Exact Mass: 821.6380492
Exact Mass Matches: 821.6380492
Found 500 metabolites which its exact mass value is equals to given mass value 821.6380492
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
PC(22:4(7Z,10Z,13Z,16Z)/P-18:0)
C48H88NO7P (821.6298067999999)
PC(22:4(7Z,10Z,13Z,16Z)/P-18:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:4(7Z,10Z,13Z,16Z)/P-18:0), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of plasmalogen 18:0 at the C-2 position. The adrenic acid moiety is derived from animal fats, while the plasmalogen 18:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.
PE(18:4(6Z,9Z,12Z,15Z)/24:1(15Z))
PE(18:4(6Z,9Z,12Z,15Z)/24:1(15Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:4(6Z,9Z,12Z,15Z)/24:1(15Z)), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of nervonic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the nervonic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(18:4(6Z,9Z,12Z,15Z)/24:1(15Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:4(6Z,9Z,12Z,15Z)/24:1(15Z)), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of nervonic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the nervonic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(20:0/22:5(4Z,7Z,10Z,13Z,16Z))
PE(20:0/22:5(4Z,7Z,10Z,13Z,16Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:0/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The arachidic acid moiety is derived from peanut oil, while the docosapentaenoic acid moiety is derived from animal fats and brain. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(20:0/22:5(4Z,7Z,10Z,13Z,16Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:0/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The arachidic acid moiety is derived from peanut oil, while the docosapentaenoic acid moiety is derived from animal fats and brain. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(20:0/22:5(7Z,10Z,13Z,16Z,19Z))
PE(20:0/22:5(7Z,10Z,13Z,16Z,19Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:0/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The arachidic acid moiety is derived from peanut oil, while the docosapentaenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(20:0/22:5(7Z,10Z,13Z,16Z,19Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:0/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The arachidic acid moiety is derived from peanut oil, while the docosapentaenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(20:1(11Z)/22:4(7Z,10Z,13Z,16Z))
PE(20:1(11Z)/22:4(7Z,10Z,13Z,16Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:1(11Z)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of adrenic acid at the C-2 position. The eicosenoic acid moiety is derived from vegetable oils and cod oils, while the adrenic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(20:1(11Z)/22:4(7Z,10Z,13Z,16Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:1(11Z)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of adrenic acid at the C-2 position. The eicosenoic acid moiety is derived from vegetable oils and cod oils, while the adrenic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(20:3(5Z,8Z,11Z)/22:2(13Z,16Z))
PE(20:3(5Z,8Z,11Z)/22:2(13Z,16Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:3(5Z,8Z,11Z)/22:2(13Z,16Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the docosadienoic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(20:3(5Z,8Z,11Z)/22:2(13Z,16Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:3(5Z,8Z,11Z)/22:2(13Z,16Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the docosadienoic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(20:3(8Z,11Z,14Z)/22:2(13Z,16Z))
PE(20:3(8Z,11Z,14Z)/22:2(13Z,16Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:3(8Z,11Z,14Z)/22:2(13Z,16Z)), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the docosadienoic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.
PE(20:4(5Z,8Z,11Z,14Z)/22:1(13Z))
PE(20:4(5Z,8Z,11Z,14Z)/22:1(13Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:4(5Z,8Z,11Z,14Z)/22:1(13Z)), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of erucic acid at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the erucic acid moiety is derived from seed oils and avocados. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.
PE(20:4(8Z,11Z,14Z,17Z)/22:1(13Z))
PE(20:4(8Z,11Z,14Z,17Z)/22:1(13Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:4(8Z,11Z,14Z,17Z)/22:1(13Z)), in particular, consists of one chain of eicsoatetraenoic acid at the C-1 position and one chain of erucic acid at the C-2 position. The eicsoatetraenoic acid moiety is derived from fish oils, while the erucic acid moiety is derived from seed oils and avocados. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(20:4(8Z,11Z,14Z,17Z)/22:1(13Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:4(8Z,11Z,14Z,17Z)/22:1(13Z)), in particular, consists of one chain of eicsoatetraenoic acid at the C-1 position and one chain of erucic acid at the C-2 position. The eicsoatetraenoic acid moiety is derived from fish oils, while the erucic acid moiety is derived from seed oils and avocados. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(20:5(5Z,8Z,11Z,14Z,17Z)/22:0)
PE(20:5(5Z,8Z,11Z,14Z,17Z)/22:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:5(5Z,8Z,11Z,14Z,17Z)/22:0), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of behenic acid at the C-2 position. The eicosapentaenoic acid moiety is derived from fish oils, liver and kidney, while the behenic acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.
PE(22:0/20:5(5Z,8Z,11Z,14Z,17Z))
PE(22:0/20:5(5Z,8Z,11Z,14Z,17Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:0/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of behenic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. The behenic acid moiety is derived from groundnut oil, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(22:0/20:5(5Z,8Z,11Z,14Z,17Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:0/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of behenic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. The behenic acid moiety is derived from groundnut oil, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(22:1(13Z)/20:4(5Z,8Z,11Z,14Z))
PE(22:1(13Z)/20:4(5Z,8Z,11Z,14Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:1(13Z)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. The erucic acid moiety is derived from seed oils and avocados, while the arachidonic acid moiety is derived from animal fats and eggs. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.
PE(22:1(13Z)/20:4(8Z,11Z,14Z,17Z))
PE(22:1(13Z)/20:4(8Z,11Z,14Z,17Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:1(13Z)/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The erucic acid moiety is derived from seed oils and avocados, while the eicsoatetraenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.
PE(22:2(13Z,16Z)/20:3(5Z,8Z,11Z))
PE(22:2(13Z,16Z)/20:3(5Z,8Z,11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:2(13Z,16Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of mead acid at the C-2 position. The docosadienoic acid moiety is derived from animal fats, while the mead acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(22:2(13Z,16Z)/20:3(5Z,8Z,11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:2(13Z,16Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of mead acid at the C-2 position. The docosadienoic acid moiety is derived from animal fats, while the mead acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(22:2(13Z,16Z)/20:3(8Z,11Z,14Z))
PE(22:2(13Z,16Z)/20:3(8Z,11Z,14Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:2(13Z,16Z)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of homo-g-linolenic acid at the C-2 position. The docosadienoic acid moiety is derived from animal fats, while the homo-g-linolenic acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(22:2(13Z,16Z)/20:3(8Z,11Z,14Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:2(13Z,16Z)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of homo-g-linolenic acid at the C-2 position. The docosadienoic acid moiety is derived from animal fats, while the homo-g-linolenic acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(22:4(7Z,10Z,13Z,16Z)/20:1(11Z))
PE(22:4(7Z,10Z,13Z,16Z)/20:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:4(7Z,10Z,13Z,16Z)/20:1(11Z)), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. The adrenic acid moiety is derived from animal fats, while the eicosenoic acid moiety is derived from vegetable oils and cod oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.
PE(22:5(4Z,7Z,10Z,13Z,16Z)/20:0)
PE(22:5(4Z,7Z,10Z,13Z,16Z)/20:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:5(4Z,7Z,10Z,13Z,16Z)/20:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of arachidic acid at the C-2 position. The docosapentaenoic acid moiety is derived from animal fats and brain, while the arachidic acid moiety is derived from peanut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(22:5(4Z,7Z,10Z,13Z,16Z)/20:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:5(4Z,7Z,10Z,13Z,16Z)/20:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of arachidic acid at the C-2 position. The docosapentaenoic acid moiety is derived from animal fats and brain, while the arachidic acid moiety is derived from peanut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(22:5(7Z,10Z,13Z,16Z,19Z)/20:0)
PE(22:5(7Z,10Z,13Z,16Z,19Z)/20:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:5(7Z,10Z,13Z,16Z,19Z)/20:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of arachidic acid at the C-2 position. The docosapentaenoic acid moiety is derived from fish oils, while the arachidic acid moiety is derived from peanut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(22:5(7Z,10Z,13Z,16Z,19Z)/20:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:5(7Z,10Z,13Z,16Z,19Z)/20:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of arachidic acid at the C-2 position. The docosapentaenoic acid moiety is derived from fish oils, while the arachidic acid moiety is derived from peanut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(24:1(15Z)/18:4(6Z,9Z,12Z,15Z))
PE(24:1(15Z)/18:4(6Z,9Z,12Z,15Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(24:1(15Z)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. The nervonic acid moiety is derived from fish oils, while the stearidonic acid moiety is derived from seed oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.
PC(P-18:0/22:4(7Z,10Z,13Z,16Z))
C48H88NO7P (821.6298067999999)
PC(P-18:0/22:4(7Z,10Z,13Z,16Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-18:0/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of plasmalogen 18:0 at the C-1 position and one chain of adrenic acid at the C-2 position. The plasmalogen 18:0 moiety is derived from animal fats, liver and kidney, while the adrenic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PC(P-18:0/22:4(7Z,10Z,13Z,16Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-18:0/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of plasmalogen 18:0 at the C-1 position and one chain of adrenic acid at the C-2 position. The plasmalogen 18:0 moiety is derived from animal fats, liver and kidney, while the adrenic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PC(O-20:1(11Z)/20:4(8Z,11Z,14Z,17Z))
C48H88NO7P (821.6298067999999)
PC(O-20:1(11Z)/20:4(8Z,11Z,14Z,17Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(O-20:1(11Z)/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of Eicosenyl alcohol at the C-1 position and one chain of eicosatetraenoic acid at the C-2 position. The Eicosenyl alcohol moiety is derived from vegetable oil, while the eicosatetraenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(o-20:1(11Z)/20:4(8Z,11Z,14Z,17Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(o-20:1(11Z)/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of Eicosenyl alcohol at the C-1 position and one chain of eicosatetraenoic acid at the C-2 position. The Eicosenyl alcohol moiety is derived from vegetable oil, while the eicosatetraenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE-NMe2(18:0/22:5(4Z,7Z,10Z,13Z,16Z))
PE-NMe2(18:0/22:5(4Z,7Z,10Z,13Z,16Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(18:0/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of osbond acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(18:0/22:5(7Z,10Z,13Z,16Z,19Z))
PE-NMe2(18:0/22:5(7Z,10Z,13Z,16Z,19Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(18:0/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of clupanodonic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(18:1(11Z)/22:4(7Z,10Z,13Z,16Z))
PE-NMe2(18:1(11Z)/22:4(7Z,10Z,13Z,16Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(18:1(11Z)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of cis-vaccenic acid at the C-1 position and one chain of adrenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(18:1(9Z)/22:4(7Z,10Z,13Z,16Z))
PE-NMe2(18:1(9Z)/22:4(7Z,10Z,13Z,16Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(18:1(9Z)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of adrenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(18:3(6Z,9Z,12Z)/22:2(13Z,16Z))
PE-NMe2(18:3(6Z,9Z,12Z)/22:2(13Z,16Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(18:3(6Z,9Z,12Z)/22:2(13Z,16Z)), in particular, consists of one chain of gamma-linolenic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(18:3(9Z,12Z,15Z)/22:2(13Z,16Z))
PE-NMe2(18:3(9Z,12Z,15Z)/22:2(13Z,16Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(18:3(9Z,12Z,15Z)/22:2(13Z,16Z)), in particular, consists of one chain of alpha-linolenic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(18:4(6Z,9Z,12Z,15Z)/22:1(13Z))
PE-NMe2(18:4(6Z,9Z,12Z,15Z)/22:1(13Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(18:4(6Z,9Z,12Z,15Z)/22:1(13Z)), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of erucic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(20:0/20:5(5Z,8Z,11Z,14Z,17Z))
PE-NMe2(20:0/20:5(5Z,8Z,11Z,14Z,17Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(20:0/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(20:1(11Z)/20:4(5Z,8Z,11Z,14Z))
PE-NMe2(20:1(11Z)/20:4(5Z,8Z,11Z,14Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(20:1(11Z)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(20:1(11Z)/20:4(8Z,11Z,14Z,17Z))
PE-NMe2(20:1(11Z)/20:4(8Z,11Z,14Z,17Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(20:1(11Z)/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of eicosatetraenoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(20:2(11Z,14Z)/20:3(5Z,8Z,11Z))
PE-NMe2(20:2(11Z,14Z)/20:3(5Z,8Z,11Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(20:2(11Z,14Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of mead acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(20:2(11Z,14Z)/20:3(8Z,11Z,14Z))
PE-NMe2(20:2(11Z,14Z)/20:3(8Z,11Z,14Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(20:2(11Z,14Z)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of dihomo-gamma-linolenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(20:3(5Z,8Z,11Z)/20:2(11Z,14Z))
PE-NMe2(20:3(5Z,8Z,11Z)/20:2(11Z,14Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(20:3(5Z,8Z,11Z)/20:2(11Z,14Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(20:3(8Z,11Z,14Z)/20:2(11Z,14Z))
PE-NMe2(20:3(8Z,11Z,14Z)/20:2(11Z,14Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(20:3(8Z,11Z,14Z)/20:2(11Z,14Z)), in particular, consists of one chain of dihomo-gamma-linolenic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(20:4(5Z,8Z,11Z,14Z)/20:1(11Z))
PE-NMe2(20:4(5Z,8Z,11Z,14Z)/20:1(11Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(20:4(5Z,8Z,11Z,14Z)/20:1(11Z)), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(20:4(8Z,11Z,14Z,17Z)/20:1(11Z))
PE-NMe2(20:4(8Z,11Z,14Z,17Z)/20:1(11Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(20:4(8Z,11Z,14Z,17Z)/20:1(11Z)), in particular, consists of one chain of eicosatetraenoic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(20:5(5Z,8Z,11Z,14Z,17Z)/20:0)
PE-NMe2(20:5(5Z,8Z,11Z,14Z,17Z)/20:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(20:5(5Z,8Z,11Z,14Z,17Z)/20:0), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of arachidic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(22:1(13Z)/18:4(6Z,9Z,12Z,15Z))
PE-NMe2(22:1(13Z)/18:4(6Z,9Z,12Z,15Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(22:1(13Z)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(22:2(13Z,16Z)/18:3(6Z,9Z,12Z))
PE-NMe2(22:2(13Z,16Z)/18:3(6Z,9Z,12Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(22:2(13Z,16Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of gamma-linolenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(22:2(13Z,16Z)/18:3(9Z,12Z,15Z))
PE-NMe2(22:2(13Z,16Z)/18:3(9Z,12Z,15Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(22:2(13Z,16Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of alpha-linolenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(22:4(7Z,10Z,13Z,16Z)/18:1(11Z))
PE-NMe2(22:4(7Z,10Z,13Z,16Z)/18:1(11Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(22:4(7Z,10Z,13Z,16Z)/18:1(11Z)), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of cis-vaccenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(22:4(7Z,10Z,13Z,16Z)/18:1(9Z))
PE-NMe2(22:4(7Z,10Z,13Z,16Z)/18:1(9Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(22:4(7Z,10Z,13Z,16Z)/18:1(9Z)), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of oleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(22:5(4Z,7Z,10Z,13Z,16Z)/18:0)
PE-NMe2(22:5(4Z,7Z,10Z,13Z,16Z)/18:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(22:5(4Z,7Z,10Z,13Z,16Z)/18:0), in particular, consists of one chain of osbond acid at the C-1 position and one chain of stearic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(22:5(7Z,10Z,13Z,16Z,19Z)/18:0)
PE-NMe2(22:5(7Z,10Z,13Z,16Z,19Z)/18:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(22:5(7Z,10Z,13Z,16Z,19Z)/18:0), in particular, consists of one chain of clupanodonic acid at the C-1 position and one chain of stearic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PC(16:0/23:5)
PC(17:0/22:5)
PC(O-18:0/22:5)
C48H88NO7P (821.6298067999999)
PC(O-18:0/22:5)[U]
C48H88NO7P (821.6298067999999)
PC(17:1(9Z)/22:4(7Z,10Z,13Z,16Z))
PC(19:0/20:5(5Z,8Z,11Z,14Z,17Z))
PC(19:1(9Z)/20:4(5Z,8Z,11Z,14Z))
PC(20:4(5Z,8Z,11Z,14Z)/19:1(9Z))
PC(20:5(5Z,8Z,11Z,14Z,17Z)/19:0)
PC(22:4(7Z,10Z,13Z,16Z)/17:1(9Z))
PC(O-20:0/20:5(5Z,8Z,11Z,14Z,17Z))
C48H88NO7P (821.6298067999999)
PC(P-20:0/20:4(5Z,8Z,11Z,14Z))
C48H88NO7P (821.6298067999999)
PE(20:4(5Z,8Z,11Z,14Z)/22:1(11Z))
PE(22:1(11Z)/20:4(5Z,8Z,11Z,14Z))
PC O-40:5
C48H88NO7P (821.6298067999999)
2-O-(3-hydroxy)phytanyl-3-O-phytanyl-sn-glycerol-1-phospho-3-sn-glycerol
2-[[(2S,3S,4R)-3,4-dihydroxy-2-(2-hydroxytricosanoylamino)-15-methylhexadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoyl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
(Z)-N-[(4E,8E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyheptadeca-4,8-dien-2-yl]hexacos-11-enamide
[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-dodecoxy-2-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
2-[3-nonanoyloxy-2-[(19Z,22Z)-triaconta-19,22-dienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-heptadecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-octadecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(Z)-hexacos-15-enoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-henicosanoyloxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-[(Z)-pentadec-9-enoyl]oxy-2-[(Z)-tetracos-13-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-icosanoyloxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(17Z,20Z)-octacosa-17,20-dienoyl]oxy-3-undecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-pentadecanoyloxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-3-tridecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(Z)-icos-11-enoyl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(Z)-henicos-11-enoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-docosanoyloxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(Z)-docos-13-enoyl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-tricosanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-nonadecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
(12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z,36Z,39Z)-N-[(4E,8E,12E)-1,3-dihydroxytetradeca-4,8,12-trien-2-yl]dotetraconta-12,15,18,21,24,27,30,33,36,39-decaenamide
(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z,38Z,41Z)-N-[(E)-1,3-dihydroxydodec-4-en-2-yl]tetratetraconta-8,11,14,17,20,23,26,29,32,35,38,41-dodecaenamide
(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-N-[(4E,8E,12E)-1,3-dihydroxyoctadeca-4,8,12-trien-2-yl]octatriaconta-8,11,14,17,20,23,26,29,32,35-decaenamide
(11Z,14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z,38Z,41Z)-N-[(4E,8E)-1,3-dihydroxydodeca-4,8-dien-2-yl]tetratetraconta-11,14,17,20,23,26,29,32,35,38,41-undecaenamide
(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-N-[(4E,8E,12E)-1,3-dihydroxyicosa-4,8,12-trien-2-yl]hexatriaconta-6,9,12,15,18,21,24,27,30,33-decaenamide
(10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z,34Z,37Z)-N-[(4E,8E,12E)-1,3-dihydroxyhexadeca-4,8,12-trien-2-yl]tetraconta-10,13,16,19,22,25,28,31,34,37-decaenamide
(7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z,34Z,37Z)-N-[(4E,8E)-1,3-dihydroxyhexadeca-4,8-dien-2-yl]tetraconta-7,10,13,16,19,22,25,28,31,34,37-undecaenamide
(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z,36Z,39Z)-N-[(E)-1,3-dihydroxytetradec-4-en-2-yl]dotetraconta-6,9,12,15,18,21,24,27,30,33,36,39-dodecaenamide
(9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z,36Z,39Z)-N-[(4E,8E)-1,3-dihydroxytetradeca-4,8-dien-2-yl]dotetraconta-9,12,15,18,21,24,27,30,33,36,39-undecaenamide
(4E,8E)-3-hydroxy-2-[[(18Z,21Z)-2-hydroxytetracosa-18,21-dienoyl]amino]pentacosa-4,8-diene-1-sulfonic acid
C49H91NO6S (821.6566746000001)
(4E,8E,12E)-3-hydroxy-2-[[(Z)-2-hydroxytetracos-11-enoyl]amino]pentacosa-4,8,12-triene-1-sulfonic acid
C49H91NO6S (821.6566746000001)
(4E,8E,12E)-3-hydroxy-2-[[(Z)-2-hydroxypentacos-11-enoyl]amino]tetracosa-4,8,12-triene-1-sulfonic acid
C49H91NO6S (821.6566746000001)
(4E,8E,12E)-3-hydroxy-2-[[(Z)-2-hydroxytricos-11-enoyl]amino]hexacosa-4,8,12-triene-1-sulfonic acid
C49H91NO6S (821.6566746000001)
(4E,8E,12E)-3-hydroxy-2-[[(Z)-2-hydroxyhexacos-11-enoyl]amino]tricosa-4,8,12-triene-1-sulfonic acid
C49H91NO6S (821.6566746000001)
(4E,8E)-3-hydroxy-2-[[(11Z,14Z)-2-hydroxyhexacosa-11,14-dienoyl]amino]tricosa-4,8-diene-1-sulfonic acid
C49H91NO6S (821.6566746000001)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tricosoxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
C48H88NO7P (821.6298067999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentacosoxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
C48H88NO7P (821.6298067999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propan-2-yl] nonadecanoate
C48H88NO7P (821.6298067999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecoxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate
C48H88NO7P (821.6298067999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate
C48H88NO7P (821.6298067999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]propan-2-yl] heptadecanoate
C48H88NO7P (821.6298067999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] (13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoate
C48H88NO7P (821.6298067999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate
C48H88NO7P (821.6298067999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoxy]propan-2-yl] (Z)-pentadec-9-enoate
C48H88NO7P (821.6298067999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoxy]propan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
C48H88NO7P (821.6298067999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoxy]propan-2-yl] pentadecanoate
C48H88NO7P (821.6298067999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propan-2-yl] (Z)-nonadec-9-enoate
C48H88NO7P (821.6298067999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-henicosoxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
C48H88NO7P (821.6298067999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate
C48H88NO7P (821.6298067999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoate
C48H88NO7P (821.6298067999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] (11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoate
C48H88NO7P (821.6298067999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate
C48H88NO7P (821.6298067999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]propan-2-yl] (Z)-heptadec-9-enoate
C48H88NO7P (821.6298067999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate
C48H88NO7P (821.6298067999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate
C48H88NO7P (821.6298067999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate
C48H88NO7P (821.6298067999999)
(4E,8E,12E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxypentacosa-4,8,12-triene-1-sulfonic acid
C51H83NO5S (821.5991627999999)
[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-icosoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]-2-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[2-[(Z)-hexadec-9-enoyl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[3-hexadecoxy-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[3-docosoxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[2-hexadecanoyloxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-tetracos-13-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[3-[(11Z,14Z)-icosa-11,14-dienoxy]-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-[(Z)-icos-11-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-3-tetradecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[2-dodecanoyloxy-3-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(Z)-tetracos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[3-[(Z)-docos-13-enoxy]-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
2-[4-(3-docosanoyloxy-12-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoylamino]ethanesulfonic acid
C48H87NO7S (821.6202911999999)
2-[4-[3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]oxy-12-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]acetic acid
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (15Z,18Z,21Z,24Z,27Z)-triaconta-15,18,21,24,27-pentaenoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decanoyloxypropan-2-yl] (17Z,20Z,23Z,26Z,29Z)-dotriaconta-17,20,23,26,29-pentaenoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecanoyloxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate
4-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[3-[(Z)-hexadec-9-enoxy]-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]-2-[(Z)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[2-icosanoyloxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate
C48H88NO7P (821.6298067999999)
[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-octadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]propan-2-yl] (Z)-henicos-11-enoate
C48H88NO7P (821.6298067999999)
[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] tricosanoate
C48H88NO7P (821.6298067999999)
[2-[(Z)-docos-13-enoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-[(Z)-tetradec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(Z)-octadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]propan-2-yl] henicosanoate
C48H88NO7P (821.6298067999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] pentacosanoate
C48H88NO7P (821.6298067999999)
[2-docosanoyloxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[3-nonanoyloxy-2-[(15Z,18Z,21Z,24Z,27Z)-triaconta-15,18,21,24,27-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (19Z,22Z,25Z,28Z,31Z)-tetratriaconta-19,22,25,28,31-pentaenoate
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropyl] (13Z,16Z)-docosa-13,16-dienoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] tetracosanoate
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (Z)-hexacos-15-enoate
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] (15Z,18Z)-hexacosa-15,18-dienoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (Z)-tetracos-13-enoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoyl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] docosanoate
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] (13Z,16Z)-tetracosa-13,16-dienoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-icosanoyloxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropyl] (Z)-docos-13-enoate
[3-pentadecanoyloxy-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoyl]oxy-3-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
(13Z,16Z)-N-[(E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypentadec-4-en-2-yl]octacosa-13,16-dienamide
(4Z,7Z)-N-[(E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyheptacos-4-en-2-yl]hexadeca-4,7-dienamide
[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-henicosanoyloxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
(Z)-N-[(4E,8E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxydocosa-4,8-dien-2-yl]henicos-9-enamide
(Z)-N-[(4E,8E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhenicosa-4,8-dien-2-yl]docos-11-enamide
(Z)-N-[(4E,8E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhexadeca-4,8-dien-2-yl]heptacos-12-enamide
(Z)-N-[(4E,8E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxynonadeca-4,8-dien-2-yl]tetracos-11-enamide
(10Z,12Z)-N-[(E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypentacos-4-en-2-yl]octadeca-10,12-dienamide
(Z)-N-[(4E,8E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypentacosa-4,8-dien-2-yl]octadec-11-enamide
(14Z,16Z)-N-[(E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhenicos-4-en-2-yl]docosa-14,16-dienamide
(Z)-N-[(4E,8E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoctadeca-4,8-dien-2-yl]pentacos-11-enamide
(Z)-N-[(4E,8E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyicosa-4,8-dien-2-yl]tricos-11-enamide
(Z)-N-[(4E,8E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyheptacosa-4,8-dien-2-yl]hexadec-7-enamide
(Z)-N-[(4E,8E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypentadeca-4,8-dien-2-yl]octacos-13-enamide
(18Z,21Z)-N-[(E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxynonadec-4-en-2-yl]tetracosa-18,21-dienamide
(Z)-N-[(4E,8E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxytetradeca-4,8-dien-2-yl]nonacos-14-enamide
(11Z,14Z)-N-[(E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyheptadec-4-en-2-yl]hexacosa-11,14-dienamide
(Z)-N-[(4E,8E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxytriaconta-4,8-dien-2-yl]tridec-8-enamide
4-[3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxy-2-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]amino]nonadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
4-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-[(E)-nonadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxy-3-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-2-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
(E)-N-[(2S,3R,4E,8E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxynonadeca-4,8-dien-2-yl]tetracos-15-enamide
4-[3-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-3-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
(E)-N-[(2S,3R,4E,8E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhenicosa-4,8-dien-2-yl]docos-13-enamide
4-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-[(E)-icos-1-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
4-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-[(E)-nonadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]amino]nonadec-8-enoxy]phosphoryl]oxyethyl-trimethylazanium
4-[3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-2-[(14E,17E,20E)-tricosa-14,17,20-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
(E)-N-[(2S,3R,4E,8E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyheptadeca-4,8-dien-2-yl]hexacos-17-enamide
4-[2-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(14E,17E,20E)-tricosa-14,17,20-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(10E,12E)-octadeca-10,12-dienoyl]oxy-2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(9E,11E)-henicosa-9,11-dienoyl]oxy-3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(13E,16E,19E,22E)-pentacosa-13,16,19,22-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-2-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-3-[(E)-hexadec-1-enoxy]-2-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
4-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(13E,16E,19E)-pentacosa-13,16,19-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(9E,11E)-henicosa-9,11-dienoyl]oxy-2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-[(E)-icos-1-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
[(2R)-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-3-[(E)-octadec-1-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C48H88NO7P (821.6298067999999)
4-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(13E,16E,19E,22E)-pentacosa-13,16,19,22-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(10E,12E)-octadeca-10,12-dienoyl]oxy-3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(13E,16E,19E)-pentacosa-13,16,19-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-3-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
2-[[(4E,8E,12E)-2-[[(11Z,14Z)-hexacosa-11,14-dienoyl]amino]-3-hydroxyheptadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E,12E)-2-[[(14Z,16Z)-docosa-14,16-dienoyl]amino]-3-hydroxyhenicosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(18Z,21Z)-tetracosa-18,21-dienoyl]amino]nonadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E,12E)-2-[[(4Z,7Z)-hexadeca-4,7-dienoyl]amino]-3-hydroxyheptacosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(10Z,12Z)-octadeca-10,12-dienoyl]amino]pentacosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(11Z,14Z)-icosa-11,14-dienoyl]amino]tricosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(13Z,16Z)-octacosa-13,16-dienoyl]amino]pentadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]pentacos-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(E)-3,4-dihydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]octadec-8-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E,12E)-2-[[(13Z,16Z)-docosa-13,16-dienoyl]amino]-3-hydroxyhenicosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-[[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]amino]nonadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z)-octadeca-9,12-dienoyl]amino]pentacosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxyheptacosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E,12E)-2-[[(9Z,12Z)-hexadeca-9,12-dienoyl]amino]-3-hydroxyheptacosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-hydroxy-2-[[(15Z,18Z,21Z,24Z,27Z)-triaconta-15,18,21,24,27-pentaenoyl]amino]tridecoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxyheptadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxyheptacos-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(14Z,17Z,20Z)-octacosa-14,17,20-trienoyl]amino]pentadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]pentacosa-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z)-nonadeca-9,12-dienoyl]amino]tetracosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-[[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoyl]amino]pentadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-[[(18Z,21Z,24Z,27Z)-triaconta-18,21,24,27-tetraenoyl]amino]tridec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E)-2-[[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]amino]-3-hydroxyheptadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]pentacosoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E)-2-[[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]amino]-3-hydroxyhenicosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-[[(22Z,25Z,28Z,31Z)-tetratriaconta-22,25,28,31-tetraenoyl]amino]non-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(16Z,19Z,22Z)-triaconta-16,19,22-trienoyl]amino]trideca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(E)-2-[[(20Z,23Z,26Z,29Z)-dotriaconta-20,23,26,29-tetraenoyl]amino]-3-hydroxyundec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E,12E)-2-[[(9Z,12Z)-heptadeca-9,12-dienoyl]amino]-3-hydroxyhexacosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(17Z,20Z)-octacosa-17,20-dienoyl]amino]pentadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(E)-2-[[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]amino]-3-hydroxyheptadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E,12E)-2-[[(11Z,14Z)-henicosa-11,14-dienoyl]amino]-3-hydroxydocosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(13Z,16Z)-tetracosa-13,16-dienoyl]amino]nonadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]tricosoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]amino]nonadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]tricosa-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]tricos-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(8E,12E)-3,4-dihydroxy-2-[[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]amino]octadeca-8,12-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-hydroxy-2-[[(19Z,22Z,25Z,28Z,31Z)-tetratriaconta-19,22,25,28,31-pentaenoyl]amino]nonoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(8E,12E,16E)-3,4-dihydroxy-2-[[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]amino]octadeca-8,12,16-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E,12E)-2-[[(15Z,18Z)-hexacosa-15,18-dienoyl]amino]-3-hydroxyheptadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3,4-dihydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]octadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-[[(17Z,20Z,23Z,26Z,29Z)-dotriaconta-17,20,23,26,29-pentaenoyl]amino]-3-hydroxyundecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-hydroxy-2-[[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoyl]amino]pentadecoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxyhenicosoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]nonadecoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(E)-2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxyhenicos-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
PC(O-20:1(11Z)/20:4(8Z,11Z,14Z,17Z))
C48H88NO7P (821.6298067999999)
1-octadecyl-2-[(4Z,7Z,10Z,13Z,16Z)-docosapentaenoyl]-sn-glycero-3-phosphocholine
C48H88NO7P (821.6298067999999)
A phosphatidylcholine O-40:5 in which the alkyl and acyl groups specified at positions 1 and 2 are octadecyl and (4Z,7Z,10Z,13Z,16Z)-docosapentaenoyl respectively.
MePC(39:5)
C48H88NO7P (821.6298067999999)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
PE(43:5)
C48H88NO7P (821.6298067999999)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
Hex1Cer(42:4)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
Hex1Cer(43:3)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
(2s)-2-{[(2s)-1-hydroxy-2-{[(2s)-1-hydroxy-2-{[hydroxy(1-{2-[(1-hydroxydodecylidene)amino]-2-methylpropanoyl}pyrrolidin-2-yl)methylidene]amino}-4-methylpentylidene]amino}-3-methylbutylidene]amino}-n-[(2s)-1-hydroxy-4-methylpentan-2-yl]pentanediimidic acid
C43H79N7O8 (821.5989814000001)
2-{[(2s)-1-hydroxy-2-{[1-hydroxy-2-({hydroxy[(2s)-1-{2-[(1-hydroxydodecylidene)amino]-2-methylpropanoyl}pyrrolidin-2-yl]methylidene}amino)-4-methylpentylidene]amino}-3-methylbutylidene]amino}-n-[(2s)-1-hydroxy-4-methylpentan-2-yl]pentanediimidic acid
C43H79N7O8 (821.5989814000001)
2-({1-hydroxy-2-[(1-hydroxy-2-{[hydroxy(1-{2-[(1-hydroxydodecylidene)amino]-2-methylpropanoyl}pyrrolidin-2-yl)methylidene]amino}-4-methylpentylidene)amino]-3-methylbutylidene}amino)-n-(1-hydroxy-4-methylpentan-2-yl)pentanediimidic acid
C43H79N7O8 (821.5989814000001)