Exact Mass: 809.5934234

Exact Mass Matches: 809.5934234

Found 500 metabolites which its exact mass value is equals to given mass value 809.5934234, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PC(18:0/20:4(8Z,11Z,14Z,17Z))

(2-{[(2R)-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]-3-(octadecanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(18:0/20:4(8Z,11Z,14Z,17Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the eicsoatetraenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(18:0/20:4(5Z,8Z,11Z,14Z))

(2-{[(2R)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-3-(octadecanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(18:0/20:4(5Z,8Z,11Z,14Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:0/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the arachidonic acid moiety is derived from animal fats and eggs. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(16:0/22:4(7Z,10Z,13Z,16Z))

(2-{[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-(hexadecanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(16:0/22:4(7Z,10Z,13Z,16Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(16:0/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of adrenic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the adrenic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(18:1(11Z)/20:3(5Z,8Z,11Z))

(2-{[(2R)-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-3-[(11Z)-octadec-11-enoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(18:1(11Z)/20:3(5Z,8Z,11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:1(11Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of mead acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the mead acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(18:1(11Z)/20:3(8Z,11Z,14Z))

(2-{[(2R)-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-3-[(11Z)-octadec-11-enoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(18:1(11Z)/20:3(8Z,11Z,14Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:1(11Z)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of homo-g-linolenic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the homo-g-linolenic acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(18:1(11Z)/20:3(8Z,11Z,14Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:1(11Z)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of homo-g-linolenic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the homo-g-linolenic acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(18:1(9Z)/20:3(5Z,8Z,11Z))

(2-{[(2R)-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-3-[(9Z)-octadec-9-enoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(18:1(9Z)/20:3(5Z,8Z,11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:1(9Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of mead acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the mead acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(18:1(9Z)/20:3(5Z,8Z,11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:1(9Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of mead acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the mead acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(18:1(9Z)/20:3(8Z,11Z,14Z))

(2-{[(2R)-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-3-[(9Z)-octadec-9-enoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(18:1(9Z)/20:3(8Z,11Z,14Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:1(9Z)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of homo-g-linolenic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the homo-g-linolenic acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(18:2(9Z,12Z)/20:2(11Z,14Z))

(2-{[(2R)-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(18:2(9Z,12Z)/20:2(11Z,14Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:2(9Z,12Z)/20:2(11Z,14Z)), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The linoleic acid moiety is derived from seed oils, while the eicosadienoic acid moiety is derived from fish oils and liver. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(18:3(6Z,9Z,12Z)/20:1(11Z))

(2-{[(2R)-2-[(11Z)-icos-11-enoyloxy]-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(18:3(6Z,9Z,12Z)/20:1(11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:3(6Z,9Z,12Z)/20:1(11Z)), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the eicosenoic acid moiety is derived from vegetable oils and cod oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(18:3(9Z,12Z,15Z)/20:1(11Z))

(2-{[(2R)-2-[(11Z)-icos-11-enoyloxy]-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(18:3(9Z,12Z,15Z)/20:1(11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:3(9Z,12Z,15Z)/20:1(11Z)), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the eicosenoic acid moiety is derived from vegetable oils and cod oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(18:3(9Z,12Z,15Z)/20:1(11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:3(9Z,12Z,15Z)/20:1(11Z)), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the eicosenoic acid moiety is derived from vegetable oils and cod oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(18:4(6Z,9Z,12Z,15Z)/20:0)

(2-{[(2R)-2-(icosanoyloxy)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(18:4(6Z,9Z,12Z,15Z)/20:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:4(6Z,9Z,12Z,15Z)/20:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of arachidic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the arachidic acid moiety is derived from peanut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(18:4(6Z,9Z,12Z,15Z)/20:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:4(6Z,9Z,12Z,15Z)/20:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of arachidic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the arachidic acid moiety is derived from peanut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(20:0/18:4(6Z,9Z,12Z,15Z))

(2-{[(2R)-3-(icosanoyloxy)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(20:0/18:4(6Z,9Z,12Z,15Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:0/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. The arachidic acid moiety is derived from peanut oil, while the stearidonic acid moiety is derived from seed oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(20:1(11Z)/18:3(6Z,9Z,12Z))

(2-{[(2R)-3-[(11Z)-icos-11-enoyloxy]-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(20:1(11Z)/18:3(6Z,9Z,12Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:1(11Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The eicosenoic acid moiety is derived from vegetable oils and cod oils, while the g-linolenic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(20:1(11Z)/18:3(6Z,9Z,12Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:1(11Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The eicosenoic acid moiety is derived from vegetable oils and cod oils, while the g-linolenic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(20:1(11Z)/18:3(9Z,12Z,15Z))

(2-{[(2R)-3-[(11Z)-icos-11-enoyloxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(20:1(11Z)/18:3(9Z,12Z,15Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:1(11Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The eicosenoic acid moiety is derived from vegetable oils and cod oils, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(20:2(11Z,14Z)/18:2(9Z,12Z))

(2-{[(2R)-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(20:2(11Z,14Z)/18:2(9Z,12Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:2(11Z,14Z)/18:2(9Z,12Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of linoleic acid at the C-2 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the linoleic acid moiety is derived from seed oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(20:3(5Z,8Z,11Z)/18:1(11Z))

(2-{[(2R)-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-2-[(11Z)-octadec-11-enoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(20:3(5Z,8Z,11Z)/18:1(11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:3(5Z,8Z,11Z)/18:1(11Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the vaccenic acid moiety is derived from butter fat and animal fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(20:3(5Z,8Z,11Z)/18:1(9Z))

(2-{[(2R)-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-2-[(9Z)-octadec-9-enoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(20:3(5Z,8Z,11Z)/18:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:3(5Z,8Z,11Z)/18:1(9Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of oleic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(20:3(5Z,8Z,11Z)/18:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:3(5Z,8Z,11Z)/18:1(9Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of oleic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(20:3(8Z,11Z,14Z)/18:1(11Z))

(2-{[(2R)-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-2-[(11Z)-octadec-11-enoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(20:3(8Z,11Z,14Z)/18:1(11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:3(8Z,11Z,14Z)/18:1(11Z)), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the vaccenic acid moiety is derived from butter fat and animal fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(20:3(8Z,11Z,14Z)/18:1(9Z))

(2-{[(2R)-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-2-[(9Z)-octadec-9-enoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(20:3(8Z,11Z,14Z)/18:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:3(8Z,11Z,14Z)/18:1(9Z)), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of oleic acid at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(20:4(5Z,8Z,11Z,14Z)/18:0)

(2-{[(2R)-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-2-(octadecanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(20:4(5Z,8Z,11Z,14Z)/18:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:4(5Z,8Z,11Z,14Z)/18:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of stearic acid at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(20:4(5Z,8Z,11Z,14Z)/18:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:4(5Z,8Z,11Z,14Z)/18:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of stearic acid at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(20:4(8Z,11Z,14Z,17Z)/18:0)

(2-{[(2R)-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]-2-(octadecanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(20:4(8Z,11Z,14Z,17Z)/18:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:4(8Z,11Z,14Z,17Z)/18:0), in particular, consists of one chain of eicsoatetraenoic acid at the C-1 position and one chain of stearic acid at the C-2 position. The eicsoatetraenoic acid moiety is derived from fish oils, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(22:4(7Z,10Z,13Z,16Z)/16:0)

(2-{[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-(hexadecanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(22:4(7Z,10Z,13Z,16Z)/16:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:4(7Z,10Z,13Z,16Z)/16:0), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The adrenic acid moiety is derived from animal fats, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PE-NMe(18:0/22:4(7Z,10Z,13Z,16Z))

{2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-(octadecanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C46H84NO8P (809.5934234)


PE-NMe(18:0/22:4(7Z,10Z,13Z,16Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:0/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of adrenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:2(9Z,12Z)/22:2(13Z,16Z))

{2-[(13Z,16Z)-docosa-13,16-dienoyloxy]-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C46H84NO8P (809.5934234)


PE-NMe(18:2(9Z,12Z)/22:2(13Z,16Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:2(9Z,12Z)/22:2(13Z,16Z)), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:3(6Z,9Z,12Z)/22:1(13Z))

{2-[(13Z)-docos-13-enoyloxy]-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C46H84NO8P (809.5934234)


PE-NMe(18:3(6Z,9Z,12Z)/22:1(13Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:3(6Z,9Z,12Z)/22:1(13Z)), in particular, consists of one chain of gamma-linolenic acid at the C-1 position and one chain of erucic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:3(9Z,12Z,15Z)/22:1(13Z))

{2-[(13Z)-docos-13-enoyloxy]-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C46H84NO8P (809.5934234)


PE-NMe(18:3(9Z,12Z,15Z)/22:1(13Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:3(9Z,12Z,15Z)/22:1(13Z)), in particular, consists of one chain of alpha-linolenic acid at the C-1 position and one chain of erucic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:4(6Z,9Z,12Z,15Z)/22:0)

[2-(docosanoyloxy)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy][2-(methylamino)ethoxy]phosphinic acid

C46H84NO8P (809.5934234)


PE-NMe(18:4(6Z,9Z,12Z,15Z)/22:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:4(6Z,9Z,12Z,15Z)/22:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of behenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(20:0/20:4(5Z,8Z,11Z,14Z))

{2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-3-(icosanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C46H84NO8P (809.5934234)


PE-NMe(20:0/20:4(5Z,8Z,11Z,14Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:0/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(20:0/20:4(8Z,11Z,14Z,17Z))

{2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]-3-(icosanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C46H84NO8P (809.5934234)


PE-NMe(20:0/20:4(8Z,11Z,14Z,17Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of eicosatetraenoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(20:1(11Z)/20:3(5Z,8Z,11Z))

{3-[(11Z)-icos-11-enoyloxy]-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C46H84NO8P (809.5934234)


PE-NMe(20:1(11Z)/20:3(5Z,8Z,11Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:1(11Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of mead acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(20:1(11Z)/20:3(8Z,11Z,14Z))

{3-[(11Z)-icos-11-enoyloxy]-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C46H84NO8P (809.5934234)


PE-NMe(20:1(11Z)/20:3(8Z,11Z,14Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:1(11Z)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of dihomo-gamma-linolenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(20:2(11Z,14Z)/20:2(11Z,14Z))

{2,3-bis[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C46H84NO8P (809.5934234)


PE-NMe(20:2(11Z,14Z)/20:2(11Z,14Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:2(11Z,14Z)/20:2(11Z,14Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(20:3(5Z,8Z,11Z)/20:1(11Z))

{2-[(11Z)-icos-11-enoyloxy]-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C46H84NO8P (809.5934234)


PE-NMe(20:3(5Z,8Z,11Z)/20:1(11Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:3(5Z,8Z,11Z)/20:1(11Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(20:3(8Z,11Z,14Z)/20:1(11Z))

{2-[(11Z)-icos-11-enoyloxy]-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C46H84NO8P (809.5934234)


PE-NMe(20:3(8Z,11Z,14Z)/20:1(11Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:3(8Z,11Z,14Z)/20:1(11Z)), in particular, consists of one chain of dihomo-gamma-linolenic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(20:4(5Z,8Z,11Z,14Z)/20:0)

{3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-2-(icosanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C46H84NO8P (809.5934234)


PE-NMe(20:4(5Z,8Z,11Z,14Z)/20:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:4(5Z,8Z,11Z,14Z)/20:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of arachidic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(20:4(8Z,11Z,14Z,17Z)/20:0)

{3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]-2-(icosanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C46H84NO8P (809.5934234)


PE-NMe(20:4(8Z,11Z,14Z,17Z)/20:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:4(8Z,11Z,14Z,17Z)/20:0), in particular, consists of one chain of eicosatetraenoic acid at the C-1 position and one chain of arachidic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(22:0/18:4(6Z,9Z,12Z,15Z))

[3-(docosanoyloxy)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy][2-(methylamino)ethoxy]phosphinic acid

C46H84NO8P (809.5934234)


PE-NMe(22:0/18:4(6Z,9Z,12Z,15Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(22:0/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of behenic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(22:1(13Z)/18:3(6Z,9Z,12Z))

{3-[(13Z)-docos-13-enoyloxy]-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C46H84NO8P (809.5934234)


PE-NMe(22:1(13Z)/18:3(6Z,9Z,12Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(22:1(13Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of gamma-linolenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(22:1(13Z)/18:3(9Z,12Z,15Z))

{3-[(13Z)-docos-13-enoyloxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C46H84NO8P (809.5934234)


PE-NMe(22:1(13Z)/18:3(9Z,12Z,15Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(22:1(13Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of alpha-linolenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(22:2(13Z,16Z)/18:2(9Z,12Z))

{3-[(13Z,16Z)-docosa-13,16-dienoyloxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C46H84NO8P (809.5934234)


PE-NMe(22:2(13Z,16Z)/18:2(9Z,12Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(22:2(13Z,16Z)/18:2(9Z,12Z)), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of linoleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(22:4(7Z,10Z,13Z,16Z)/18:0)

{3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-(octadecanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C46H84NO8P (809.5934234)


PE-NMe(22:4(7Z,10Z,13Z,16Z)/18:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(22:4(7Z,10Z,13Z,16Z)/18:0), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of stearic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PC(P-18:0/20:3(5Z,8Z,11Z)-O(14R,15S))

trimethyl(2-{[(2R)-3-[(1E)-octadec-1-en-1-yloxy]-2-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propyl phosphono]oxy}ethyl)azanium

C46H84NO8P (809.5934234)


PC(P-18:0/20:3(5Z,8Z,11Z)-O(14R,15S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-18:0/20:3(5Z,8Z,11Z)-O(14R,15S)), in particular, consists of one chain of one 1Z-octadecenyl at the C-1 position and one chain of 14,15-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(5Z,8Z,11Z)-O(14R,15S)/P-18:0)

trimethyl(2-{[(2R)-2-[(1E)-octadec-1-en-1-yloxy]-3-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propyl phosphono]oxy}ethyl)azanium

C46H84NO8P (809.5934234)


PC(20:3(5Z,8Z,11Z)-O(14R,15S)/P-18:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(5Z,8Z,11Z)-O(14R,15S)/P-18:0), in particular, consists of one chain of one 14,15-epoxyeicosatrienoyl at the C-1 position and one chain of 1Z-octadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(P-18:0/20:3(5Z,8Z,14Z)-O(11S,12R))

trimethyl(2-{[(2R)-2-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}-3-[(1E)-octadec-1-en-1-yloxy]propyl phosphono]oxy}ethyl)azanium

C46H84NO8P (809.5934234)


PC(P-18:0/20:3(5Z,8Z,14Z)-O(11S,12R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-18:0/20:3(5Z,8Z,14Z)-O(11S,12R)), in particular, consists of one chain of one 1Z-octadecenyl at the C-1 position and one chain of 11,12-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(5Z,8Z,14Z)-O(11S,12R)/P-18:0)

PC(20:3(5Z,8Z,14Z)-O(11S,12R)/P-18:0)

C46H84NO8P (809.5934234)


PC(20:3(5Z,8Z,14Z)-O(11S,12R)/P-18:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(5Z,8Z,14Z)-O(11S,12R)/P-18:0), in particular, consists of one chain of one 11,12-epoxyeicosatrienoyl at the C-1 position and one chain of 1Z-octadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(P-18:0/20:3(5Z,11Z,14Z)-O(8,9))

trimethyl(2-{[(2R)-3-[(1E)-octadec-1-en-1-yloxy]-2-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propyl phosphono]oxy}ethyl)azanium

C46H84NO8P (809.5934234)


PC(P-18:0/20:3(5Z,11Z,14Z)-O(8,9)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-18:0/20:3(5Z,11Z,14Z)-O(8,9)), in particular, consists of one chain of one 1Z-octadecenyl at the C-1 position and one chain of 8,9--epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(5Z,11Z,14Z)-O(8,9)/P-18:0)

trimethyl(2-{[(2R)-2-[(1E)-octadec-1-en-1-yloxy]-3-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propyl phosphono]oxy}ethyl)azanium

C46H84NO8P (809.5934234)


PC(20:3(5Z,11Z,14Z)-O(8,9)/P-18:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(5Z,11Z,14Z)-O(8,9)/P-18:0), in particular, consists of one chain of one 8,9--epoxyeicosatrienoyl at the C-1 position and one chain of 1Z-octadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(P-18:0/20:3(8Z,11Z,14Z)-O(5,6))

trimethyl(2-{[(2R)-3-[(1E)-octadec-1-en-1-yloxy]-2-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propyl phosphono]oxy}ethyl)azanium

C46H84NO8P (809.5934234)


PC(P-18:0/20:3(8Z,11Z,14Z)-O(5,6)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-18:0/20:3(8Z,11Z,14Z)-O(5,6)), in particular, consists of one chain of one 1Z-octadecenyl at the C-1 position and one chain of 5,6-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(8Z,11Z,14Z)-O(5,6)/P-18:0)

trimethyl(2-{[(2R)-2-[(1E)-octadec-1-en-1-yloxy]-3-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propyl phosphono]oxy}ethyl)azanium

C46H84NO8P (809.5934234)


PC(20:3(8Z,11Z,14Z)-O(5,6)/P-18:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(8Z,11Z,14Z)-O(5,6)/P-18:0), in particular, consists of one chain of one 5,6-epoxyeicosatrienoyl at the C-1 position and one chain of 1Z-octadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(P-18:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

(2-{[(2R)-2-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(1E)-octadec-1-en-1-yloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(P-18:0/20:4(5Z,8Z,11Z,14Z)-OH(20)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-18:0/20:4(5Z,8Z,11Z,14Z)-OH(20)), in particular, consists of one chain of one 1Z-octadecenyl at the C-1 position and one chain of 20-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,14Z)-OH(20)/P-18:0)

(2-{[(2R)-3-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(1E)-octadec-1-en-1-yloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(20:4(5Z,8Z,11Z,14Z)-OH(20)/P-18:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,14Z)-OH(20)/P-18:0), in particular, consists of one chain of one 20-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 1Z-octadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(P-18:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

(2-{[(2R)-2-{[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-3-[(1E)-octadec-1-en-1-yloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(P-18:0/20:4(6E,8Z,11Z,14Z)-OH(5S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-18:0/20:4(6E,8Z,11Z,14Z)-OH(5S)), in particular, consists of one chain of one 1Z-octadecenyl at the C-1 position and one chain of 5-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(6E,8Z,11Z,14Z)-OH(5S)/P-18:0)

(2-{[(2R)-3-{[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-2-[(1E)-octadec-1-en-1-yloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(20:4(6E,8Z,11Z,14Z)-OH(5S)/P-18:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(6E,8Z,11Z,14Z)-OH(5S)/P-18:0), in particular, consists of one chain of one 5-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 1Z-octadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(P-18:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

(2-{[(2R)-2-{[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(1E)-octadec-1-en-1-yloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(P-18:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-18:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)), in particular, consists of one chain of one 1Z-octadecenyl at the C-1 position and one chain of 19-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,14Z)-OH(19S)/P-18:0)

(2-{[(2R)-3-{[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(1E)-octadec-1-en-1-yloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(20:4(5Z,8Z,11Z,14Z)-OH(19S)/P-18:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,14Z)-OH(19S)/P-18:0), in particular, consists of one chain of one 19-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 1Z-octadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(P-18:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

(2-{[(2R)-2-{[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(1E)-octadec-1-en-1-yloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(P-18:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-18:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)), in particular, consists of one chain of one 1Z-octadecenyl at the C-1 position and one chain of 18-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,14Z)-OH(18R)/P-18:0)

(2-{[(2R)-3-{[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(1E)-octadec-1-en-1-yloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(20:4(5Z,8Z,11Z,14Z)-OH(18R)/P-18:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,14Z)-OH(18R)/P-18:0), in particular, consists of one chain of one 18-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 1Z-octadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(P-18:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

(2-{[(2R)-2-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(1E)-octadec-1-en-1-yloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(P-18:0/20:4(5Z,8Z,11Z,14Z)-OH(17)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-18:0/20:4(5Z,8Z,11Z,14Z)-OH(17)), in particular, consists of one chain of one 1Z-octadecenyl at the C-1 position and one chain of 17-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,14Z)-OH(17)/P-18:0)

(2-{[(2R)-3-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(1E)-octadec-1-en-1-yloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(20:4(5Z,8Z,11Z,14Z)-OH(17)/P-18:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,14Z)-OH(17)/P-18:0), in particular, consists of one chain of one 17-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 1Z-octadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(P-18:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

(2-{[(2R)-2-{[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(1E)-octadec-1-en-1-yloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(P-18:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-18:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)), in particular, consists of one chain of one 1Z-octadecenyl at the C-1 position and one chain of 16-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,14Z)-OH(16R)/P-18:0)

(2-{[(2R)-3-{[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(1E)-octadec-1-en-1-yloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(20:4(5Z,8Z,11Z,14Z)-OH(16R)/P-18:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,14Z)-OH(16R)/P-18:0), in particular, consists of one chain of one 16-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 1Z-octadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(P-18:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

(2-{[(2R)-2-{[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-3-[(1E)-octadec-1-en-1-yloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(P-18:0/20:4(5Z,8Z,11Z,13E)-OH(15S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-18:0/20:4(5Z,8Z,11Z,13E)-OH(15S)), in particular, consists of one chain of one 1Z-octadecenyl at the C-1 position and one chain of 15-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,13E)-OH(15S)/P-18:0)

(2-{[(2R)-3-{[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-2-[(1E)-octadec-1-en-1-yloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(20:4(5Z,8Z,11Z,13E)-OH(15S)/P-18:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,13E)-OH(15S)/P-18:0), in particular, consists of one chain of one 15-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 1Z-octadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(P-18:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

(2-{[(2R)-2-{[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-3-[(1E)-octadec-1-en-1-yloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(P-18:0/20:4(5Z,8Z,10E,14Z)-OH(12S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-18:0/20:4(5Z,8Z,10E,14Z)-OH(12S)), in particular, consists of one chain of one 1Z-octadecenyl at the C-1 position and one chain of 12-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,10E,14Z)-OH(12S)/P-18:0)

(2-{[(2R)-3-{[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-2-[(1E)-octadec-1-en-1-yloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(20:4(5Z,8Z,10E,14Z)-OH(12S)/P-18:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,10E,14Z)-OH(12S)/P-18:0), in particular, consists of one chain of one 12-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 1Z-octadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(P-18:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

(2-{[(2R)-2-{[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-3-[(1E)-octadec-1-en-1-yloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(P-18:0/20:4(5E,8Z,12Z,14Z)-OH(11R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-18:0/20:4(5E,8Z,12Z,14Z)-OH(11R)), in particular, consists of one chain of one 1Z-octadecenyl at the C-1 position and one chain of 11-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5E,8Z,12Z,14Z)-OH(11R)/P-18:0)

(2-{[(2R)-3-{[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-2-[(1E)-octadec-1-en-1-yloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(20:4(5E,8Z,12Z,14Z)-OH(11R)/P-18:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5E,8Z,12Z,14Z)-OH(11R)/P-18:0), in particular, consists of one chain of one 11-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 1Z-octadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(P-18:0/20:4(5Z,7E,11Z,14Z)-OH(9))

(2-{[(2R)-2-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-3-[(1E)-octadec-1-en-1-yloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(P-18:0/20:4(5Z,7E,11Z,14Z)-OH(9)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-18:0/20:4(5Z,7E,11Z,14Z)-OH(9)), in particular, consists of one chain of one 1Z-octadecenyl at the C-1 position and one chain of 9-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,7E,11Z,14Z)-OH(9)/P-18:0)

(2-{[(2R)-3-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-2-[(1E)-octadec-1-en-1-yloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(20:4(5Z,7E,11Z,14Z)-OH(9)/P-18:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,7E,11Z,14Z)-OH(9)/P-18:0), in particular, consists of one chain of one 9-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 1Z-octadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(P-18:1(11Z)/20:3(6,8,11)-OH(5))

(2-{[(2R)-2-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-3-[(1E,11Z)-octadeca-1,11-dien-1-yloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(P-18:1(11Z)/20:3(6,8,11)-OH(5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-18:1(11Z)/20:3(6,8,11)-OH(5)), in particular, consists of one chain of one 1Z,11Z-octadecadienyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(6,8,11)-OH(5)/P-18:1(11Z))

(2-{[(2R)-3-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-2-[(1E,11Z)-octadeca-1,11-dien-1-yloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(20:3(6,8,11)-OH(5)/P-18:1(11Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(6,8,11)-OH(5)/P-18:1(11Z)), in particular, consists of one chain of one 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of 1Z,11Z-octadecadienyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(P-18:1(9Z)/20:3(6,8,11)-OH(5))

(2-{[(2R)-2-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-3-[(1E,9Z)-octadeca-1,9-dien-1-yloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(P-18:1(9Z)/20:3(6,8,11)-OH(5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-18:1(9Z)/20:3(6,8,11)-OH(5)), in particular, consists of one chain of one 1Z,9Z-octadecadienyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(6,8,11)-OH(5)/P-18:1(9Z))

(2-{[(2R)-3-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-2-[(1E,9Z)-octadeca-1,9-dien-1-yloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C46H84NO8P (809.5934234)


PC(20:3(6,8,11)-OH(5)/P-18:1(9Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(6,8,11)-OH(5)/P-18:1(9Z)), in particular, consists of one chain of one 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of 1Z,9Z-octadecadienyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

Phosphatidylcholine 18:0-20:4

Phosphatidylcholine 18:0-20:4

C46H84NO8P (809.5934234)


   

Phosphatidylcholine 16:0-22:4

Phosphatidylcholine 16:0-22:4

C46H84NO8P (809.5934234)


   
   
   
   

PC 38:4

1-(8Z,11Z,14Z-eicosatrienoyl)-2-(11Z-octadecenoyl)-sn-glycero-3-phosphocholine

C46H84NO8P (809.5934234)


Found in mouse small intestine; TwoDicalId=451; MgfFile=160907_Small_Intestine_normal_Neg_01_2; MgfId=1200 Found in mouse small intestine; TwoDicalId=40; MgfFile=160907_Small_Intestine_AA_Neg_16_never; MgfId=1424 Found in mouse muscle; TwoDicalId=122; MgfFile=160824_Muscle_AA_Neg_20; MgfId=1086 Found in mouse lung; TwoDicalId=123; MgfFile=160901_Lung_AA_Neg_17; MgfId=1111

   

PI-Cer(d18:0/18:0)

N-(octadecanoyl)-sphinganine-1-phospho-(1-myo-inositol)

C42H84NO11P (809.5781684)


   

PI-Cer(d20:0/16:0)

N-(hexadecanoyl)-eicosasphinganine-1-phospho-(1-myo-inositol)

C42H84NO11P (809.5781684)


   

PC(16:0/22:4)[U]

3,5,8-Trioxa-4-phosphatriaconta-15,18,21,24-tetraen-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[[(1-oxohexadecyl)oxy]methyl]-, inner salt, 4-oxide, (all-Z)-

C46H84NO8P (809.5934234)


   

PC(18:0/20:4)[U]

Choline, hydroxide, dihydrogen phosphate, inner salt, ester with 1-stearo-2-(5,8,11,14-eicosatetraenoin), (all-E)-

C46H84NO8P (809.5934234)


   

PC(18:0/20:4)

3,5,8-Trioxa-4-phosphaoctacosa-16,18,20,22-tetraen-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[[(1-oxooctadecyl)oxy]methyl]-, inner salt, 4-oxide, [R-(all-Z)]-

C46H84NO8P (809.5934234)


   

1-Stearoyl-2-Arachidonoyl PC

1-ocatadeconyl-2R-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glyceryl-3-phosphorylcholine

C46H84NO8P (809.5934234)


   

Lecithin

1-homo-gamma-Linolenoyl-2-vaccenoyl-sn-glycero-3-phosphocholine

C46H84NO8P (809.5934234)


   

PE(19:0/22:4(7Z,10Z,13Z,16Z))

1-nonadecanoyl-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-glycero-3-phosphoethanolamine

C46H84NO8P (809.5934234)


   

PE(20:4(5Z,8Z,11Z,14Z)/21:0)

1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2-heneicosanoyl-glycero-3-phosphoethanolamine

C46H84NO8P (809.5934234)


   

PE(21:0/20:4(5Z,8Z,11Z,14Z))

1-heneicosanoyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-glycero-3-phosphoethanolamine

C46H84NO8P (809.5934234)


   

PE(22:4(7Z,10Z,13Z,16Z)/19:0)

1-(7Z,10Z,13Z,16Z-docosatetraenoyl)-2-nonadecanoyl-glycero-3-phosphoethanolamine

C46H84NO8P (809.5934234)


   

PE(O-20:0/22:4(7Z,10Z,13Z,16Z))

1-eicosyl-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-glycero-3-phosphoethanolamine

C47H88NO7P (809.6298067999999)


   

PE 41:4

1-(7Z,10Z,13Z,16Z-docosatetraenoyl)-2-nonadecanoyl-glycero-3-phosphoethanolamine

C46H84NO8P (809.5934234)


   

PE O-42:4

1-eicosyl-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-glycero-3-phosphoethanolamine

C47H88NO7P (809.6298067999999)


   

IPC 36:0;O2

N-(hexadecanoyl)-eicosasphinganine-1-phospho-(1-myo-inositol)

C42H84NO11P (809.5781684)


   

Tris(4-bromophenyl)ammoniumyl hexachloroantimonate

Tris(4-bromophenyl)ammoniumyl hexachloroantimonate

C18H12Br3Cl6NSb (809.5689192)


   

[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-hexadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-hexadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

PC(P-18:0/20:3(5Z,8Z,11Z)-O(14R,15S))

PC(P-18:0/20:3(5Z,8Z,11Z)-O(14R,15S))

C46H84NO8P (809.5934234)


   

PC(20:3(5Z,8Z,11Z)-O(14R,15S)/P-18:0)

PC(20:3(5Z,8Z,11Z)-O(14R,15S)/P-18:0)

C46H84NO8P (809.5934234)


   

PC(P-18:0/20:3(5Z,8Z,14Z)-O(11S,12R))

PC(P-18:0/20:3(5Z,8Z,14Z)-O(11S,12R))

C46H84NO8P (809.5934234)


   

PC(20:3(5Z,8Z,14Z)-O(11S,12R)/P-18:0)

PC(20:3(5Z,8Z,14Z)-O(11S,12R)/P-18:0)

C46H84NO8P (809.5934234)


   

PC(P-18:0/20:3(5Z,11Z,14Z)-O(8,9))

PC(P-18:0/20:3(5Z,11Z,14Z)-O(8,9))

C46H84NO8P (809.5934234)


   

PC(20:3(5Z,11Z,14Z)-O(8,9)/P-18:0)

PC(20:3(5Z,11Z,14Z)-O(8,9)/P-18:0)

C46H84NO8P (809.5934234)


   

PC(P-18:0/20:3(8Z,11Z,14Z)-O(5,6))

PC(P-18:0/20:3(8Z,11Z,14Z)-O(5,6))

C46H84NO8P (809.5934234)


   

PC(20:3(8Z,11Z,14Z)-O(5,6)/P-18:0)

PC(20:3(8Z,11Z,14Z)-O(5,6)/P-18:0)

C46H84NO8P (809.5934234)


   

PC(P-18:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

PC(P-18:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

C46H84NO8P (809.5934234)


   

PC(20:4(5Z,8Z,11Z,14Z)-OH(20)/P-18:0)

PC(20:4(5Z,8Z,11Z,14Z)-OH(20)/P-18:0)

C46H84NO8P (809.5934234)


   

PC(P-18:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

PC(P-18:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

C46H84NO8P (809.5934234)


   

PC(20:4(6E,8Z,11Z,14Z)-OH(5S)/P-18:0)

PC(20:4(6E,8Z,11Z,14Z)-OH(5S)/P-18:0)

C46H84NO8P (809.5934234)


   

PC(P-18:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

PC(P-18:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C46H84NO8P (809.5934234)


   

PC(20:4(5Z,8Z,11Z,14Z)-OH(19S)/P-18:0)

PC(20:4(5Z,8Z,11Z,14Z)-OH(19S)/P-18:0)

C46H84NO8P (809.5934234)


   

PC(P-18:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

PC(P-18:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C46H84NO8P (809.5934234)


   

PC(20:4(5Z,8Z,11Z,14Z)-OH(18R)/P-18:0)

PC(20:4(5Z,8Z,11Z,14Z)-OH(18R)/P-18:0)

C46H84NO8P (809.5934234)


   

PC(P-18:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

PC(P-18:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

C46H84NO8P (809.5934234)


   

PC(20:4(5Z,8Z,11Z,14Z)-OH(17)/P-18:0)

PC(20:4(5Z,8Z,11Z,14Z)-OH(17)/P-18:0)

C46H84NO8P (809.5934234)


   

PC(P-18:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

PC(P-18:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C46H84NO8P (809.5934234)


   

PC(20:4(5Z,8Z,11Z,14Z)-OH(16R)/P-18:0)

PC(20:4(5Z,8Z,11Z,14Z)-OH(16R)/P-18:0)

C46H84NO8P (809.5934234)


   

PC(P-18:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

PC(P-18:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

C46H84NO8P (809.5934234)


   

PC(20:4(5Z,8Z,11Z,13E)-OH(15S)/P-18:0)

PC(20:4(5Z,8Z,11Z,13E)-OH(15S)/P-18:0)

C46H84NO8P (809.5934234)


   

PC(P-18:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

PC(P-18:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

C46H84NO8P (809.5934234)


   

PC(20:4(5Z,8Z,10E,14Z)-OH(12S)/P-18:0)

PC(20:4(5Z,8Z,10E,14Z)-OH(12S)/P-18:0)

C46H84NO8P (809.5934234)


   

PC(P-18:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

PC(P-18:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

C46H84NO8P (809.5934234)


   

PC(20:4(5E,8Z,12Z,14Z)-OH(11R)/P-18:0)

PC(20:4(5E,8Z,12Z,14Z)-OH(11R)/P-18:0)

C46H84NO8P (809.5934234)


   

PC(P-18:0/20:4(5Z,7E,11Z,14Z)-OH(9))

PC(P-18:0/20:4(5Z,7E,11Z,14Z)-OH(9))

C46H84NO8P (809.5934234)


   

PC(20:4(5Z,7E,11Z,14Z)-OH(9)/P-18:0)

PC(20:4(5Z,7E,11Z,14Z)-OH(9)/P-18:0)

C46H84NO8P (809.5934234)


   

PC(P-18:1(9Z)/20:3(6,8,11)-OH(5))

PC(P-18:1(9Z)/20:3(6,8,11)-OH(5))

C46H84NO8P (809.5934234)


   

PC(20:3(6,8,11)-OH(5)/P-18:1(9Z))

PC(20:3(6,8,11)-OH(5)/P-18:1(9Z))

C46H84NO8P (809.5934234)


   

PC(P-18:1(11Z)/20:3(6,8,11)-OH(5))

PC(P-18:1(11Z)/20:3(6,8,11)-OH(5))

C46H84NO8P (809.5934234)


   

PC(20:3(6,8,11)-OH(5)/P-18:1(11Z))

PC(20:3(6,8,11)-OH(5)/P-18:1(11Z))

C46H84NO8P (809.5934234)


   

2-[[(2S,3R)-2-[[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]amino]-3-hydroxyoctadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2S,3R)-2-[[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]amino]-3-hydroxyoctadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C45H82N2O8P+ (809.5808482000001)


   

2-[[(2S,3R)-2-[[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]amino]-3-hydroxyoctadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2S,3R)-2-[[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]amino]-3-hydroxyoctadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C45H82N2O8P+ (809.5808482000001)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(Z)-7-[(1S,5R)-5-[(E,3S)-3-hydroxyoct-1-enyl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]amino]icos-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(Z)-7-[(1S,5R)-5-[(E,3S)-3-hydroxyoct-1-enyl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]amino]icos-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C45H82N2O8P+ (809.5808482000001)


   

[(2S,3R)-3-hydroxy-2-(octadecanoylamino)octadecyl] [(2R,3S,5R,6R)-2,3,4,5,6-pentahydroxycyclohexyl] hydrogen phosphate

[(2S,3R)-3-hydroxy-2-(octadecanoylamino)octadecyl] [(2R,3S,5R,6R)-2,3,4,5,6-pentahydroxycyclohexyl] hydrogen phosphate

C42H84NO11P (809.5781684)


   

[(2S,3R)-2-(hexadecanoylamino)-3-hydroxyicosyl] [(2R,3S,5R,6R)-2,3,4,5,6-pentahydroxycyclohexyl] hydrogen phosphate

[(2S,3R)-2-(hexadecanoylamino)-3-hydroxyicosyl] [(2R,3S,5R,6R)-2,3,4,5,6-pentahydroxycyclohexyl] hydrogen phosphate

C42H84NO11P (809.5781684)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C47H88NO7P (809.6298067999999)


   
   
   
   

HexCer 17:3;2O/26:6

HexCer 17:3;2O/26:6

C49H79NO8 (809.5805374)


   

HexCer 11:1;2O/32:8

HexCer 11:1;2O/32:8

C49H79NO8 (809.5805374)


   

HexCer 17:2;2O/26:7

HexCer 17:2;2O/26:7

C49H79NO8 (809.5805374)


   

HexCer 11:0;2O/32:9

HexCer 11:0;2O/32:9

C49H79NO8 (809.5805374)


   

HexCer 13:1;2O/30:8

HexCer 13:1;2O/30:8

C49H79NO8 (809.5805374)


   

HexCer 15:3;2O/28:6

HexCer 15:3;2O/28:6

C49H79NO8 (809.5805374)


   

HexCer 15:2;2O/28:7

HexCer 15:2;2O/28:7

C49H79NO8 (809.5805374)


   

HexCer 19:3;2O/24:6

HexCer 19:3;2O/24:6

C49H79NO8 (809.5805374)


   

HexCer 21:3;2O/22:6

HexCer 21:3;2O/22:6

C49H79NO8 (809.5805374)


   

HexCer 13:2;2O/30:7

HexCer 13:2;2O/30:7

C49H79NO8 (809.5805374)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (30Z,33Z,36Z,39Z)-dotetraconta-30,33,36,39-tetraenoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (30Z,33Z,36Z,39Z)-dotetraconta-30,33,36,39-tetraenoate

C47H88NO7P (809.6298067999999)


   

[2-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoyl]oxy-3-undecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoyl]oxy-3-undecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H88NO7P (809.6298067999999)


   

2-[3-nonanoyloxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-nonanoyloxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C49H79NO8 (809.5805374)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

2-[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C49H79NO8 (809.5805374)


   

2-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C49H79NO8 (809.5805374)


   

HexCer 18:3;3O/22:1;(2OH)

HexCer 18:3;3O/22:1;(2OH)

C46H83NO10 (809.6016658)


   

HexCer 25:3;3O/15:1;(2OH)

HexCer 25:3;3O/15:1;(2OH)

C46H83NO10 (809.6016658)


   

HexCer 26:3;3O/14:1;(2OH)

HexCer 26:3;3O/14:1;(2OH)

C46H83NO10 (809.6016658)


   

HexCer 22:3;3O/18:1;(2OH)

HexCer 22:3;3O/18:1;(2OH)

C46H83NO10 (809.6016658)


   

HexCer 21:3;3O/19:1;(2OH)

HexCer 21:3;3O/19:1;(2OH)

C46H83NO10 (809.6016658)


   

HexCer 19:3;3O/21:1;(2OH)

HexCer 19:3;3O/21:1;(2OH)

C46H83NO10 (809.6016658)


   

HexCer 28:3;3O/12:1;(2OH)

HexCer 28:3;3O/12:1;(2OH)

C46H83NO10 (809.6016658)


   

HexCer 24:3;3O/16:1;(2OH)

HexCer 24:3;3O/16:1;(2OH)

C46H83NO10 (809.6016658)


   

HexCer 20:3;3O/20:1;(2OH)

HexCer 20:3;3O/20:1;(2OH)

C46H83NO10 (809.6016658)


   

HexCer 27:3;3O/13:1;(2OH)

HexCer 27:3;3O/13:1;(2OH)

C46H83NO10 (809.6016658)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propan-2-yl] (Z)-octadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propan-2-yl] (Z)-octadec-9-enoate

C47H88NO7P (809.6298067999999)


   

(4E,8E,12E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxytetracosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxytetracosa-4,8,12-triene-1-sulfonic acid

C50H83NO5S (809.5991627999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetracosoxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetracosoxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C47H88NO7P (809.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoxy]propan-2-yl] tetradecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoxy]propan-2-yl] tetradecanoate

C47H88NO7P (809.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C47H88NO7P (809.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-docosoxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-docosoxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C47H88NO7P (809.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexacosoxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexacosoxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C47H88NO7P (809.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

C47H88NO7P (809.6298067999999)


   

(4E,8E,12E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]hexacosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]hexacosa-4,8,12-triene-1-sulfonic acid

C50H83NO5S (809.5991627999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexacos-15-enoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexacos-15-enoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C47H88NO7P (809.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(15Z,18Z)-hexacosa-15,18-dienoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(15Z,18Z)-hexacosa-15,18-dienoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C47H88NO7P (809.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-docosa-13,16-dienoxy]propan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-docosa-13,16-dienoxy]propan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C47H88NO7P (809.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate

C47H88NO7P (809.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetracos-13-enoxy]propan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetracos-13-enoxy]propan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C47H88NO7P (809.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (14Z,17Z,20Z)-octacosa-14,17,20-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (14Z,17Z,20Z)-octacosa-14,17,20-trienoate

C47H88NO7P (809.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] (Z)-hexacos-15-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] (Z)-hexacos-15-enoate

C47H88NO7P (809.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propan-2-yl] octadecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propan-2-yl] octadecanoate

C47H88NO7P (809.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C47H88NO7P (809.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]propan-2-yl] hexadecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]propan-2-yl] hexadecanoate

C47H88NO7P (809.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C47H88NO7P (809.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C47H88NO7P (809.6298067999999)


   

(4E,8E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxytetracosa-4,8-diene-1-sulfonic acid

(4E,8E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxytetracosa-4,8-diene-1-sulfonic acid

C50H83NO5S (809.5991627999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] hexacosanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] hexacosanoate

C47H88NO7P (809.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] (16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] (16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoate

C47H88NO7P (809.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-docos-13-enoxy]propan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-docos-13-enoxy]propan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C47H88NO7P (809.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-icosoxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-icosoxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C47H88NO7P (809.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]propan-2-yl] (Z)-hexadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]propan-2-yl] (Z)-hexadec-9-enoate

C47H88NO7P (809.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoxy]propan-2-yl] (Z)-tetradec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoxy]propan-2-yl] (Z)-tetradec-9-enoate

C47H88NO7P (809.6298067999999)


   

[3-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoxy]-2-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoxy]-2-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H88NO7P (809.6298067999999)


   

[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-nonadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-nonadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H88NO7P (809.6298067999999)


   

[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-[(Z)-nonadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-[(Z)-nonadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H88NO7P (809.6298067999999)


   

[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-heptadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-heptadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H88NO7P (809.6298067999999)


   

[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-tridecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-tridecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H88NO7P (809.6298067999999)


   

[3-henicosoxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-henicosoxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H88NO7P (809.6298067999999)


   

[2-pentadecanoyloxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-pentadecanoyloxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H88NO7P (809.6298067999999)


   

[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-tricosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-tricosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H88NO7P (809.6298067999999)


   

[3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H88NO7P (809.6298067999999)


   

[2-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]oxy-3-[(Z)-tridec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]oxy-3-[(Z)-tridec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H88NO7P (809.6298067999999)


   

[3-pentadecoxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-pentadecoxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H88NO7P (809.6298067999999)


   

[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H88NO7P (809.6298067999999)


   

[2-[(Z)-pentadec-9-enoyl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-pentadec-9-enoyl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H88NO7P (809.6298067999999)


   

[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C47H88NO7P (809.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoate

C46H84NO8P (809.5934234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (18Z,21Z,24Z,27Z)-triaconta-18,21,24,27-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (18Z,21Z,24Z,27Z)-triaconta-18,21,24,27-tetraenoate

C46H84NO8P (809.5934234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate

C46H84NO8P (809.5934234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (14Z,17Z,20Z)-octacosa-14,17,20-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (14Z,17Z,20Z)-octacosa-14,17,20-trienoate

C46H84NO8P (809.5934234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

C46H84NO8P (809.5934234)


   
   
   
   
   
   
   
   
   
   
   
   

4-[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[3-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[3-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

HexCer 24:2;3O/16:2;(2OH)

HexCer 24:2;3O/16:2;(2OH)

C46H83NO10 (809.6016658)


   

HexCer 20:2;3O/20:2;(2OH)

HexCer 20:2;3O/20:2;(2OH)

C46H83NO10 (809.6016658)


   

HexCer 18:2;3O/22:2;(2OH)

HexCer 18:2;3O/22:2;(2OH)

C46H83NO10 (809.6016658)


   

HexCer 14:2;3O/26:2;(2OH)

HexCer 14:2;3O/26:2;(2OH)

C46H83NO10 (809.6016658)


   

HexCer 22:2;3O/18:2;(2OH)

HexCer 22:2;3O/18:2;(2OH)

C46H83NO10 (809.6016658)


   

HexCer 16:2;3O/24:2;(2OH)

HexCer 16:2;3O/24:2;(2OH)

C46H83NO10 (809.6016658)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (20Z,23Z,26Z,29Z)-dotriaconta-20,23,26,29-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (20Z,23Z,26Z,29Z)-dotriaconta-20,23,26,29-tetraenoate

C46H84NO8P (809.5934234)


   

[3-octanoyloxy-2-[(18Z,21Z,24Z,27Z)-triaconta-18,21,24,27-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-octanoyloxy-2-[(18Z,21Z,24Z,27Z)-triaconta-18,21,24,27-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C46H84NO8P (809.5934234)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropyl] (Z)-henicos-11-enoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropyl] (Z)-henicos-11-enoate

C46H84NO8P (809.5934234)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] pentacosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] pentacosanoate

C46H84NO8P (809.5934234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C46H84NO8P (809.5934234)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] tricosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] tricosanoate

C46H84NO8P (809.5934234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C46H84NO8P (809.5934234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C46H84NO8P (809.5934234)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropyl] henicosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropyl] henicosanoate

C46H84NO8P (809.5934234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C46H84NO8P (809.5934234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C46H84NO8P (809.5934234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecanoyloxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecanoyloxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C46H84NO8P (809.5934234)


   

[3-decanoyloxy-2-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-decanoyloxy-2-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[3-[(Z)-icos-11-enoyl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-icos-11-enoyl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[2-[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy-3-octadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy-3-octadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[3-[(Z)-octadec-9-enoxy]-2-[(5Z,8Z)-10-[3-[(E)-oct-2-enyl]oxiran-2-yl]deca-5,8-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-octadec-9-enoxy]-2-[(5Z,8Z)-10-[3-[(E)-oct-2-enyl]oxiran-2-yl]deca-5,8-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[2-[(6E,8E,11E,14E)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy-3-[(Z)-octadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(6E,8E,11E,14E)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy-3-[(Z)-octadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[3-octadecoxy-2-[4-[3-[(1Z,3Z,5E,8E)-tetradeca-1,3,5,8-tetraenyl]oxiran-2-yl]butanoyloxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-octadecoxy-2-[4-[3-[(1Z,3Z,5E,8E)-tetradeca-1,3,5,8-tetraenyl]oxiran-2-yl]butanoyloxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[3-dodecanoyloxy-2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-dodecanoyloxy-2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[3-docosanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-docosanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

2,3-bis[[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy]propyl 2-(trimethylazaniumyl)ethyl phosphate

2,3-bis[[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy]propyl 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[3-icosanoyloxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-icosanoyloxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[3-[(Z)-docos-13-enoyl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-docos-13-enoyl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

(S)-1, 2, 3, 4-Tetrahydro-1-naphthylamine

(S)-1, 2, 3, 4-Tetrahydro-1-naphthylamine

C46H84NO8P (809.5934234)


   

[(2R)-3-icosanoyloxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-icosanoyloxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-[(E)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-[(E)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-heptadecanoyloxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-heptadecanoyloxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C46H84NO8P (809.5934234)


   

4-[2-[(E)-heptadec-7-enoyl]oxy-3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-heptadec-7-enoyl]oxy-3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-3-[(E)-icos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-3-[(E)-icos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[2-[(9E,11E)-henicosa-9,11-dienoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E)-henicosa-9,11-dienoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[3-[(11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-octadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-octadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

[(2R)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] pentacosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] pentacosanoate

C46H84NO8P (809.5934234)


   

[3-docosanoyloxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-docosanoyloxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

4-[2-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[3-[(8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[2-[(11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[2-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-3-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-3-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

[(2R)-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-2-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-2-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

4-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

[(2R)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-2-[(E)-icos-13-enoyl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-icos-13-enoyl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

4-[2-[(8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[3-[(E)-hexadec-7-enoyl]oxy-2-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-hexadec-7-enoyl]oxy-2-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

[(2R)-3-[(E)-icos-11-enoyl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-icos-11-enoyl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] tricosanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] tricosanoate

C46H84NO8P (809.5934234)


   

[(2R)-2-[(E)-icos-13-enoyl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-icos-13-enoyl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] tricosanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] tricosanoate

C46H84NO8P (809.5934234)


   

4-[2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(15E,18E,21E)-tetracosa-15,18,21-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(15E,18E,21E)-tetracosa-15,18,21-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

[(2R)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

4-[2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[3-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[3-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-2-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-2-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

[(2R)-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-[(E)-octadec-6-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-[(E)-octadec-6-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-2-icosanoyloxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-icosanoyloxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[3-[(E)-docos-11-enoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(E)-docos-11-enoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-[(E)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-[(E)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

4-[3-[(E)-heptadec-7-enoyl]oxy-2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-heptadec-7-enoyl]oxy-2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

[(2R)-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-[(E)-octadec-4-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-[(E)-octadec-4-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-nonadecanoyloxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-nonadecanoyloxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C46H84NO8P (809.5934234)


   

[(2R)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-2-[(E)-octadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-2-[(E)-octadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropan-2-yl] henicosanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropan-2-yl] henicosanoate

C46H84NO8P (809.5934234)


   

[(2R)-3-[(5E,8E)-icosa-5,8-dienoyl]oxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(5E,8E)-icosa-5,8-dienoyl]oxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-3-hexadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-3-hexadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] tricosanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] tricosanoate

C46H84NO8P (809.5934234)


   

[(2R)-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropyl] henicosanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropyl] henicosanoate

C46H84NO8P (809.5934234)


   

4-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

[(2R)-2-icosanoyloxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-icosanoyloxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

4-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (E)-pentacos-11-enoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (E)-pentacos-11-enoate

C46H84NO8P (809.5934234)


   

[(2R)-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

4-[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

[(2R)-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-[(E)-octadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-[(E)-octadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (11E,14E)-pentacosa-11,14-dienoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (11E,14E)-pentacosa-11,14-dienoate

C46H84NO8P (809.5934234)


   

[(2S)-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-2-hexadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-2-hexadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

4-[3-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-[(E)-octadec-4-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-[(E)-octadec-4-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

4-[2-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

[(2R)-3-[(E)-icos-13-enoyl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-icos-13-enoyl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-2-[(E)-octadec-4-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-2-[(E)-octadec-4-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2S)-3-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxy-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-3-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxy-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-[(E)-octadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-[(E)-octadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-[(E)-octadec-4-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-[(E)-octadec-4-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

4-[2-[(14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

[(2R)-3-[(E)-icos-11-enoyl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-icos-11-enoyl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropyl] henicosanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropyl] henicosanoate

C46H84NO8P (809.5934234)


   

4-[3-[(14E,16E)-docosa-14,16-dienoyl]oxy-2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(14E,16E)-docosa-14,16-dienoyl]oxy-2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

[(2R)-3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

4-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-octadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-octadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-[(E)-octadec-6-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-[(E)-octadec-6-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-3-[(5E,8E)-icosa-5,8-dienoyl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(5E,8E)-icosa-5,8-dienoyl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

4-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

[(2R)-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[3-[(14E,16E)-docosa-14,16-dienoyl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(14E,16E)-docosa-14,16-dienoyl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

4-[2-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(15E,18E,21E)-tetracosa-15,18,21-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(15E,18E,21E)-tetracosa-15,18,21-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

[(2R)-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-[(E)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-[(E)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

4-[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

[(2R)-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-3-[(5E,8E)-icosa-5,8-dienoyl]oxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(5E,8E)-icosa-5,8-dienoyl]oxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

4-[3-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[3-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxy-2-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxy-2-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

[(2R)-2-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

4-[2-[(14E,16E)-docosa-14,16-dienoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(14E,16E)-docosa-14,16-dienoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(18E,21E)-tetracosa-18,21-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(18E,21E)-tetracosa-18,21-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[2-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

[(2R)-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-2-[(E)-octadec-6-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-2-[(E)-octadec-6-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-2-[(E)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-2-[(E)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

4-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(18E,21E)-tetracosa-18,21-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(18E,21E)-tetracosa-18,21-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

[(2R)-2-[(E)-icos-11-enoyl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-icos-11-enoyl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C46H84NO8P (809.5934234)


   

[(2R)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-[(E)-octadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-[(E)-octadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

4-[3-[(14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[2-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

[(2R)-3-[(5E,8E)-icosa-5,8-dienoyl]oxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(5E,8E)-icosa-5,8-dienoyl]oxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-3-icosanoyloxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-icosanoyloxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropan-2-yl] henicosanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropan-2-yl] henicosanoate

C46H84NO8P (809.5934234)


   

[(2R)-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-2-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-2-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] tricosanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] tricosanoate

C46H84NO8P (809.5934234)


   

4-[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecanoyloxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecanoyloxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C46H84NO8P (809.5934234)


   

[(2R)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-[(E)-octadec-6-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-[(E)-octadec-6-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

4-[2-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

[(2R)-2-[(E)-icos-11-enoyl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-icos-11-enoyl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-[(E)-octadec-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

4-[3-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[3-[(9E,11E)-henicosa-9,11-dienoyl]oxy-2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E)-henicosa-9,11-dienoyl]oxy-2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-3-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-3-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[3-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

[(2R)-3-[(E)-icos-13-enoyl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-icos-13-enoyl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

4-[2-[(E)-hexadec-7-enoyl]oxy-3-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-hexadec-7-enoyl]oxy-3-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

[(2R)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

4-[3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-2-[(E)-icos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-2-[(E)-icos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[2-[(13E,16E,19E,22E)-pentacosa-13,16,19,22-tetraenoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(13E,16E,19E,22E)-pentacosa-13,16,19,22-tetraenoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

[(2R)-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-2-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-2-octadec-17-enoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

4-[3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

[(2R)-3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

4-[2-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[3-[(13E,16E,19E,22E)-pentacosa-13,16,19,22-tetraenoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(13E,16E,19E,22E)-pentacosa-13,16,19,22-tetraenoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

4-[3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C50H83NO7 (809.6169207999999)


   

[(2R)-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-2-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-2-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H84NO8P (809.5934234)


   

PC(20:1(11Z)/18:3(9Z,12Z,15Z))

PC(20:1(11Z)/18:3(9Z,12Z,15Z))

C46H84NO8P (809.5934234)


   

PC(20:2(11Z,14Z)/18:2(9Z,12Z))

PC(20:2(11Z,14Z)/18:2(9Z,12Z))

C46H84NO8P (809.5934234)


   

1-Stearoyl-2-arachidonoyl-sn-glycero-3-phosphocholine

1-Stearoyl-2-arachidonoyl-sn-glycero-3-phosphocholine

C46H84NO8P (809.5934234)


A phosphatidylcholine 38:4 in which the two acyl substituents at positions 1 and 2 are specified as stearoyl and arachidonoyl respectively.

   

PC(20:4(5Z,8Z,11Z,14Z)/18:0)

PC(20:4(5Z,8Z,11Z,14Z)/18:0)

C46H84NO8P (809.5934234)


   

PC(16:0/22:4(7Z,10Z,13Z,16Z))

PC(16:0/22:4(7Z,10Z,13Z,16Z))

C46H84NO8P (809.5934234)


   

PC(20:3(8Z,11Z,14Z)/18:1(9Z))

PC(20:3(8Z,11Z,14Z)/18:1(9Z))

C46H84NO8P (809.5934234)


   

PC(22:4(7Z,10Z,13Z,16Z)/16:0)

PC(22:4(7Z,10Z,13Z,16Z)/16:0)

C46H84NO8P (809.5934234)


   

PC(18:1(9Z)/20:3(5Z,8Z,11Z))

PC(18:1(9Z)/20:3(5Z,8Z,11Z))

C46H84NO8P (809.5934234)


   

PC(18:4(6Z,9Z,12Z,15Z)/20:0)

PC(18:4(6Z,9Z,12Z,15Z)/20:0)

C46H84NO8P (809.5934234)


   

PC(20:0/18:4(6Z,9Z,12Z,15Z))

PC(20:0/18:4(6Z,9Z,12Z,15Z))

C46H84NO8P (809.5934234)


   

PC(20:3(5Z,8Z,11Z)/18:1(9Z))

PC(20:3(5Z,8Z,11Z)/18:1(9Z))

C46H84NO8P (809.5934234)


   

PC(18:1(9Z)/20:3(8Z,11Z,14Z))

PC(18:1(9Z)/20:3(8Z,11Z,14Z))

C46H84NO8P (809.5934234)


   

PC(18:3(6Z,9Z,12Z)/20:1(11Z))

PC(18:3(6Z,9Z,12Z)/20:1(11Z))

C46H84NO8P (809.5934234)


   

PC(20:1(11Z)/18:3(6Z,9Z,12Z))

PC(20:1(11Z)/18:3(6Z,9Z,12Z))

C46H84NO8P (809.5934234)


   

PC(18:0/20:4(8Z,11Z,14Z,17Z))

PC(18:0/20:4(8Z,11Z,14Z,17Z))

C46H84NO8P (809.5934234)


   

PC(18:1(11Z)/20:3(5Z,8Z,11Z))

PC(18:1(11Z)/20:3(5Z,8Z,11Z))

C46H84NO8P (809.5934234)


   

PC(20:3(5Z,8Z,11Z)/18:1(11Z))

PC(20:3(5Z,8Z,11Z)/18:1(11Z))

C46H84NO8P (809.5934234)


   

PC(18:2(9Z,12Z)/20:2(11Z,14Z))

PC(18:2(9Z,12Z)/20:2(11Z,14Z))

C46H84NO8P (809.5934234)


   

PC(18:3(9Z,12Z,15Z)/20:1(11Z))

PC(18:3(9Z,12Z,15Z)/20:1(11Z))

C46H84NO8P (809.5934234)


   

PC(18:1(11Z)/20:3(8Z,11Z,14Z))

PC(18:1(11Z)/20:3(8Z,11Z,14Z))

C46H84NO8P (809.5934234)


   

PC(20:3(8Z,11Z,14Z)/18:1(11Z))

PC(20:3(8Z,11Z,14Z)/18:1(11Z))

C46H84NO8P (809.5934234)


   

PC(20:4(8Z,11Z,14Z,17Z)/18:0)

PC(20:4(8Z,11Z,14Z,17Z)/18:0)

C46H84NO8P (809.5934234)


   

PC(18:0/20:4(8Z,10Z,12Z,14Z))

PC(18:0/20:4(8Z,10Z,12Z,14Z))

C46H84NO8P (809.5934234)


   

phosphatidylcholine (18:0/20:4)

phosphatidylcholine (18:0/20:4)

C46H84NO8P (809.5934234)


A phosphatidylcholine 38:4 in which the fatty acyl groups at positions 1 and 2 are specified as C18:0 and C20:4 respectively.

   

phosphatidylcholine 38:4

phosphatidylcholine 38:4

C46H84NO8P (809.5934234)


A 1,2-diacyl-sn-glycero-3-phosphocholine in which the acyl groups at C-1 and C-2 contain 38 carbons in total with 4 double bonds.

   

1-octadecanoyl-2-[(8Z,10Z,12Z,14Z)-eicosatetraenoyl]-sn-glycero-3-phosphocholine

1-octadecanoyl-2-[(8Z,10Z,12Z,14Z)-eicosatetraenoyl]-sn-glycero-3-phosphocholine

C46H84NO8P (809.5934234)


A phosphatidylcholine 38:4 in which the acyl groups at positions 1 and 2 are octadecanoyl and (8Z,10Z,12Z,14Z)-eicosatetraenoyl respectively.

   

1-oleoyl-2-[(8Z,11Z,14Z)-icosatrienoyl]-sn-glycero-3-phosphocholine

1-oleoyl-2-[(8Z,11Z,14Z)-icosatrienoyl]-sn-glycero-3-phosphocholine

C46H84NO8P (809.5934234)


A phosphatidylcholine 38:4 in which the acyl groups at positions 1 and 2 are specified as oleoyl and (8Z,11Z,14Z)-icosatrienoyl respectively.

   

1-[(9Z)-octadecenoyl]-2-[(5Z,8Z,11Z)-eicosatrienoyl]-sn-glycero-3-phosphocholine

1-[(9Z)-octadecenoyl]-2-[(5Z,8Z,11Z)-eicosatrienoyl]-sn-glycero-3-phosphocholine

C46H84NO8P (809.5934234)


A phosphatidylcholine 38:4 in which the acyl groups specified at positions 1 and 2 are (9Z)-octadecenoyl and (5Z,8Z,11Z)-eicosatrienoyl respectively.

   

1-hexadecanoyl-2-[(7Z,10Z,13Z,16Z)-docosatetraenoyl]-sn-glycero-3-phosphocholine

1-hexadecanoyl-2-[(7Z,10Z,13Z,16Z)-docosatetraenoyl]-sn-glycero-3-phosphocholine

C46H84NO8P (809.5934234)


A phosphatidylcholine 38:4 in which the acyl groups at positions 1 and 2 are hexadecanoyl and (7Z,10Z,13Z,16Z)-docosatetraenoyl respectively.

   

MePC(37:4)

MePC(17:0_20:4)

C46H84NO8P (809.5934234)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

HexCer 14:2;O3/26:2;O

HexCer 14:2;O3/26:2;O

C46H83NO10 (809.6016658)