43H66O15 (822.4401486)


Alpha- or beta-acetyl derivatives of DIGOXIN or lanatoside C from Digitalis lanata. They are better absorbed and longer acting than digoxin and are used in congestive heart failure. β-Acetyldigoxin is a derivative of digoxin, a well-known cardiac glycoside used in the treatment of heart conditions such as heart failure and certain arrhythmias. Cardiac glycosides are compounds that consist of a sugar moiety (glycoside) and a steroid nucleus (aglycone), and they exert their effects on the heart by inhibiting the sodium-potassium ATPase pump, leading to increased intracellular calcium levels and enhanced cardiac contractility. In the case of β-acetyldigoxin, the digoxin molecule is modified by the addition of an acetyl group at the C-16 hydroxyl position of the steroid nucleus. This acetylation can alter the physicochemical properties of the compound, potentially affecting its absorption, distribution, metabolism, and excretion (ADME) profile. As a result, β-acetyldigoxin may exhibit different pharmacokinetic properties compared to digoxin, such as altered bioavailability and tissue distribution. The primary therapeutic use of β-acetyldigoxin, like digoxin, is in the management of chronic heart failure and atrial fibrillation. It is important to note that while β-acetyldigoxin and digoxin share similar mechanisms of action, they are not identical compounds, and their use should be guided by specific clinical indications and patient requirements. Due to the potential for variations in pharmacokinetics and pharmacodynamics, the dosing and monitoring of β-acetyldigoxin may differ from that of digoxin. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D004071 - Digitalis Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D000113 - Acetyldigoxins D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D004791 - Enzyme Inhibitors β-Acetyldigoxin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=5355-48-6 (retrieved 2024-10-11) (CAS RN: 5355-48-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

α-Acetyl Digoxin

alpha-Acetyldigoxin

C43H66O15 (822.4401486)


C - Cardiovascular system > C01 - Cardiac therapy > C01A - Cardiac glycosides > C01AA - Digitalis glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D004071 - Digitalis Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D000113 - Acetyldigoxins D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D004791 - Enzyme Inhibitors

   

(S)-Nerolidol 3-O-[a-L-Rhamnopyranosyl-(1->4)-a-L-rhamnopyranosyl-(1->2)-[a-L-rhamnopyranosyl-(1->6)]-b-D-glucopyranoside]

2-{[5-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-3,4-dihydroxy-6-{[(6E)-3,7,11-trimethyldodeca-1,6,10-trien-3-yl]oxy}oxan-2-yl]methoxy}-6-methyloxane-3,4,5-triol

C39H66O18 (822.4248936000001)


(S)-Nerolidol 3-O-[a-L-Rhamnopyranosyl-(1->4)-a-L-rhamnopyranosyl-(1->2)-[a-L-rhamnopyranosyl-(1->6)]-b-D-glucopyranoside] is found in fruits. (S)-Nerolidol 3-O-[a-L-Rhamnopyranosyl-(1->4)-a-L-rhamnopyranosyl-(1->2)-[a-L-rhamnopyranosyl-(1->6)]-b-D-glucopyranoside] is a constituent of Eriobotrya japonica (loquat). Constituent of Eriobotrya japonica (loquat). (S)-Nerolidol 3-O-[a-L-Rhamnopyranosyl-(1->4)-a-L-rhamnopyranosyl-(1->2)-[a-L-rhamnopyranosyl-(1->6)]-b-D-glucopyranoside] is found in fruits.

   

PGP(16:1(9Z)/18:3(6Z,9Z,12Z))

[(2S)-3-({[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C40H72O13P2 (822.4447922)


PGP(16:1(9Z)/18:3(6Z,9Z,12Z)) is a phosphatidylglycerolphosphate or glycerophospholipid (PGP or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(16:1(9Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the g-linolenic acid moiety is derived from animal fats. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of Phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PGPs have a net charge of -1 at physiological pH and are found in high concentration in mitochondrial membranes and as components of pulmonary surfactant. PGP also serves as a precursor for the synthesis of cardiolipin. PGP is synthesized from CDP-diacylglycerol and glycerol-3-phosphate. PGP(16:1(9Z)/18:3(6Z,9Z,12Z)) belongs to the class of glycerophosphoglycerophosphates, also called phosphatidylglycerophosphates (PGPs). These lipids contain a common glycerophosphate skeleton linked to at least one fatty acyl chain and a glycero-3-phosphate moiety. As is the case with diacylglycerols, phosphatidylglycerophosphates can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PGP(16:1(9Z)/18:3(6Z,9Z,12Z)), in particular, consists of one 9Z-hexadecenoyl chain to the C-1 atom, and one 6Z,9Z,12Z-octadecatrienoyl to the C-2 atom. In E. coli, PGPs can be found in the cytoplasmic membrane. The are synthesized by the addition of glycerol 3-phosphate to a CDP-diacylglycerol. In turn, PGPs are dephosphorylated to Phosphatidylglycerols (PGs) by the enzyme Phosphatidylglycerophosphatase.

   

PGP(18:3(6Z,9Z,12Z)/16:1(9Z))

[(2S)-3-({[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C40H72O13P2 (822.4447922)


PGP(18:3(6Z,9Z,12Z)/16:1(9Z)) is a phosphatidylglycerolphosphate or glycerophospholipid (PGP or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(18:3(6Z,9Z,12Z)/16:1(9Z)), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of Phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PGPs have a net charge of -1 at physiological pH and are found in high concentration in mitochondrial membranes and as components of pulmonary surfactant. PGP also serves as a precursor for the synthesis of cardiolipin. PGP is synthesized from CDP-diacylglycerol and glycerol-3-phosphate. PGP(18:3(6Z,9Z,12Z)/16:1(9Z)) belongs to the class of glycerophosphoglycerophosphates, also called phosphatidylglycerophosphates (PGPs). These lipids contain a common glycerophosphate skeleton linked to at least one fatty acyl chain and a glycero-3-phosphate moiety. As is the case with diacylglycerols, phosphatidylglycerophosphates can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PGP(18:3(6Z,9Z,12Z)/16:1(9Z)), in particular, consists of one 6Z,9Z,12Z-octadecatrienoyl chain to the C-1 atom, and one 9Z-hexadecenoyl to the C-2 atom. In E. coli, PGPs can be found in the cytoplasmic membrane. The are synthesized by the addition of glycerol 3-phosphate to a CDP-diacylglycerol. In turn, PGPs are dephosphorylated to Phosphatidylglycerols (PGs) by the enzyme Phosphatidylglycerophosphatase.

   

PGP(18:3(9Z,12Z,15Z)/16:1(9Z))

[(2S)-3-({[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C40H72O13P2 (822.4447922)


PGP(18:3(9Z,12Z,15Z)/16:1(9Z)) is a phosphatidylglycerolphosphate or glycerophospholipid (PGP or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(18:3(9Z,12Z,15Z)/16:1(9Z)), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of Phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PGPs have a net charge of -1 at physiological pH and are found in high concentration in mitochondrial membranes and as components of pulmonary surfactant. PGP also serves as a precursor for the synthesis of cardiolipin. PGP is synthesized from CDP-diacylglycerol and glycerol-3-phosphate. PGP(18:3(9Z,12Z,15Z)/16:1(9Z)) is a phosphatidylglycerolphosphate or glycerophospholipid (PGP or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(18:3(9Z,12Z,15Z)/16:1(9Z)), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of Phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases.

   

Loquatifolin A

2-{[3-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxy-6-{[(6E)-3,7,11-trimethyldodeca-1,6,10-trien-3-yl]oxy}oxan-2-yl]methoxy}-6-methyloxane-3,4,5-triol

C39H66O18 (822.4248936000001)


Loquatifolin A is found in fruits. Loquatifolin A is a constituent of Eriobotrya japonica (loquat) Constituent of Eriobotrya japonica (loquat). Loquatifolin A is found in loquat and fruits.

   

16-Acetylgitoxin

5-{[5-({5-[(4,5-dihydroxy-6-methyloxan-2-yl)oxy]-4-hydroxy-6-methyloxan-2-yl}oxy)-4-hydroxy-6-methyloxan-2-yl]oxy}-11-hydroxy-2,15-dimethyl-14-(5-oxo-2,5-dihydrofuran-3-yl)tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-13-yl acetate

C43H66O15 (822.4401486)


   

alpha-Acetyldigoxin

6-({6-[(6-{[11,16-dihydroxy-2,15-dimethyl-14-(5-oxo-2,5-dihydrofuran-3-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-5-yl]oxy}-4-hydroxy-2-methyloxan-3-yl)oxy]-4-hydroxy-2-methyloxan-3-yl}oxy)-3-hydroxy-2-methyloxan-4-yl acetate

C43H66O15 (822.4401486)


   

beta-Acetyldigoxin

6-({6-[(6-{[11,16-dihydroxy-2,15-dimethyl-14-(5-oxo-2,5-dihydrofuran-3-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-5-yl]oxy}-4-hydroxy-2-methyloxan-3-yl)oxy]-4-hydroxy-2-methyloxan-3-yl}oxy)-4-hydroxy-2-methyloxan-3-yl acetate

C43H66O15 (822.4401486)


   

PA(22:2(13Z,16Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

[(2R)-3-[(13Z,16Z)-docosa-13,16-dienoyloxy]-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphonic acid

C45H75O11P (822.504673)


PA(22:2(13Z,16Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:2(13Z,16Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 13Z,16Z-docosadienoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/22:2(13Z,16Z))

[(2R)-2-[(13Z,16Z)-docosa-13,16-dienoyloxy]-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphonic acid

C45H75O11P (822.504673)


PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/22:2(13Z,16Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/22:2(13Z,16Z)), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 13Z,16Z-docosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:4(7Z,10Z,13Z,16Z)/PGF2alpha)

[(2R)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]propoxy]phosphonic acid

C45H75O11P (822.504673)


PA(22:4(7Z,10Z,13Z,16Z)/PGF2alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:4(7Z,10Z,13Z,16Z)/PGF2alpha), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF2alpha/22:4(7Z,10Z,13Z,16Z))

[(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]propoxy]phosphonic acid

C45H75O11P (822.504673)


PA(PGF2alpha/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF2alpha/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:4(7Z,10Z,13Z,16Z)/PGE1)

[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propoxy]phosphonic acid

C45H75O11P (822.504673)


PA(22:4(7Z,10Z,13Z,16Z)/PGE1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:4(7Z,10Z,13Z,16Z)/PGE1), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGE1/22:4(7Z,10Z,13Z,16Z))

[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propoxy]phosphonic acid

C45H75O11P (822.504673)


PA(PGE1/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGE1/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:4(7Z,10Z,13Z,16Z)/PGD1)

[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propoxy]phosphonic acid

C45H75O11P (822.504673)


PA(22:4(7Z,10Z,13Z,16Z)/PGD1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:4(7Z,10Z,13Z,16Z)/PGD1), in particular, consists of one chain of one 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGD1/22:4(7Z,10Z,13Z,16Z))

[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propoxy]phosphonic acid

C45H75O11P (822.504673)


PA(PGD1/22:4(7Z,10Z,13Z,16Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGD1/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of 7Z,10Z,13Z,16Z-docosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:5(4Z,7Z,10Z,13Z,16Z)/PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]propoxy]phosphonic acid

C45H75O11P (822.504673)


PA(22:5(4Z,7Z,10Z,13Z,16Z)/PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:5(4Z,7Z,10Z,13Z,16Z)/PGF1alpha), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF1alpha/22:5(4Z,7Z,10Z,13Z,16Z))

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-2-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]propoxy]phosphonic acid

C45H75O11P (822.504673)


PA(PGF1alpha/22:5(4Z,7Z,10Z,13Z,16Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF1alpha/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:5(7Z,10Z,13Z,16Z,19Z)/PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]propoxy]phosphonic acid

C45H75O11P (822.504673)


PA(22:5(7Z,10Z,13Z,16Z,19Z)/PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:5(7Z,10Z,13Z,16Z,19Z)/PGF1alpha), in particular, consists of one chain of one 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF1alpha/22:5(7Z,10Z,13Z,16Z,19Z))

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]propoxy]phosphonic acid

C45H75O11P (822.504673)


PA(PGF1alpha/22:5(7Z,10Z,13Z,16Z,19Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF1alpha/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:3(6Z,9Z,12Z)/PGJ2)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphinic acid

C44H71O12P (822.4682895999999)


PG(18:3(6Z,9Z,12Z)/PGJ2) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:3(6Z,9Z,12Z)/PGJ2), in particular, consists of one chain of one 6Z,9Z,12Z-octadecatrienoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGJ2/18:3(6Z,9Z,12Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphinic acid

C44H71O12P (822.4682895999999)


PG(PGJ2/18:3(6Z,9Z,12Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGJ2/18:3(6Z,9Z,12Z)), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of 6Z,9Z,12Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:3(9Z,12Z,15Z)/PGJ2)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphinic acid

C44H71O12P (822.4682895999999)


PG(18:3(9Z,12Z,15Z)/PGJ2) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:3(9Z,12Z,15Z)/PGJ2), in particular, consists of one chain of one 9Z,12Z,15Z-octadecatrienoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGJ2/18:3(9Z,12Z,15Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphinic acid

C44H71O12P (822.4682895999999)


PG(PGJ2/18:3(9Z,12Z,15Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGJ2/18:3(9Z,12Z,15Z)), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of 9Z,12Z,15Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-15:0/6 keto-PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-[(12-methyltetradecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C41H75O14P (822.489418)


PG(a-15:0/6 keto-PGF1alpha) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-15:0/6 keto-PGF1alpha), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(6 keto-PGF1alpha/a-15:0)

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-[(12-methyltetradecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C41H75O14P (822.489418)


PG(6 keto-PGF1alpha/a-15:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(6 keto-PGF1alpha/a-15:0), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-15:0/TXB2)

[(2R)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-[(12-methyltetradecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C41H75O14P (822.489418)


PG(a-15:0/TXB2) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-15:0/TXB2), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(TXB2/a-15:0)

[(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-[(12-methyltetradecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C41H75O14P (822.489418)


PG(TXB2/a-15:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(TXB2/a-15:0), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-15:0/6 keto-PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-[(13-methyltetradecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C41H75O14P (822.489418)


PG(i-15:0/6 keto-PGF1alpha) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-15:0/6 keto-PGF1alpha), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(6 keto-PGF1alpha/i-15:0)

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-[(13-methyltetradecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C41H75O14P (822.489418)


PG(6 keto-PGF1alpha/i-15:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(6 keto-PGF1alpha/i-15:0), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-15:0/TXB2)

[(2R)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-[(13-methyltetradecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C41H75O14P (822.489418)


PG(i-15:0/TXB2) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-15:0/TXB2), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(TXB2/i-15:0)

[(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-[(13-methyltetradecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C41H75O14P (822.489418)


PG(TXB2/i-15:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(TXB2/i-15:0), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   
   
   
   
   

23-O-acetylsaikosaponin-a

23-O-acetylsaikosaponin-a

C44H70O14 (822.476532)


   

12-O-acetylramanone 3-O-beta-oleandropyranosyl-(1->4)-beta-cymaropyranosyl-(1->4)-beta-cymaropyranoside

12-O-acetylramanone 3-O-beta-oleandropyranosyl-(1->4)-beta-cymaropyranosyl-(1->4)-beta-cymaropyranoside

C44H70O14 (822.476532)


   

cyclo(-Ala1-Pro2-Tyr3-Leu4-Leu5-Pro6-Pro7-Ala8-)|gypsin C

cyclo(-Ala1-Pro2-Tyr3-Leu4-Leu5-Pro6-Pro7-Ala8-)|gypsin C

C42H62N8O9 (822.4639522)


   

6-O-Acetylsaikosaponin A

[(2R,3S,4S,5R,6S)-6-[(2R,3R,4S,5S,6R)-3,5-Dihydroxy-2-[[(1S,2S,4S,5R,8R,9R,10S,13S,14R,17S,18R)-2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.01,18.04,17.05,14.08,13]tetracos-15-en-10-yl]oxy]-6-methyloxan-4-yl]oxy-3,4,5-trihydroxyoxan-2-yl]methyl acetate

C44H70O14 (822.476532)


6-O-acetylsaikosaponin A is a natural product found in Bupleurum marginatum, Bupleurum marginatum var. stenophyllum, and other organisms with data available.

   

28-O-beta-D-glucopyranosyl-bayogenin-3-O-6-O-methyl-4-anhydro-4,5-didehydro-beta-D-glucuronopyranoside

28-O-beta-D-glucopyranosyl-bayogenin-3-O-6-O-methyl-4-anhydro-4,5-didehydro-beta-D-glucuronopyranoside

C43H66O15 (822.4401486)


   

Cloversaponin V methyl ester

Cloversaponin V methyl ester

C43H66O15 (822.4401486)


   

Sarmentogenin-tris-cymarosid

Sarmentogenin-tris-cymarosid

C44H70O14 (822.476532)


   

3-O-acetylsaikosaponin-b2

3-O-acetylsaikosaponin-b2

C44H70O14 (822.476532)


   

bottromycin C2 acid|N-[(3S,6S,14R,14aS)-6-tert-butyl-3-isopropyl-14,14-dimethyl-1,4,10-trioxododecahydropyrrolo[1,2-a][1,4,7,10]tetraazacyclododecin-7(8H)-yliden]-3-methyl-L-valyl-(betaS)-N-[(1R)-2-carboxy-1-(1,3-thiazol-2-yl)ethyl]-beta-methyl-L-phenylalanineamide

bottromycin C2 acid|N-[(3S,6S,14R,14aS)-6-tert-butyl-3-isopropyl-14,14-dimethyl-1,4,10-trioxododecahydropyrrolo[1,2-a][1,4,7,10]tetraazacyclododecin-7(8H)-yliden]-3-methyl-L-valyl-(betaS)-N-[(1R)-2-carboxy-1-(1,3-thiazol-2-yl)ethyl]-beta-methyl-L-phenylalanineamide

C42H62N8O7S (822.4461942)


   

3-O-Acetylsaikosaponin A|3-O-Acetylsaikosaponin D

3-O-Acetylsaikosaponin A|3-O-Acetylsaikosaponin D

C44H70O14 (822.476532)


   
   

2-O-acetylsaikosaponin-b2

2-O-acetylsaikosaponin-b2

C44H70O14 (822.476532)


   
   

28-deglucosylchikusetsusaponin V methyl ester|zingibroside-R1 dimethyl ester

28-deglucosylchikusetsusaponin V methyl ester|zingibroside-R1 dimethyl ester

C44H70O14 (822.476532)


   

(18S)-hydroxydihydroprotolichesterinic acid 18-O-alpha-L-rhamnopyranosyl-(1-3)-O-beta-D-glucopyranosyl-(1-2)-O-beta-D-glucopyranoside-(21,2-lactone)|gobienine C

(18S)-hydroxydihydroprotolichesterinic acid 18-O-alpha-L-rhamnopyranosyl-(1-3)-O-beta-D-glucopyranosyl-(1-2)-O-beta-D-glucopyranoside-(21,2-lactone)|gobienine C

C39H66O18 (822.4248936000001)


   

ruscogenin 1-O-[O-alpha-L-rhamnopyranosyl-(1->2)-4,6-di-O-acetyl-beta-D-galactopyranoside]

ruscogenin 1-O-[O-alpha-L-rhamnopyranosyl-(1->2)-4,6-di-O-acetyl-beta-D-galactopyranoside]

C43H66O15 (822.4401486)


   

(3beta)-3-{[3-O-(6-O-acetyl-beta-D-glucopyranosyl)-beta-D-glucopyranosyl]oxy}olean-12-en-28-oic acid|6??-O-acetylrandianin B

(3beta)-3-{[3-O-(6-O-acetyl-beta-D-glucopyranosyl)-beta-D-glucopyranosyl]oxy}olean-12-en-28-oic acid|6??-O-acetylrandianin B

C44H70O14 (822.476532)


   

(3beta)-3-{[3-O-(2-O-acetyl-beta-D-glucopyranosyl)-beta-D-glucopyranosyl]oxy}olean-12-en-28-oic acid|2??-O-acetylrandianin

(3beta)-3-{[3-O-(2-O-acetyl-beta-D-glucopyranosyl)-beta-D-glucopyranosyl]oxy}olean-12-en-28-oic acid|2??-O-acetylrandianin

C44H70O14 (822.476532)


   
   
   

6-O-acetyl-saikosaponin B2|6-O-Acetylsaikosaponin b2

6-O-acetyl-saikosaponin B2|6-O-Acetylsaikosaponin b2

C44H70O14 (822.476532)


   
   
   

alpha-Acetyl-digoxin

alpha-Acetyl-digoxin

C43H66O15 (822.4401486)


   
   
   

alpha-Acetyldigoxin

alpha-Acetyldigoxin

C43H66O15 (822.4401486)


   

Loquatifolin A

2-({6-[(4,5-dihydroxy-2-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}-6-{[(6E)-3,7,11-trimethyldodeca-1,6,10-trien-3-yl]oxy}oxan-3-yl)oxy]-4,5-dihydroxy-2-methyloxan-3-yl}oxy)-6-methyloxane-3,4,5-triol

C39H66O18 (822.4248936000001)


   

(S)-Nerolidol 3-O-[a-L-Rhamnopyranosyl-(1->4)-a-L-rhamnopyranosyl-(1->2)-[a-L-rhamnopyranosyl-(1->6)]-b-D-glucopyranoside]

2-({6-[(4,5-dihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}-2-{[(6E)-3,7,11-trimethyldodeca-1,6,10-trien-3-yl]oxy}oxan-3-yl)oxy]-4,5-dihydroxy-2-methyloxan-3-yl}oxy)-6-methyloxane-3,4,5-triol

C39H66O18 (822.4248936000001)


   
   

Tetrakis(dipivaloylmethanato)zirconium

Tetrakis(dipivaloylmethanato)zirconium

C44H76O8Zr (822.4586976)


   

(3R,4R)-1-benzyl-N,4-dimethylpiperidin-3-amine,(2R,3R)-2,3-bis[(4-methylbenzoyl)oxy]butanedioic acid

(3R,4R)-1-benzyl-N,4-dimethylpiperidin-3-amine,(2R,3R)-2,3-bis[(4-methylbenzoyl)oxy]butanedioic acid

C48H62N4O8 (822.4567412)


   

Acetyl-Amyloid β-Protein (15-20) amide trifluoroacetate salt

Acetyl-Amyloid β-Protein (15-20) amide trifluoroacetate salt

C42H62N8O9 (822.4639522)


   

16-Acetylgitoxin

Gitoxin 16-beta-acetate

C43H66O15 (822.4401486)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D004071 - Digitalis Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D000113 - Acetyldigoxins

   

12-O-Acetyldigoxin

12-O-Acetyldigoxin

C43H66O15 (822.4401486)


A cardenolide glycoside that is the 12-acetate of digoxin.

   

alpha-Acetyldigoxin

6-({6-[(6-{[11,16-dihydroxy-2,15-dimethyl-14-(5-oxo-2,5-dihydrofuran-3-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-5-yl]oxy}-4-hydroxy-2-methyloxan-3-yl)oxy]-4-hydroxy-2-methyloxan-3-yl}oxy)-3-hydroxy-2-methyloxan-4-yl acetate

C43H66O15 (822.4401486)


   
   
   
   
   

PG(a-15:0/6 keto-PGF1alpha)

PG(a-15:0/6 keto-PGF1alpha)

C41H75O14P (822.489418)


   

PG(6 keto-PGF1alpha/a-15:0)

PG(6 keto-PGF1alpha/a-15:0)

C41H75O14P (822.489418)


   

PG(i-15:0/6 keto-PGF1alpha)

PG(i-15:0/6 keto-PGF1alpha)

C41H75O14P (822.489418)


   

PG(6 keto-PGF1alpha/i-15:0)

PG(6 keto-PGF1alpha/i-15:0)

C41H75O14P (822.489418)


   
   
   
   
   

PA(22:4(7Z,10Z,13Z,16Z)/PGF2alpha)

PA(22:4(7Z,10Z,13Z,16Z)/PGF2alpha)

C45H75O11P (822.504673)


   

PA(PGF2alpha/22:4(7Z,10Z,13Z,16Z))

PA(PGF2alpha/22:4(7Z,10Z,13Z,16Z))

C45H75O11P (822.504673)


   

PA(22:4(7Z,10Z,13Z,16Z)/PGE1)

PA(22:4(7Z,10Z,13Z,16Z)/PGE1)

C45H75O11P (822.504673)


   

PA(PGE1/22:4(7Z,10Z,13Z,16Z))

PA(PGE1/22:4(7Z,10Z,13Z,16Z))

C45H75O11P (822.504673)


   

PA(22:4(7Z,10Z,13Z,16Z)/PGD1)

PA(22:4(7Z,10Z,13Z,16Z)/PGD1)

C45H75O11P (822.504673)


   

PA(PGD1/22:4(7Z,10Z,13Z,16Z))

PA(PGD1/22:4(7Z,10Z,13Z,16Z))

C45H75O11P (822.504673)


   

PA(22:5(4Z,7Z,10Z,13Z,16Z)/PGF1alpha)

PA(22:5(4Z,7Z,10Z,13Z,16Z)/PGF1alpha)

C45H75O11P (822.504673)


   

PA(PGF1alpha/22:5(4Z,7Z,10Z,13Z,16Z))

PA(PGF1alpha/22:5(4Z,7Z,10Z,13Z,16Z))

C45H75O11P (822.504673)


   

PA(22:5(7Z,10Z,13Z,16Z,19Z)/PGF1alpha)

PA(22:5(7Z,10Z,13Z,16Z,19Z)/PGF1alpha)

C45H75O11P (822.504673)


   

PA(PGF1alpha/22:5(7Z,10Z,13Z,16Z,19Z))

PA(PGF1alpha/22:5(7Z,10Z,13Z,16Z,19Z))

C45H75O11P (822.504673)


   

PA(22:2(13Z,16Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PA(22:2(13Z,16Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C45H75O11P (822.504673)


   

PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/22:2(13Z,16Z))

PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/22:2(13Z,16Z))

C45H75O11P (822.504673)


   

Nerolidol glycoside

Nerolidol glycoside

C39H66O18 (822.4248936000001)


A tetrasaccharide derivative of nerolidol isolated from Eriobotrya japonica, and has been shown to exhibit hypoglycemic activity.

   
   

[6-[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H70O12S (822.4587740000001)


   

[6-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H70O12S (822.4587740000001)


   

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C43H67O13P (822.4319062)


   

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C43H67O13P (822.4319062)


   

[1-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate

[1-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate

C43H66O15 (822.4401486)


   

[1-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

[1-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

C43H66O15 (822.4401486)


   

[(2S,3S,6S)-6-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H70O12S (822.4587740000001)


   

[(2S,3S,6S)-6-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H70O12S (822.4587740000001)


   

[(2S,3S,6S)-6-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H70O12S (822.4587740000001)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoate

C43H67O13P (822.4319062)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (11E,13E,15E)-octadeca-11,13,15-trienoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (11E,13E,15E)-octadeca-11,13,15-trienoate

C43H67O13P (822.4319062)


   

[(2S,3S,6S)-6-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C44H70O12S (822.4587740000001)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C43H67O13P (822.4319062)


   

16-O-acetylgitoxin

16-O-acetylgitoxin

C43H66O15 (822.4401486)


A cardenolide glycoside that is the 16-acetate of gitoxin.

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[(1s,2s,4s,5r,8r,9r,10s,13s,14r,17s,18r)-10-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2-hydroxy-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-9-yl]methyl acetate

[(1s,2s,4s,5r,8r,9r,10s,13s,14r,17s,18r)-10-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2-hydroxy-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-9-yl]methyl acetate

C44H70O14 (822.476532)


   

6,34,35-trihydroxy-5,33-bis(hydroxymethyl)-12,29-dimethyl-7-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-2,4,9,14,30,32-hexaoxatetracyclo[29.4.0.0³,⁸.0¹¹,¹⁵]pentatriacontane-10,13-dione

6,34,35-trihydroxy-5,33-bis(hydroxymethyl)-12,29-dimethyl-7-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-2,4,9,14,30,32-hexaoxatetracyclo[29.4.0.0³,⁸.0¹¹,¹⁵]pentatriacontane-10,13-dione

C39H66O18 (822.4248936000001)


   

(1r,3s,5r,6r,7s,8r,11r,12s,15s,29s,31r,33r,34s,35s)-6,34,35-trihydroxy-5,33-bis(hydroxymethyl)-12,29-dimethyl-7-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,4,9,14,30,32-hexaoxatetracyclo[29.4.0.0³,⁸.0¹¹,¹⁵]pentatriacontane-10,13-dione

(1r,3s,5r,6r,7s,8r,11r,12s,15s,29s,31r,33r,34s,35s)-6,34,35-trihydroxy-5,33-bis(hydroxymethyl)-12,29-dimethyl-7-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,4,9,14,30,32-hexaoxatetracyclo[29.4.0.0³,⁸.0¹¹,¹⁵]pentatriacontane-10,13-dione

C39H66O18 (822.4248936000001)


   

[(1s,2s,4s,5r,8r,9r,10s,13s,14r,17s,18s)-10-{[(2r,3r,4r,5s,6r)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2-hydroxy-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-9-yl]methyl acetate

[(1s,2s,4s,5r,8r,9r,10s,13s,14r,17s,18s)-10-{[(2r,3r,4r,5s,6r)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2-hydroxy-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-9-yl]methyl acetate

C44H70O14 (822.476532)


   

[(2r,3s,4r,5r,6s)-6-{[(2r,3r,4r,5s,6r)-3,5-dihydroxy-2-{[(1s,2s,4s,5r,8r,9r,10s,13s,14r,17s,18s)-2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl]oxy}-6-methyloxan-4-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

[(2r,3s,4r,5r,6s)-6-{[(2r,3r,4r,5s,6r)-3,5-dihydroxy-2-{[(1s,2s,4s,5r,8r,9r,10s,13s,14r,17s,18s)-2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl]oxy}-6-methyloxan-4-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

C44H70O14 (822.476532)


   

(6r,7e)-6-methyl-8-[(1s,4e,6z,8e,11r,13r,14r,15s,16e,19r,20r,21s,23r,24s,25s,26e,30e,33s,35s)-13,21,24,25-tetrahydroxy-14,20-dimethyl-3,10-dioxo-2,34,38,39-tetraoxatetracyclo[31.2.2.1¹¹,¹⁵.1¹⁹,²³]nonatriaconta-4,6,8,16,26,30,36-heptaen-35-yl]non-7-enoic acid

(6r,7e)-6-methyl-8-[(1s,4e,6z,8e,11r,13r,14r,15s,16e,19r,20r,21s,23r,24s,25s,26e,30e,33s,35s)-13,21,24,25-tetrahydroxy-14,20-dimethyl-3,10-dioxo-2,34,38,39-tetraoxatetracyclo[31.2.2.1¹¹,¹⁵.1¹⁹,²³]nonatriaconta-4,6,8,16,26,30,36-heptaen-35-yl]non-7-enoic acid

C47H66O12 (822.4554036000001)


   

2-{[5-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-3,4-dihydroxy-6-[(3,7,11-trimethyldodeca-1,6,10-trien-3-yl)oxy]oxan-2-yl]methoxy}-6-methyloxane-3,4,5-triol

2-{[5-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-3,4-dihydroxy-6-[(3,7,11-trimethyldodeca-1,6,10-trien-3-yl)oxy]oxan-2-yl]methoxy}-6-methyloxane-3,4,5-triol

C39H66O18 (822.4248936000001)


   

methyl 6-{[8a-(methoxycarbonyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4-dihydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylate

methyl 6-{[8a-(methoxycarbonyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4-dihydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylate

C44H70O14 (822.476532)


   

1α,3β-hydroxyimberbicacid-23-o-α-[ l-4-acetyl-rhamnopyranosyl]-29-o-α-rhamnopyranoside

NA

C44H70O14 (822.476532)


{"Ingredient_id": "HBIN002287","Ingredient_name": "1\u03b1,3\u03b2-hydroxyimberbicacid-23-o-\u03b1-[ l-4-acetyl-rhamnopyranosyl]-29-o-\u03b1-rhamnopyranoside","Alias": "NA","Ingredient_formula": "C44H70O14","Ingredient_Smile": "CC1C(C(C(C(O1)OC(=O)C2(CCC3(CCC4(C(=CCC5C4(CCC6C5(C(CC(C6(C)COC7C(C(C(C(O7)C)OC(=O)C)O)O)O)O)C)C)C3C2)C)C)C)O)O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "10226","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

2''-o-acetylsaikosaponin d

NA

C44H70O14 (822.476532)


{"Ingredient_id": "HBIN006183","Ingredient_name": "2''-o-acetylsaikosaponin d","Alias": "NA","Ingredient_formula": "C44H70O14","Ingredient_Smile": "CC1C(C(C(C(O1)OC2CCC3(C(C2(C)CO)CCC4(C3C=CC56C4(CC(C7(C5CC(CC7)(C)C)CO6)O)C)C)C)O)OC8C(C(C(C(O8)CO)O)O)OC(=O)C)O","Ingredient_weight": "823 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "500","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "101690815","DrugBank_id": "NA"}

   

3''-o-acetylsaikosaponin a

NA

C44H70O14 (822.476532)


{"Ingredient_id": "HBIN009038","Ingredient_name": "3''-o-acetylsaikosaponin a","Alias": "NA","Ingredient_formula": "C44H70O14","Ingredient_Smile": "CC1C(C(C(C(O1)OC2CCC3(C(C2(C)CO)CCC4(C3C=CC56C4(CC(C7(C5CC(CC7)(C)C)CO6)O)C)C)C)O)OC8C(C(C(C(O8)CO)O)OC(=O)C)O)O","Ingredient_weight": "823 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "498","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "21637631","DrugBank_id": "NA"}

   

3-o-acetylsaikosaponin d

NA

C44H70O14 (822.476532)


{"Ingredient_id": "HBIN009040","Ingredient_name": "3-o-acetylsaikosaponin d","Alias": "NA","Ingredient_formula": "C44H70O14","Ingredient_Smile": "CC1C(C(C(C(O1)OC2CCC3(C(C2(C)CO)CCC4(C3C=CC56C4(CC(C7(C5CC(CC7)(C)C)CO6)O)C)C)C)O)OC8C(C(C(C(O8)CO)O)OC(=O)C)O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "501","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

4-o-acetylsaikosaponin d

NA

C44H70O14 (822.476532)


{"Ingredient_id": "HBIN010741","Ingredient_name": "4-o-acetylsaikosaponin d","Alias": "NA","Ingredient_formula": "C44H70O14","Ingredient_Smile": "CC1C(C(C(C(O1)OC2CCC3(C(C2(C)CO)CCC4(C3C=CC56C4(CC(C7(C5CC(CC7)(C)C)CO6)O)C)C)C)O)OC8C(C(C(C(O8)CO)OC(=O)C)O)O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "502","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

6-o-acetylsaikosaponin d

NA

C44H70O14 (822.476532)


{"Ingredient_id": "HBIN012610","Ingredient_name": "6-o-acetylsaikosaponin d","Alias": "NA","Ingredient_formula": "C44H70O14","Ingredient_Smile": "CC1C(C(C(C(O1)OC2CCC3(C(C2(C)CO)CCC4(C3C=CC56C4(CC(C7(C5CC(CC7)(C)C)CO6)O)C)C)C)O)OC8C(C(C(C(O8)COC(=O)C)O)O)O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "503","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

(2s,3r,4s,5r,6r)-2-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-2-{[(1s,2s,4s,5r,8r,9r,10s,13s,14r,17s,18r)-2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl]oxy}-6-methyloxan-4-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl acetate

(2s,3r,4s,5r,6r)-2-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-2-{[(1s,2s,4s,5r,8r,9r,10s,13s,14r,17s,18r)-2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl]oxy}-6-methyloxan-4-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl acetate

C44H70O14 (822.476532)


   

(3z,5e,7r,8r,9s,10s,11r,13e,15e,17s,18r)-18-[(2s,3r,4s)-4-[(2r,4r,5s,6r)-4-{[(2r,4r,5s,6r)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-2-hydroxy-5-methyl-6-[(1e)-prop-1-en-1-yl]oxan-2-yl]-3-hydroxypentan-2-yl]-9-ethyl-8,10-dihydroxy-3,17-dimethoxy-5,7,11,13-tetramethyl-1-oxacyclooctadeca-3,5,13,15-tetraen-2-one

(3z,5e,7r,8r,9s,10s,11r,13e,15e,17s,18r)-18-[(2s,3r,4s)-4-[(2r,4r,5s,6r)-4-{[(2r,4r,5s,6r)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-2-hydroxy-5-methyl-6-[(1e)-prop-1-en-1-yl]oxan-2-yl]-3-hydroxypentan-2-yl]-9-ethyl-8,10-dihydroxy-3,17-dimethoxy-5,7,11,13-tetramethyl-1-oxacyclooctadeca-3,5,13,15-tetraen-2-one

C45H74O13 (822.5129154)


   

(6r,7e)-6-methyl-8-[(1s,4e,6e,8e,11r,13r,14r,15s,16e,19r,20r,21s,23r,24s,25s,26e,30e,33s,35s)-13,21,24,25-tetrahydroxy-14,20-dimethyl-3,10-dioxo-2,34,38,39-tetraoxatetracyclo[31.2.2.1¹¹,¹⁵.1¹⁹,²³]nonatriaconta-4,6,8,16,26,30,36-heptaen-35-yl]non-7-enoic acid

(6r,7e)-6-methyl-8-[(1s,4e,6e,8e,11r,13r,14r,15s,16e,19r,20r,21s,23r,24s,25s,26e,30e,33s,35s)-13,21,24,25-tetrahydroxy-14,20-dimethyl-3,10-dioxo-2,34,38,39-tetraoxatetracyclo[31.2.2.1¹¹,¹⁵.1¹⁹,²³]nonatriaconta-4,6,8,16,26,30,36-heptaen-35-yl]non-7-enoic acid

C47H66O12 (822.4554036000001)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-2-{[(1s,2s,4s,5r,8r,9r,10s,13s,14r,17s,18r)-2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl]oxy}-6-methyloxan-4-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-2-{[(1s,2s,4s,5r,8r,9r,10s,13s,14r,17s,18r)-2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl]oxy}-6-methyloxan-4-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate

C44H70O14 (822.476532)


   

2-[(3,5-dihydroxy-2-{[2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl]oxy}-6-methyloxan-4-yl)oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate

2-[(3,5-dihydroxy-2-{[2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl]oxy}-6-methyloxan-4-yl)oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate

C44H70O14 (822.476532)


   

[3-(acetyloxy)-4-hydroxy-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-16'-oloxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]methyl acetate

[3-(acetyloxy)-4-hydroxy-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-16'-oloxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]methyl acetate

C43H66O15 (822.4401486)


   

(1r,5s,8z,10e,14s,18s,21r,22r,26s,29z,31e,35s,39s,42r)-1,2,14,22,23,35,37-heptahydroxy-5,21,26,42-tetramethyl-4,25,43,44-tetraoxatricyclo[37.3.1.1¹⁸,²²]tetratetraconta-8,10,29,31-tetraene-3,16,24-trione

(1r,5s,8z,10e,14s,18s,21r,22r,26s,29z,31e,35s,39s,42r)-1,2,14,22,23,35,37-heptahydroxy-5,21,26,42-tetramethyl-4,25,43,44-tetraoxatricyclo[37.3.1.1¹⁸,²²]tetratetraconta-8,10,29,31-tetraene-3,16,24-trione

C44H70O14 (822.476532)


   

6-methyl-8-[(4e)-13,21,24,25-tetrahydroxy-14,20-dimethyl-3,10-dioxo-2,34,38,39-tetraoxatetracyclo[31.2.2.1¹¹,¹⁵.1¹⁹,²³]nonatriaconta-4,6,8,16,26,30,36-heptaen-35-yl]non-7-enoic acid

6-methyl-8-[(4e)-13,21,24,25-tetrahydroxy-14,20-dimethyl-3,10-dioxo-2,34,38,39-tetraoxatetracyclo[31.2.2.1¹¹,¹⁵.1¹⁹,²³]nonatriaconta-4,6,8,16,26,30,36-heptaen-35-yl]non-7-enoic acid

C47H66O12 (822.4554036000001)


   

8,11,20,23,26-pentahydroxy-22-[(4-hydroxyphenyl)methyl]-10,13-dimethyl-25,28-bis(2-methylpropyl)-3,9,12,15,21,24,27,30-octaazatetracyclo[28.3.0.0³,⁷.0¹⁵,¹⁹]tritriaconta-8,11,20,23,26-pentaene-2,14,29-trione

8,11,20,23,26-pentahydroxy-22-[(4-hydroxyphenyl)methyl]-10,13-dimethyl-25,28-bis(2-methylpropyl)-3,9,12,15,21,24,27,30-octaazatetracyclo[28.3.0.0³,⁷.0¹⁵,¹⁹]tritriaconta-8,11,20,23,26-pentaene-2,14,29-trione

C42H62N8O9 (822.4639522)


   

{10-[(3,5-dihydroxy-6-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-2-hydroxy-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-9-yl}methyl acetate

{10-[(3,5-dihydroxy-6-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-2-hydroxy-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-9-yl}methyl acetate

C44H70O14 (822.476532)


   

2-[(3,5-dihydroxy-2-{[2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl]oxy}-6-methyloxan-4-yl)oxy]-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl acetate

2-[(3,5-dihydroxy-2-{[2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl]oxy}-6-methyloxan-4-yl)oxy]-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl acetate

C44H70O14 (822.476532)


   

(2s,3r,4s,5r,6r)-2-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-2-{[(1s,2r,4s,5r,8r,9r,10s,13s,14r,17s,18r)-2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl]oxy}-6-methyloxan-4-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl acetate

(2s,3r,4s,5r,6r)-2-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-2-{[(1s,2r,4s,5r,8r,9r,10s,13s,14r,17s,18r)-2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl]oxy}-6-methyloxan-4-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl acetate

C44H70O14 (822.476532)


   

methyl (2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-8a-(methoxycarbonyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylate

methyl (2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-8a-(methoxycarbonyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylate

C44H70O14 (822.476532)


   

3,3',6,6'-tetrahydroxy-4,4'-bis[(2e,6e,10e)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl]-[1,1'-bi(cyclohexane)]-1(6),1'(6'),3,3'-tetraene-2,2',5,5'-tetrone

3,3',6,6'-tetrahydroxy-4,4'-bis[(2e,6e,10e)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl]-[1,1'-bi(cyclohexane)]-1(6),1'(6'),3,3'-tetraene-2,2',5,5'-tetrone

C52H70O8 (822.5070420000001)


   

(2s)-6-amino-2-({[(3s,6s,9s,12r,15r)-3-benzyl-12-[(2s)-butan-2-yl]-2,5,11,14-tetrahydroxy-9-[2-(4-hydroxyphenyl)ethyl]-6,7-dimethyl-8-oxo-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)hexanoic acid

(2s)-6-amino-2-({[(3s,6s,9s,12r,15r)-3-benzyl-12-[(2s)-butan-2-yl]-2,5,11,14-tetrahydroxy-9-[2-(4-hydroxyphenyl)ethyl]-6,7-dimethyl-8-oxo-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)hexanoic acid

C42H62N8O9 (822.4639522)


   

[(2r,3s,4s,5r,6s)-6-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-2-{[(1s,2s,4s,5r,8r,9r,10s,13s,14r,17s,18r)-2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl]oxy}-6-methyloxan-4-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

[(2r,3s,4s,5r,6s)-6-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-2-{[(1s,2s,4s,5r,8r,9r,10s,13s,14r,17s,18r)-2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl]oxy}-6-methyloxan-4-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

C44H70O14 (822.476532)


   
   

(2r,3s,4r,5r,6s)-6-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-2-{[(1s,2r,4s,5r,8r,9r,10s,13s,14r,17s,18r)-2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl]oxy}-6-methyloxan-4-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl acetate

(2r,3s,4r,5r,6s)-6-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-2-{[(1s,2r,4s,5r,8r,9r,10s,13s,14r,17s,18r)-2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl]oxy}-6-methyloxan-4-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl acetate

C44H70O14 (822.476532)


   

8,11,20,23,26-pentahydroxy-22-[(4-hydroxyphenyl)methyl]-10,13-dimethyl-25,28-bis(sec-butyl)-3,9,12,15,21,24,27,30-octaazatetracyclo[28.3.0.0³,⁷.0¹⁵,¹⁹]tritriaconta-8,11,20,23,26-pentaene-2,14,29-trione

8,11,20,23,26-pentahydroxy-22-[(4-hydroxyphenyl)methyl]-10,13-dimethyl-25,28-bis(sec-butyl)-3,9,12,15,21,24,27,30-octaazatetracyclo[28.3.0.0³,⁷.0¹⁵,¹⁹]tritriaconta-8,11,20,23,26-pentaene-2,14,29-trione

C42H62N8O9 (822.4639522)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-2-{[(1s,2r,4s,5r,8r,9r,10s,13s,14r,17s,18r)-2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl]oxy}-6-methyloxan-4-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-2-{[(1s,2r,4s,5r,8r,9r,10s,13s,14r,17s,18r)-2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl]oxy}-6-methyloxan-4-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate

C44H70O14 (822.476532)


   

methyl 4,5-dihydroxy-6-{[2-hydroxy-4-(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5,6-dihydro-4h-pyran-2-carboxylate

methyl 4,5-dihydroxy-6-{[2-hydroxy-4-(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5,6-dihydro-4h-pyran-2-carboxylate

C43H66O15 (822.4401486)


   

(1s,7s,10s,13s,19s,22s,25s,28s)-8,11,20,23,26-pentahydroxy-22-[(4-hydroxyphenyl)methyl]-10,13-dimethyl-25,28-bis(2-methylpropyl)-3,9,12,15,21,24,27,30-octaazatetracyclo[28.3.0.0³,⁷.0¹⁵,¹⁹]tritriaconta-8,11,20,23,26-pentaene-2,14,29-trione

(1s,7s,10s,13s,19s,22s,25s,28s)-8,11,20,23,26-pentahydroxy-22-[(4-hydroxyphenyl)methyl]-10,13-dimethyl-25,28-bis(2-methylpropyl)-3,9,12,15,21,24,27,30-octaazatetracyclo[28.3.0.0³,⁷.0¹⁵,¹⁹]tritriaconta-8,11,20,23,26-pentaene-2,14,29-trione

C42H62N8O9 (822.4639522)


   

(2r,3s,4r,5r,6s)-6-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-2-{[(1s,2s,4s,5r,8r,9r,10s,13s,14r,17s,18r)-2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl]oxy}-6-methyloxan-4-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl acetate

(2r,3s,4r,5r,6s)-6-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-2-{[(1s,2s,4s,5r,8r,9r,10s,13s,14r,17s,18r)-2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl]oxy}-6-methyloxan-4-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl acetate

C44H70O14 (822.476532)


   

6-methyl-8-{13,21,24,25-tetrahydroxy-14,20-dimethyl-3,10-dioxo-2,34,38,39-tetraoxatetracyclo[31.2.2.1¹¹,¹⁵.1¹⁹,²³]nonatriaconta-4,6,8,16,26,30,36-heptaen-35-yl}non-7-enoic acid

6-methyl-8-{13,21,24,25-tetrahydroxy-14,20-dimethyl-3,10-dioxo-2,34,38,39-tetraoxatetracyclo[31.2.2.1¹¹,¹⁵.1¹⁹,²³]nonatriaconta-4,6,8,16,26,30,36-heptaen-35-yl}non-7-enoic acid

C47H66O12 (822.4554036000001)


   

[(2r,3s,4s,5r,6s)-6-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-2-{[(1s,2r,4s,5r,8r,9r,10s,13s,14r,17s,18r)-2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl]oxy}-6-methyloxan-4-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

[(2r,3s,4s,5r,6s)-6-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-2-{[(1s,2r,4s,5r,8r,9r,10s,13s,14r,17s,18r)-2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl]oxy}-6-methyloxan-4-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

C44H70O14 (822.476532)


   

3a,5a-dihydroxy-7-{[4-hydroxy-5-({5-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-4-methoxy-6-methyloxan-2-yl}oxy)-6-methyloxan-2-yl]oxy}-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde

3a,5a-dihydroxy-7-{[4-hydroxy-5-({5-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-4-methoxy-6-methyloxan-2-yl}oxy)-6-methyloxan-2-yl]oxy}-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde

C43H66O15 (822.4401486)


   

(1s,7s,10s,13s,19s,22s,25s,28s)-25,28-bis[(2s)-butan-2-yl]-8,11,20,23,26-pentahydroxy-22-[(4-hydroxyphenyl)methyl]-10,13-dimethyl-3,9,12,15,21,24,27,30-octaazatetracyclo[28.3.0.0³,⁷.0¹⁵,¹⁹]tritriaconta-8,11,20,23,26-pentaene-2,14,29-trione

(1s,7s,10s,13s,19s,22s,25s,28s)-25,28-bis[(2s)-butan-2-yl]-8,11,20,23,26-pentahydroxy-22-[(4-hydroxyphenyl)methyl]-10,13-dimethyl-3,9,12,15,21,24,27,30-octaazatetracyclo[28.3.0.0³,⁷.0¹⁵,¹⁹]tritriaconta-8,11,20,23,26-pentaene-2,14,29-trione

C42H62N8O9 (822.4639522)


   

[(2r,3s,4r,5r,6s)-6-{[(2r,3r,4r,5s,6r)-3,5-dihydroxy-2-{[(1s,2r,4s,5r,8r,9r,10s,13s,14r,17s,18s)-2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl]oxy}-6-methyloxan-4-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

[(2r,3s,4r,5r,6s)-6-{[(2r,3r,4r,5s,6r)-3,5-dihydroxy-2-{[(1s,2r,4s,5r,8r,9r,10s,13s,14r,17s,18s)-2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl]oxy}-6-methyloxan-4-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

C44H70O14 (822.476532)


   

(1r,2r,3br,5ar,7s,9as,9bs,11ar)-7-{[(2s,4s,5r,6r)-4,5-bis({[(2r,4s,5s,6r)-4,5-dihydroxy-6-methyloxan-2-yl]oxy})-6-methyloxan-2-yl]oxy}-3a-hydroxy-9a,11a-dimethyl-1-(5-oxo-2h-furan-3-yl)-tetradecahydrocyclopenta[a]phenanthren-2-yl acetate

(1r,2r,3br,5ar,7s,9as,9bs,11ar)-7-{[(2s,4s,5r,6r)-4,5-bis({[(2r,4s,5s,6r)-4,5-dihydroxy-6-methyloxan-2-yl]oxy})-6-methyloxan-2-yl]oxy}-3a-hydroxy-9a,11a-dimethyl-1-(5-oxo-2h-furan-3-yl)-tetradecahydrocyclopenta[a]phenanthren-2-yl acetate

C43H66O15 (822.4401486)


   

(6r,7e)-6-methyl-8-[(1s,4z,6z,8e,11r,13r,14r,15s,16e,19r,20r,21s,23r,24s,25s,26e,30e,33s,35s)-13,21,24,25-tetrahydroxy-14,20-dimethyl-3,10-dioxo-2,34,38,39-tetraoxatetracyclo[31.2.2.1¹¹,¹⁵.1¹⁹,²³]nonatriaconta-4,6,8,16,26,30,36-heptaen-35-yl]non-7-enoic acid

(6r,7e)-6-methyl-8-[(1s,4z,6z,8e,11r,13r,14r,15s,16e,19r,20r,21s,23r,24s,25s,26e,30e,33s,35s)-13,21,24,25-tetrahydroxy-14,20-dimethyl-3,10-dioxo-2,34,38,39-tetraoxatetracyclo[31.2.2.1¹¹,¹⁵.1¹⁹,²³]nonatriaconta-4,6,8,16,26,30,36-heptaen-35-yl]non-7-enoic acid

C47H66O12 (822.4554036000001)


   

(1s,4ar,4br,6as,12as,12br,14ar)-11-{[(1s,4ar,4br,6as,12as,12br,14ar)-1-carboxy-1,4a,6a,12b-tetramethyl-2h,3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthen-10-yl]oxy}-8-hydroxy-1,4a,6a,12b-tetramethyl-2h,3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthene-1-carboxylic acid

(1s,4ar,4br,6as,12as,12br,14ar)-11-{[(1s,4ar,4br,6as,12as,12br,14ar)-1-carboxy-1,4a,6a,12b-tetramethyl-2h,3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthen-10-yl]oxy}-8-hydroxy-1,4a,6a,12b-tetramethyl-2h,3h,4h,4bh,5h,6h,12h,12ah,13h,14h,14ah-naphtho[2,1-a]xanthene-1-carboxylic acid

C52H70O8 (822.5070420000001)


   

[(2r,3r,4s,5r,6r)-3-(acetyloxy)-4-hydroxy-6-[(1'r,2r,2's,4's,5r,7's,8'r,9's,12'r,13'r,14'r,16'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-16'-oloxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]methyl acetate

[(2r,3r,4s,5r,6r)-3-(acetyloxy)-4-hydroxy-6-[(1'r,2r,2's,4's,5r,7's,8'r,9's,12'r,13'r,14'r,16'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-16'-oloxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]methyl acetate

C43H66O15 (822.4401486)


   

5-(butanoyloxy)-n-(4-carbamimidamidobutyl)-1-(2-{[1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-methylpentanoyl)-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydroindole-2-carboximidic acid

5-(butanoyloxy)-n-(4-carbamimidamidobutyl)-1-(2-{[1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-methylpentanoyl)-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydroindole-2-carboximidic acid

C39H62N6O13 (822.4374642)


   

(6r,7e)-6-methyl-8-[(1s,4z,6e,8e,11r,13r,14r,15s,16e,19r,20r,21s,23r,24s,25s,26e,30e,33s,35s)-13,21,24,25-tetrahydroxy-14,20-dimethyl-3,10-dioxo-2,34,38,39-tetraoxatetracyclo[31.2.2.1¹¹,¹⁵.1¹⁹,²³]nonatriaconta-4,6,8,16,26,30,36-heptaen-35-yl]non-7-enoic acid

(6r,7e)-6-methyl-8-[(1s,4z,6e,8e,11r,13r,14r,15s,16e,19r,20r,21s,23r,24s,25s,26e,30e,33s,35s)-13,21,24,25-tetrahydroxy-14,20-dimethyl-3,10-dioxo-2,34,38,39-tetraoxatetracyclo[31.2.2.1¹¹,¹⁵.1¹⁹,²³]nonatriaconta-4,6,8,16,26,30,36-heptaen-35-yl]non-7-enoic acid

C47H66O12 (822.4554036000001)


   

methyl (4s,5r,6r)-6-{[(2s,3r,4r,4ar,6ar,6bs,8as,12as,14ar,14br)-2-hydroxy-4-(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-4,5-dihydroxy-5,6-dihydro-4h-pyran-2-carboxylate

methyl (4s,5r,6r)-6-{[(2s,3r,4r,4ar,6ar,6bs,8as,12as,14ar,14br)-2-hydroxy-4-(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-4,5-dihydroxy-5,6-dihydro-4h-pyran-2-carboxylate

C43H66O15 (822.4401486)


   

1-acetyl-3a-hydroxy-7-{[5-({5-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-4-methoxy-6-methyloxan-2-yl}oxy)-4-methoxy-6-methyloxan-2-yl]oxy}-9a,11a-dimethyl-1h,2h,3h,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-11-yl acetate

1-acetyl-3a-hydroxy-7-{[5-({5-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-4-methoxy-6-methyloxan-2-yl}oxy)-4-methoxy-6-methyloxan-2-yl]oxy}-9a,11a-dimethyl-1h,2h,3h,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-11-yl acetate

C44H70O14 (822.476532)


   

(1r,3as,3br,7s,9ar,9bs,11r,11as)-1-acetyl-3a-hydroxy-7-{[(2r,4s,5r,6r)-5-{[(2s,4s,5r,6r)-5-{[(2s,4r,5r,6r)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-9a,11a-dimethyl-1h,2h,3h,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-11-yl acetate

(1r,3as,3br,7s,9ar,9bs,11r,11as)-1-acetyl-3a-hydroxy-7-{[(2r,4s,5r,6r)-5-{[(2s,4s,5r,6r)-5-{[(2s,4r,5r,6r)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-9a,11a-dimethyl-1h,2h,3h,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-11-yl acetate

C44H70O14 (822.476532)


   

{6-[(3,5-dihydroxy-2-{[2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl]oxy}-6-methyloxan-4-yl)oxy]-3,4,5-trihydroxyoxan-2-yl}methyl acetate

{6-[(3,5-dihydroxy-2-{[2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl]oxy}-6-methyloxan-4-yl)oxy]-3,4,5-trihydroxyoxan-2-yl}methyl acetate

C44H70O14 (822.476532)


   

(2s,3r,4r,5r,6r)-2-{[(2r,3r,4r,5s,6r)-3,5-dihydroxy-2-{[(1s,2r,4s,5r,8r,9r,10s,13s,14r,17s,18s)-2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl]oxy}-6-methyloxan-4-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl acetate

(2s,3r,4r,5r,6r)-2-{[(2r,3r,4r,5s,6r)-3,5-dihydroxy-2-{[(1s,2r,4s,5r,8r,9r,10s,13s,14r,17s,18s)-2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl]oxy}-6-methyloxan-4-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl acetate

C44H70O14 (822.476532)


   

6-[(3,5-dihydroxy-2-{[2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl]oxy}-6-methyloxan-4-yl)oxy]-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl acetate

6-[(3,5-dihydroxy-2-{[2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl]oxy}-6-methyloxan-4-yl)oxy]-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl acetate

C44H70O14 (822.476532)


   

(2r,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6s)-5-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxy-6-{[(3r,6e)-3,7,11-trimethyldodeca-1,6,10-trien-3-yl]oxy}oxan-2-yl]methoxy}-6-methyloxane-3,4,5-triol

(2r,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6s)-5-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxy-6-{[(3r,6e)-3,7,11-trimethyldodeca-1,6,10-trien-3-yl]oxy}oxan-2-yl]methoxy}-6-methyloxane-3,4,5-triol

C39H66O18 (822.4248936000001)