Exact Mass: 815.604
Exact Mass Matches: 815.604
Found 500 metabolites which its exact mass value is equals to given mass value 815.604
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
PC(18:0/20:1(11Z))
PC(18:0/20:1(11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:0/20:1(11Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the eicosenoic acid moiety is derived from vegetable oils and cod oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PC(14:0/24:1(15Z))
PC(14:0/24:1(15Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(14:0/24:1(15Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of nervonic acid at the C-2 position. The myristic acid moiety is derived from nutmeg and butter, while the nervonic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PC(14:1(9Z)/24:0)
PC(14:1(9Z)/24:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(14:1(9Z)/24:0), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of lignoceric acid at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the lignoceric acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PC(16:0/22:1(13Z))
PC(16:0/22:1(13Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(16:0/22:1(13Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of erucic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the erucic acid moiety is derived from seed oils and avocados. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PC(16:1(9Z)/22:0)
PC(16:1(9Z)/22:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(16:1(9Z)/22:0), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of behenic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the behenic acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PC(18:1(11Z)/20:0)
PC(18:1(11Z)/20:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:1(11Z)/20:0), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of arachidic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the arachidic acid moiety is derived from peanut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PC(18:1(9Z)/20:0)
PC(18:1(9Z)/20:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:1(9Z)/20:0), in particular, consists of one chain of oleic acid at the C-1 position and one chain of arachidic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the arachidic acid moiety is derived from peanut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PC(20:0/18:1(11Z))
PC(20:0/18:1(11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:0/18:1(11Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The arachidic acid moiety is derived from peanut oil, while the vaccenic acid moiety is derived from butter fat and animal fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PC(20:0/18:1(9Z))
PC(20:0/18:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:0/18:1(9Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of oleic acid at the C-2 position. The arachidic acid moiety is derived from peanut oil, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PC(20:1(11Z)/18:0)
PC(20:1(11Z)/18:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:1(11Z)/18:0), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of stearic acid at the C-2 position. The eicosenoic acid moiety is derived from vegetable oils and cod oils, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PC(22:0/16:1(9Z))
PC(22:0/16:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:0/16:1(9Z)), in particular, consists of one chain of behenic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The behenic acid moiety is derived from groundnut oil, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PC(22:1(13Z)/16:0)
PC(22:1(13Z)/16:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:1(13Z)/16:0), in particular, consists of one chain of erucic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The erucic acid moiety is derived from seed oils and avocados, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/P-18:1(11Z))
PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/P-18:1(11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/P-18:1(11Z)), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of plasmalogen 18:1n7 at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.
PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/P-18:1(9Z))
PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/P-18:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/P-18:1(9Z)), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of plasmalogen 18:1n9 at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/P-18:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/P-18:1(9Z)), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of plasmalogen 18:1n9 at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PC(24:0/14:1(9Z))
PC(24:0/14:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(24:0/14:1(9Z)), in particular, consists of one chain of lignoceric acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The lignoceric acid moiety is derived from groundnut oil, while the myristoleic acid moiety is derived from milk fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PC(24:1(15Z)/14:0)
PC(24:1(15Z)/14:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(24:1(15Z)/14:0), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of myristic acid at the C-2 position. The nervonic acid moiety is derived from fish oils, while the myristic acid moiety is derived from nutmeg and butter. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PC(P-18:1(11Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
PC(P-18:1(11Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-18:1(11Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of plasmalogen 18:1n7 at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney, while the docosahexaenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PC(P-18:1(11Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-18:1(11Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of plasmalogen 18:1n7 at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney, while the docosahexaenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PC(P-18:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
PC(P-18:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-18:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of plasmalogen 18:1n9 at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney, while the docosahexaenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PC(P-18:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-18:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of plasmalogen 18:1n9 at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney, while the docosahexaenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PS(14:1(9Z)/24:1(15Z))
PS(14:1(9Z)/24:1(15Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(16:0/16:0), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of nervonic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PS(16:0/22:2(13Z,16Z))
PS(16:0/22:2(13Z,16Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(16:0/22:2(13Z,16Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PS(16:1(9Z)/22:1(13Z))
PS(16:1(9Z)/22:1(13Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(16:1(9Z)/22:1(13Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of erucic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PS(18:0/20:2(11Z,14Z))
PS(18:0/20:2(11Z,14Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(18:0/20:2(11Z,14Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PS(18:1(11Z)/20:1(11Z))
PS(18:1(11Z)/20:1(11Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(18:1(11Z)/20:1(11Z)), in particular, consists of one chain of cis-vaccenic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PS(18:1(9Z)/20:1(11Z))
PS(18:1(9Z)/20:1(11Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(18:1(9Z)/20:1(11Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PS(18:2(9Z,12Z)/20:0)
PS(18:2(9Z,12Z)/20:0) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(18:2(9Z,12Z)/20:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of arachidic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PS(20:0/18:2(9Z,12Z))
PS(20:0/18:2(9Z,12Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(20:0/18:2(9Z,12Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of linoleic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PS(20:1(11Z)/18:1(11Z))
PS(20:1(11Z)/18:1(11Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(20:1(11Z)/18:1(11Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of cis-vaccenic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PS(20:1(11Z)/18:1(9Z))
PS(20:1(11Z)/18:1(9Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(20:1(11Z)/18:1(9Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of oleic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PS(20:2(11Z,14Z)/18:0)
PS(20:2(11Z,14Z)/18:0) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(20:2(11Z,14Z)/18:0), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of stearic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PS(22:1(13Z)/16:1(9Z))
PS(22:1(13Z)/16:1(9Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(22:1(13Z)/16:1(9Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PS(22:2(13Z,16Z)/16:0)
PS(22:2(13Z,16Z)/16:0) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(22:2(13Z,16Z)/16:0), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PS(24:1(15Z)/14:1(9Z))
PS(24:1(15Z)/14:1(9Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(24:1(15Z)/14:1(9Z)), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PE-NMe(16:0/24:1(15Z))
PE-NMe(16:0/24:1(15Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(16:0/24:1(15Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of nervonic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe(16:1(9Z)/24:0)
PE-NMe(16:1(9Z)/24:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(16:1(9Z)/24:0), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of lignoceric acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe(18:0/22:1(13Z))
PE-NMe(18:0/22:1(13Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:0/22:1(13Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of erucic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe(18:1(11Z)/22:0)
PE-NMe(18:1(11Z)/22:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:1(11Z)/22:0), in particular, consists of one chain of cis-vaccenic acid at the C-1 position and one chain of behenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe(18:1(9Z)/22:0)
PE-NMe(18:1(9Z)/22:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:1(9Z)/22:0), in particular, consists of one chain of oleic acid at the C-1 position and one chain of behenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe(20:0/20:1(11Z))
PE-NMe(20:0/20:1(11Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:0/20:1(11Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe(20:1(11Z)/20:0)
PE-NMe(20:1(11Z)/20:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:1(11Z)/20:0), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of arachidic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe(22:0/18:1(11Z))
PE-NMe(22:0/18:1(11Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(22:0/18:1(11Z)), in particular, consists of one chain of behenic acid at the C-1 position and one chain of cis-vaccenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe(22:0/18:1(9Z))
PE-NMe(22:0/18:1(9Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(22:0/18:1(9Z)), in particular, consists of one chain of behenic acid at the C-1 position and one chain of oleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe(22:1(13Z)/18:0)
PE-NMe(22:1(13Z)/18:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(22:1(13Z)/18:0), in particular, consists of one chain of erucic acid at the C-1 position and one chain of stearic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe(24:0/16:1(9Z))
PE-NMe(24:0/16:1(9Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(24:0/16:1(9Z)), in particular, consists of one chain of lignoceric acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe(24:1(15Z)/16:0)
PE-NMe(24:1(15Z)/16:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(24:1(15Z)/16:0), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(15:0/24:1(15Z))
PE-NMe2(15:0/24:1(15Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(15:0/24:1(15Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of nervonic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(24:1(15Z)/15:0)
PE-NMe2(24:1(15Z)/15:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(24:1(15Z)/15:0), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE(22:0/18:1(12Z)-O(9S,10R))
PE(22:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one docosanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).
PE(18:1(12Z)-O(9S,10R)/22:0)
PE(18:1(12Z)-O(9S,10R)/22:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:1(12Z)-O(9S,10R)/22:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of docosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).
PE(22:0/18:1(9Z)-O(12,13))
PE(22:0/18:1(9Z)-O(12,13)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one docosanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).
PE(18:1(9Z)-O(12,13)/22:0)
PE(18:1(9Z)-O(12,13)/22:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:1(9Z)-O(12,13)/22:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of docosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).
PC(16:0/20:3(8Z,11Z,14Z)-2OH(5,6))
PC(16:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(16:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(20:3(8Z,11Z,14Z)-2OH(5,6)/16:0)
PC(20:3(8Z,11Z,14Z)-2OH(5,6)/16:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(8Z,11Z,14Z)-2OH(5,6)/16:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(18:2(9Z,12Z)/18:1(12Z)-2OH(9,10))
PC(18:2(9Z,12Z)/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:2(9Z,12Z)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(18:1(12Z)-2OH(9,10)/18:2(9Z,12Z))
PC(18:1(12Z)-2OH(9,10)/18:2(9Z,12Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:1(12Z)-2OH(9,10)/18:2(9Z,12Z)), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(P-16:0/PGF2alpha)
PC(P-16:0/PGF2alpha) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-16:0/PGF2alpha), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(PGF2alpha/P-16:0)
PC(PGF2alpha/P-16:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(PGF2alpha/P-16:0), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(P-16:0/PGE1)
PC(P-16:0/PGE1) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-16:0/PGE1), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(PGE1/P-16:0)
PC(PGE1/P-16:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(PGE1/P-16:0), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(P-16:0/PGD1)
PC(P-16:0/PGD1) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-16:0/PGD1), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(PGD1/P-16:0)
PC(PGD1/P-16:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(PGD1/P-16:0), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(P-18:0/5-iso PGF2VI)
PC(P-18:0/5-iso PGF2VI) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-18:0/5-iso PGF2VI), in particular, consists of one chain of one 1Z-octadecenyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(5-iso PGF2VI/P-18:0)
PC(5-iso PGF2VI/P-18:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(5-iso PGF2VI/P-18:0), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 1Z-octadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC 38:1
Found in mouse brain; TwoDicalId=466; MgfFile=160720_brain_AA_19_Neg; MgfId=1990 Found in mouse heart; TwoDicalId=3434; MgfFile=160902_Heart_EPA_Neg_09; MgfId=1343
(2-{[2-(docosanoyloxy)-3-[hexadec-9-enoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium
PC(16:0/22:1)[U]
PC(18:0/20:1)
PC(18:1/20:0)
PC(18:1/20:0)[U]
PC(20:0/18:1)[U]
PC(20:0/18:1)
1-(8-[3]-ladderane-octanoyl)-2-(8-[3]-ladderane-octanyl)-sn-glycerophosphocholine
1-eicosanoyl-2-[(11Z)-octadecenoyl]-sn-glycero-3-phosphocholine
A phosphatidylcholine 38:1 in which the acyl groups specified at positions 1 and 2 are eicosanoyl and (11Z)-octadecenoyl respectively.
[2-[(Z)-icos-11-enoyl]oxy-3-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxypropyl] docosanoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxypropan-2-yl] docosanoate
2-[hydroxy-[(2S,3R)-3-hydroxy-2-[[(Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]hept-5-enoyl]amino]nonadecoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(2S,3R)-3-hydroxy-2-[[(Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]hept-5-enoyl]amino]nonadecoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(2S,3R)-3-hydroxy-2-[[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]amino]nonadecoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(E,2S,3R)-2-[[(E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoyl]amino]-3-hydroxynonadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoylamino]nonadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]heptanoylamino]nonadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-amino-3-[hydroxy-[2-[(Z)-icos-11-enoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid
2-amino-3-[2,3-bis[[(Z)-nonadec-9-enoyl]oxy]propoxy-hydroxyphosphoryl]oxypropanoic acid
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-octadec-9-enoyl]oxypropyl] tricosanoate
[3-tetracosanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(Z)-tetradec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
2-[3-nonanoyloxy-2-[(15Z,18Z,21Z,24Z,27Z)-triaconta-15,18,21,24,27-pentaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-heptadecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-henicosanoyloxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-[(Z)-pentadec-9-enoyl]oxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoyl]oxy-3-undecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-nonadecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-[(Z)-henicos-11-enoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-pentadecanoyloxy-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-3-tridecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoxy]propan-2-yl] (Z)-pentadec-9-enoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]propan-2-yl] (Z)-heptadec-9-enoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate
2-amino-3-[[2-[(Z)-docos-13-enoyl]oxy-3-[(Z)-heptadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid
[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
2-amino-3-[[3-[(Z)-docos-13-enoxy]-2-[(Z)-heptadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[hydroxy-[2-icosanoyloxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propoxy]phosphoryl]oxypropanoic acid
2-amino-3-[[2-[(Z)-henicos-11-enoyl]oxy-3-[(Z)-octadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[2-henicosanoyloxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[hydroxy-[3-[(Z)-icos-11-enoxy]-2-[(Z)-nonadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid
2-amino-3-[[3-docosoxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[hydroxy-[3-[(Z)-pentadec-9-enoxy]-2-[(Z)-tetracos-13-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid
2-amino-3-[hydroxy-[2-pentadecanoyloxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propoxy]phosphoryl]oxypropanoic acid
2-amino-3-[[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-octadecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[hydroxy-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-nonadecoxypropoxy]phosphoryl]oxypropanoic acid
2-amino-3-[[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-tricosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[3-[(11Z,14Z)-henicosa-11,14-dienoxy]-2-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[3-henicosoxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[3-[(Z)-henicos-11-enoxy]-2-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[hydroxy-[3-[(11Z,14Z)-icosa-11,14-dienoxy]-2-nonadecanoyloxypropoxy]phosphoryl]oxypropanoic acid
[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-2-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
2-amino-3-[hydroxy-[3-pentadecoxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid
2-amino-3-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-heptadecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
2-amino-3-[[2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-3-tridecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
2-amino-3-[hydroxy-[2-[(Z)-icos-11-enoyl]oxy-3-[(Z)-nonadec-9-enoxy]propoxy]phosphoryl]oxypropanoic acid
2-amino-3-[[3-[(15Z,18Z)-hexacosa-15,18-dienoxy]-2-tridecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[3-[(Z)-hexacos-15-enoxy]-2-[(Z)-tridec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[2-docosanoyloxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid
[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
2-amino-3-[hydroxy-[2-[(Z)-pentadec-9-enoyl]oxy-3-[(Z)-tetracos-13-enoxy]propoxy]phosphoryl]oxypropanoic acid
2-amino-3-[[2-[(Z)-hexacos-15-enoyl]oxy-3-[(Z)-tridec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[hydroxy-[3-icosoxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid
2-amino-3-[[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-heptadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-tricosoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
2-[4-[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-12-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]ethanesulfonic acid
2-[4-[3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-12-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]acetic acid
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tridec-9-enoyl]oxypropyl] octacosanoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (Z)-octacos-17-enoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (Z)-triacont-19-enoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]propan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate
[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-octanoyloxy-2-[(Z)-triacont-19-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (Z)-dotriacont-21-enoate
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] hexacosanoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecanoyloxypropan-2-yl] (Z)-docos-13-enoate
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-heptadec-9-enoyl]oxypropyl] tetracosanoate
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-icos-11-enoyl]oxypropyl] henicosanoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (Z)-tetracos-13-enoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (Z)-hexacos-15-enoate
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] heptacosanoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-icosanoyloxypropan-2-yl] (Z)-henicos-11-enoate
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-hexadec-9-enoyl]oxypropyl] pentacosanoate
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-nonadec-9-enoyl]oxypropyl] docosanoate
[3-decanoyloxy-2-[(Z)-octacos-17-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(Z)-docos-13-enoyl]oxy-3-hexadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-icosanoyloxy-2-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-docosanoyloxy-2-[(Z)-hexadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-pentacosanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(Z)-henicos-11-enoyl]oxy-3-heptadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-nonadecanoyloxy-2-[(Z)-nonadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(Z)-pentadec-9-enoyl]oxy-3-tricosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-henicosanoyloxy-2-[(Z)-heptadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(Z)-tetracos-13-enoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-dodecanoyloxy-2-[(Z)-hexacos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
(5E,8E,11E,14E)-N-[(2S,3R,4E,8E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxynonadeca-4,8-dien-2-yl]tetracosa-5,8,11,14-tetraenamide
[(2S)-3-tetracosanoyloxy-2-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-2-icosanoyloxy-3-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-2-[(E)-docos-13-enoyl]oxy-3-hexadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-3-[(E)-pentadec-9-enoyl]oxy-2-tricosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-nonadecanoyloxypropyl] (E)-docos-13-enoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] hexacosanoate
[(2R)-2-tetracosanoyloxy-3-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-7-enoyl]oxypropan-2-yl] tricosanoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (E)-tetracos-15-enoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-11-enoyl]oxypropan-2-yl] tricosanoate
[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-hexacos-5-enoate
[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] hexacosanoate
4-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-3-icosanoyloxy-2-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-2-docosanoyloxy-3-[(E)-hexadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-heptadecanoyloxypropyl] (E)-tetracos-15-enoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-9-enoyl]oxypropan-2-yl] tricosanoate
[(2S)-3-docosanoyloxy-2-[(E)-hexadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecanoyloxypropan-2-yl] (E)-docos-13-enoate
[(2R)-2-[(E)-tetracos-15-enoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-octadec-13-enoyl]oxypropyl] tricosanoate
[(2R)-3-icosanoyloxy-2-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] pentacosanoate
[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] tetracosanoate
[(2R)-2-icosanoyloxy-3-[(E)-octadec-6-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-3-icosanoyloxy-2-[(E)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-2-henicosanoyloxy-3-[(E)-heptadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-octadec-11-enoyl]oxypropyl] tricosanoate
[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-octadec-7-enoyl]oxypropyl] tricosanoate
[(2R)-3-icosanoyloxy-2-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-2-[(E)-icos-13-enoyl]oxy-3-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2S)-3-docosanoyloxy-2-[(E)-hexadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-9-enoyl]oxypropan-2-yl] pentacosanoate
4-[3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-tricosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-icos-13-enoyl]oxypropan-2-yl] henicosanoate
[(2R)-3-[(E)-icos-13-enoyl]oxy-2-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-3-icosanoyloxy-2-[(E)-octadec-4-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-3-icosanoyloxy-2-[(E)-octadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-icos-11-enoyl]oxypropyl] henicosanoate
[(2S)-3-henicosanoyloxy-2-[(E)-heptadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-2-icosanoyloxy-3-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-octadec-9-enoyl]oxypropyl] tricosanoate
[(2R)-2-[(E)-icos-11-enoyl]oxy-3-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-2-docosanoyloxy-3-[(E)-hexadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-4-enoyl]oxypropan-2-yl] tricosanoate
[(2R)-2-icosanoyloxy-3-[(E)-octadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
4-[2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-hexacos-5-enoate
[(2R)-3-dodecanoyloxy-2-[(E)-hexacos-5-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-octadec-6-enoyl]oxypropyl] tricosanoate
4-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-heptadec-9-enoyl]oxypropan-2-yl] tetracosanoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-13-enoyl]oxypropan-2-yl] tricosanoate
[(2S)-3-[(E)-docos-13-enoyl]oxy-2-hexadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-octadec-17-enoyloxypropyl] tricosanoate
[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-icos-13-enoyl]oxypropyl] henicosanoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadec-17-enoyloxypropan-2-yl] tricosanoate
[(2R)-2-icosanoyloxy-3-[(E)-octadec-4-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-octadec-4-enoyl]oxypropyl] tricosanoate
[(2R)-2-icosanoyloxy-3-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2S)-2-dodecanoyloxy-3-[(E)-hexacos-5-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] pentacosanoate
4-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] pentacosanoate
[(2S)-3-[(E)-tetracos-15-enoyl]oxy-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-3-[(E)-icos-11-enoyl]oxy-2-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-icos-11-enoyl]oxypropan-2-yl] henicosanoate
[(2R)-3-icosanoyloxy-2-[(E)-octadec-6-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
4-[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-6-enoyl]oxypropan-2-yl] tricosanoate
4-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoyl]amino]pentadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxyheptadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoyl]amino]trideca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-hydroxy-2-[[(10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-10,13,16,19,22,25,28,31-octaenoyl]amino]nonoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]amino]tridecoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]nonadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(8E,12E,16E)-3,4-dihydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]octadeca-8,12,16-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E,12E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxyhenicosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxyhenicosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-[[(13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-13,16,19,22,25,28,31-heptaenoyl]amino]non-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]amino]pentadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]tricosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E,12E)-2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxyheptadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]amino]pentadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(E)-2-[[(11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-11,14,17,20,23,26,29-heptaenoyl]amino]-3-hydroxyundec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoyl]amino]tridec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]pentacosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-[[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]amino]-3-hydroxyundecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]nonadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxyheptadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
1-tetradecanoyl-2-[(15Z)-tetracosenoyl]-sn-glycero-3-phosphocholine
A phosphatidylcholine 38:1 in which the acyl groups specified at positions 1 and 2 are tetradecanoyl and (15Z)-tetracosenoyl respectively.
1-octadecanoyl-2-[(11Z)-eicosenoyl]-sn-glycero-3-phosphocholine
A phosphatidylcholine 38:1 in which the acyl groups specified at positions 1 and 2 are octadecanoyl and (11Z)-eicosenoyl respectively.
1-hexadecanoyl-2-[(13Z)-docosenoyl]-sn-glycero-3-phosphocholine
A phosphatidylcholine 38:1 in which the acyl groups specified at positions 1 and 2 are hexadecanoyl and (13Z)-docosenoyl respectively.
1-[(9Z)-octadecenoyl]-2-eicosanoyl-sn-glycero-3-phosphocholine
A phosphatidylcholine 38:1 in which the acyl groups at positions 1 and 2 are specified as (9Z)-octadecenoyl and eicosanoyl respectively.
1-eicosanoyl-2-[(9Z)-octadecenoyl]-sn-glycero-3-phosphocholine
A phosphatidylcholine 38:1 in which the acyl groups at positions 1 and 2 are eicosanoyl and (9Z)-octadecenoyl respectively.
phosphatidylcholine 38:1
A 1,2-diacyl-sn-glycero-3-phosphocholine in which the acyl groups at C-1 and C-2 contain 38 carbons in total with 1 double bond.
phosphatidylcholine (18:1/20:0)
A phosphatidylcholine 38:1 in which the fatty acyl groups at positions 1 and 2 are specified as C18:1 and C20:0 respectively.
MePC(37:1)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
Hex1Cer(42:7)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
dMePE(39:1)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
Hex1Cer(43:6)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved